Advertisement
Original article| Volume 141, ISSUE 5, P309-317, May 2003

Effects of hypoxia and nitric oxide on ferritin content of alveolar cells

  • Jacqueline J. Smith
    Affiliations
    Section of Pulmonary and Critical Care Medicine, Department of Medicine, Carl T. Hayden Veterans Affairs Medical Center, Phoenix, Arizona, USA

    Division of Pulmonary and Critical Care Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
    Search for articles by this author
  • Amy R. O’Brien-Ladner
    Affiliations
    Section of Pulmonary and Critical Care Medicine, Department of Medicine, Carl T. Hayden Veterans Affairs Medical Center, Phoenix, Arizona, USA

    Division of Pulmonary and Critical Care Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
    Search for articles by this author
  • Chris R. Kaiser
    Affiliations
    Section of Pulmonary and Critical Care Medicine, Department of Medicine, Carl T. Hayden Veterans Affairs Medical Center, Phoenix, Arizona, USA

    Division of Pulmonary and Critical Care Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
    Search for articles by this author
  • Lewis J. Wesselius
    Correspondence
    Reprint requests: Lewis J. Wesselius, Thoracic Disease Section, Mayo Clinic Scottsdale, 13400 E. Shea Blvd, Scottsdale, AZ 85259, USA.
    Affiliations
    Division of Pulmonary and Critical Care Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
    Search for articles by this author

      Abstract

      Concentrations of ferritin in alveolar cells and on the alveolar surface are increased in patients with a variety of respiratory disorders. Ferritin synthesis by cells is modulated by iron content but is also influenced by stimuli other than iron. In this study we sought to determine whether in vitro exposure to hypoxia- or nitric oxide (NO)–induced ferritin accumulation or release by human alveolar macrophages (AMs) or a lung cancer–derived epithelial cell line (A549). Changes in cell content of iron and ferritin (L- and H-types), as well as ferritin content of cell supernatants, were determined after in vitro exposure to hypoxia (1% or 10% O2, 18 hours) or the NO donor S-nitroso-N-acetylpenicillamine (SNAP, 0.01–1.0 mmol/L, 18 hours). Exposure to 1% O2 increased ferritin content in both cell types (>fourfold increase; P < .005) without changing iron content. Treatment with SNAP increased ferritin content of A549 cells in a dose-dependent manner, whereas treatment of AMs decreased cellular iron and ferritin content and increased supernate ferritin content. Pretreatment of cells with N-acetylcysteine (500 μmol/L) reduced hypoxia-induced ferritin accumulation in alveolar cells and completely inhibited NO-induced ferritin accumulation in A549 cells. These findings indicate that exposure to 1% O2can increase ferritin content in alveolar cells, whereas NO can increase ferritin content (A549 cells) or decrease ferritin content (AMs).

      Keywords:

