Advertisement
In-Depth Review: Mast Cell Disease: Beyond Allergy and Mastocytosis| Volume 174, P33-59, August 01, 2016

Mast cell activation disease and the modern epidemic of chronic inflammatory disease

  • Lawrence B. Afrin
    Correspondence
    Reprint requests: Lawrence B. Afrin, Division of Hematology, Oncology and Transplantation, University of Minnesota, MMC 480, 420 Delaware Street SE, Minneapolis, MN 55455.
    Affiliations
    Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minn
    Search for articles by this author
Published:January 18, 2016DOI:https://doi.org/10.1016/j.trsl.2016.01.003
      A large and growing portion of the human population, especially in developed countries, suffers 1 or more chronic, often quite burdensome ailments which either are overtly inflammatory in nature or are suspected to be of inflammatory origin, but for which investigations to date have failed to identify specific causes, let alone unifying mechanisms underlying the multiple such ailments that often afflict such patients. Relatively recently described as a non-neoplastic cousin of the rare hematologic disease mastocytosis, mast cell (MC) activation syndrome—suspected to be of greatly heterogeneous, complex acquired clonality in many cases—is a potential underlying/unifying explanation for a diverse assortment of inflammatory ailments. A brief review of MC biology and how aberrant primary MC activation might lead to such a vast range of illness is presented.

      Abbreviations:

      ACI (anemia of chronic inflammation), AD[H]D (attention deficit[/hyperactivity] disorder), ASD (autism spectrum disorder), BMS (burning mouth syndrome), BPAD (bipolar affective disorder), CCS (Cronkhite-Canada syndrome), CFS (chronic fatigue syndrome), CGRP (calcitonin gene-related peptide), CID (chronic inflammatory disease), CKD (chronic kidney disease), CNS (central nervous system), CRH (corticotropin releasing hormone), CSF (cerebrospinal fluid), DM1 (diabetes mellitus type 1), DM2 (diabetes mellitus type 2), ECG (electrocardiographic), EDS (Ehlers-Danlos syndrome), EH (essential hypertension), FM (fibromyalgia), GERD (gastroesophageal reflux disease), GI (gastrointestinal), GWI (Gulf War Illness), H&E (hematoxylin and eosin), HLA (human leukocyte antigen), IBD (inflammatory bowel disease), IBS (irritable bowel syndrome), Ig (immunoglobulin), IL (interleukin), IFN (interferon), MC (mast cell), MCAD (mast cell activation disease), MCAS (mast cell activation syndrome), MCRG (mast cell regulatory gene), MCS (multiple chemical sensitivity), MDS (myelodysplastic syndrome), MIST (mast cell immunoreceptor signal transducer), NERD (non-erosive reflux disease), NICM (non-ischemic cardiomyopathy), PCOS (polycystic ovarian syndrome), PCR (polymerase chain reaction), POTS (postural orthostatic tachycardia syndrome), PRCA (pure red cel aplasia), PV (polycythemia vera), RLS (restless leg syndrome), SCA (sickle cell anemia), SM (systemic mastocytosis), SM-AHNMD (systemic mastocytosis with associated clonal hematologic non-mast-cell-lineage disease), TNF (tumor necrosis factor), Treg (T-regulatory cell), TRPV1 (vanilloid receptor type 1), TSH (thyroid stimulating hormone)
      To read this article in full you will need to make a payment

      References

        • Pawankar R.
        • Canonica G.W.
        • Holgate S.T.
        • Lockey R.F.
        Introduction and executive summary.
        in: Pawankar R. Canonica G.W. Holgate S.T. Lockey R.F. World Allergy Organization (WAO) white book on allergy. World Allergy Organization, Milwaukee2011: 12
        • Pawankar R.
        Allergic diseases and asthma: a global public health concern and a call to action.
        World Allergy Organ J. 2014; 7: 12
        • Vyse T.J.
        • Todd J.A.
        Genetic analysis of autoimmune disease.
        Cell. 1996; 85: 311-318
        • Queiroz L.P.
        Worldwide epidemiology of fibromyalgia.
        Curr Pain Headache Rep. 2013; 17: 356
        • Loftus Jr., E.V.
        Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences.
        Gastroenterology. 2004; 126: 1504-1517
        • Dobbs R.
        • Sawers C.
        • Thompson F.
        • et al.
        Overcoming obesity: an initial economic analysis—executive summary.
        McKinsey Global Institute, 2014: 1 (Available at:) (Accessed December 7, 2015)
        • Anderson G.
        • Horvath J.
        The growing burden of chronic disease in America.
        Public Health Rep. 2004; 119: 263-270
        • von Recklinghausen F.
        Ueber eiter—und bindegewebskörperchen.
        Virchows Arch. 1863; 28: 157-197
        • Ehrlich P.
        Beiträge zur Kenntnis der Anilinfärburgen und ihrer Verwendung in der Mikroskopischen Technik.
        Arch Mikrosk Anat. 1877; 13: 263-277
        • Unna P.
        Beiträge zur Anatomie und Pathogenese der urticaria simplex und pigmentosa.
        Monatschrift der praktischen Dermatologie. 1887; 6: 9-18
        • Ellis J.M.
        Urticaria pigmentosa: report of a case with autopsy.
        Arch Pathol. 1949; 48: 426-435
        • Holmgren H.
        • Wilander O.
        Beiträge zur Kenntnis der Chemie and Funktion der Ehrlichschen Mästzellen.
        Z Mikrosk Anat Forsch. 1937; 42: 242-278
        • Jorpes E.
        • Holmgren H.
        • Wilander O.
        Über das Vorkommen von Heparin in den Gefässwänden und in den Augen.
        Z Mikrosk Anat Forsch. 1937; 42: 279-300
        • Riley J.F.
        Histamine in tissue mast cells.
        Science