      AM (alveolar macrophage), FBS (fetal bovine serum), IRP (iron-regulatory protein), MTT (3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl-tetrazolium bromide), NAC (N-acetylcysteine), NAP (N-acetylpenicillamine), NO (nitric oxide), SDS (sodium dodecyl sulfate), SEM (standard error of the mean), SNAP (S-nitroso-N-acetylpenicillamine), SnPP (tin protoporphyrin)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ryan T.P.
        • Aust S.D.
        The role of iron in oxygen-mediated toxicities.
        Crit Rev Toxicol. 1992; 22: 119-141
        • Harrison P.M.
        • Arosio P.
        The ferritins.
        Biochim Biophys Acta. 1996; 1275: 161-203
        • Hentze M.W.
        • Kuhn L.C.
        Molecular control of vertebrate iron metabolism.
        Proc Natl Acad Sci U S A. 1996; 93: 8175-8182
        • Wesselius L.J.
        • Nelson M.E.
        • Skikne B.S.
        Increased release of ferritin and iron by iron-loaded alveolar macrophages in cigarette smokers.
        Am J Resp Crit Care Med. 1994; 150: 690-695
        • Stites S.W.
        • Walters B.
        • O’Brien-Ladner A.R.
        • Bailey K.
        • Wesselius L.J.
        Increased iron and ferritin content of sputum from patients with cystic fibrosis or chronic bronchitis.
        Chest. 1998; 114: 814-819
        • Stites S.W.
        • Plautz M.W.
        • Bailey K.
        • O’Brien-Ladner A.R.
        • Wesselius L.J.
        Increased concentrations of iron and isoferritins in the lower respiratory tract of patients with stable cystic fibrosis.
        Am J Resp Crit Care Med. 1999; 160: 796-801
        • Mateos F.
        • Gonzalez C.
        • Dominguez C.
        • Losa J.-E.
        • Jimenez A.
        • Perez-Arellano J.-L.
        Elevated non–transferrin bound iron in the lungs of patients with Pneumocystis carinii pneumonia.
        J Infect. 1999; 38: 18-21
        • Reid D.
        • Snell G.
        • Ward C.
        • Krisnaswamy R.
        • Ward R.
        • Zheng L.
        • et al.
        Iron overload and nitric oxide–derived oxidative stress following lung transplantation.
        J Heart Lung Transplant. 2001; 20: 840-849
        • Reif D.W.
        Ferritin as a source of iron for oxidative damage.
        Free Radic Biol Med. 1992; 12: 417-427
        • Kuriyama-Matsumura K.
        • Sato H.
        • Yamaguchi M.
        • Bannai S.
        Regulation of ferritin synthesis and iron regulatory protein 1 by oxygen in mouse peritoneal macrophages.
        Biochem Biophys Res Commun. 1998; 249: 241-246
        • Hanson E.S.
        • Leibold E.A.
        Regulation of iron regulatory protein 1 during hypoxia and hypoxia/reoxygenation.
        J Biol Chem. 1998; 273: 7588-7593
        • Ovberle S.
        • Schroder H.
        Ferritin may mediate SIN-1–induced protection against oxidative stress.
        Nitric Oxide. 1997; 1: 308-314
        • Recalcati S.
        • Taramelli D.
        • Conte D.
        • Cairo G.
        Nitric oxide–mediated induction of ferritin synthesis in J774 macrophages by inflammatory cytokines.
        Blood. 1998; 91: 1059-1066
        • Cairo G.
        • Tacchini L.
        • Pogliaghi G.
        • Anzon E.
        • Tomasi A.
        • Bernelli-Zazzer A.
        Induction of ferritin synthesis by oxidative stress.
        J Biol Chem. 1995; 270: 700-703
        • Smirnov I.M.
        • Bailey K.
        • Flowers C.H.
        • Garrigues N.W.
        • Wesselius L.J.
        Effects of TNF-α and IL-1β on iron metabolism by A549 cells and influence on cytotoxicity.
        Am J Physiol. 1999; 277: L257-L263
        • Toth I.
        • Yuan L.
        • Rogers J.T.
        • Boyce H.
        • Bridges K.R.
        Hypoxia alters iron-regulatory protein-1 binding capacity and modulates cellular iron homeostasis in human hepatoma and erythroleukemia cells.
        J Biol Chem. 1999; 274: 4467-4473
        • Pantopoulos K.
        • Hentze M.W.
        Nitric oxide signaling to iron-regulatory protein.
        Proc Natl Acad Sci U S A. 1995; 92: 1267-1271
        • Wardrop S.L.
        • Watts R.N.
        • Richardson D.R.
        Nitrogen monoxide activates iron regulatory protein 1 RNA binding activity by two possible mechanisms.
        Biochemistry. 2000; 39: 2748-2758
        • Narula P.
        • Xu J.
        • Kazzaz J.A.
        • Robbins C.G.
        • Davis J.M.
        • Horowitz S.
        Synergistic cytotoxicity from nitric oxide and hyperoxia in cultured lung cells.
        Am J Physiol. 1998; 274: L411-L416
        • Zamora R.
        • Bult H.
        • Herman A.G.
        The role of prostaglandin E and nitric oxide in cell death in J774 murine macrophages.
        Eur J Pharm. 1998; 349: 307-315
        • Fish W.W.
        Rapid colorimetric micromethod for the quantitation of complexed iron in biological samples.
        Methods Enzymol. 1988; 158: 357-364
        • Musser D.A.
        • Oseroff A.R.
        The use of tetrazolium salts to determine sites of damage to the mitochondrial electron transport chain in intact cells following in vitro photodynamic therapy with photofrin II.
        Photochem Photobiol. 1994; 59: 621-626
        • Ding A.H.
        • Nathan C.R.
        • Stuehr D.J.
        Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages.
        J Immunol. 1988; 141: 2407-2412
        • Lee P.J.
        • Jiang B.-H.
        • Chin B.Y.
        • Iyer N.V.
        • Alam J.
        • Semenza G.L.
        • et al.
        Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia.
        J Biol Chem. 1997; 272: 5375-5381
        • Chandel N.S.
        • Trzyna W.C.
        • McClintock D.S.
        • Schumaker P.T.
        Role of oxidants in NF-κB and TNF-α gene transcription induced by hypoxia and endotoxin.
        J Immunol. 2000; 165: 1013-1021
        • Kim S.
        • Ponka P.
        Control of transferrin receptor expression via nitric oxide–mediated modulation of iron-regulatory protein 2.
        J Biol Chem. 1999; 274: 33035-33042
        • Oberle S.
        • Schwartz P.
        • Abate A.
        • Schroder H.
        The antioxidant defense protein ferritin is a novel and specific target for pentaerithrityl tetranitrate in endothelial cells.
        Biochem Biophys Res Commun. 1999; 261: 28-34
        • Domachowske J.B.
        • Rafferty S.P.
        • Singhania N.
        • Mardiney III, M.
        • Malech H.L.
        Nitric oxide alters the expression of gamma-globin, H-ferritin, and transferrin receptor in human K562 cells at the posttranscriptional level.
        Blood. 1996; 88: 2980-2988
        • Epsztein S.
        • Glickstein H.
        • Picard V.
        • Slotki I.N.
        • Breuer W.
        • Beaumont C.
        • et al.
        H-ferritin subunit overexpression in erythroid cells reduces the oxidative stress response and induces multidrug resistance properties.
        Blood. 1999; 94: 3593-3603
        • Garner B.
        • Roberg K.
        • Brunk U.T.
        Endogenous ferritin protects cells with iron-laden lysosomes against oxidative stress.
        Free Radic Res. 1998; 29: 103-114
        • Hamilton R.F.
        • Li L.
        • Eschenbacher W.L.
        • Szweda L.
        • Holian A.
        Potential involvement of 4-hydroxynonenal in the response of human lung cells to ozone.
        Am J Physiol. 1998; 274 (L8–16)
        • Carraway M.S.
        • Ghio A.J.
        • Taylor J.L.
        • Piantadosi C.A.
        Induction of ferritin and heme oxygenase-1 by endotoxin in the lung.
        Am J Physiol. 1998; 275: L583-L592
        • Watts R.N.
        • Richardson D.R.
        Nitrogen monoxide and glucose.
        J Biol Chem. 2001; 276: 4724-4732
        • Ghio A.J.
        • Carter J.D.
        • Samet J.M.
        • Quay J.
        • Wortman I.A.
        • Richards J.G.
        • et al.
        Ferritin expression after in vitro exposure of human alveolar macrophages to silica is iron-dependent.
        Am J Resp Cell Mol Biol. 1997; 17: 533-540
        • Shinagawa K.
        • Tocimoto T.
        • Shirane K.
        Spin trapping of nitric oxide in aqueous solutions of cigarette smoke.
        Biochem Biophys Res Commun. 1998; 253: 99-103
        • Moreno J.J.
        • Foroozesh M.
        • Church D.F.
        • Pryor W.A.
        Release of iron from ferritin by aqueous extracts of cigarette smoke.
        Chem Res Toxicol. 1992; 5: 116-123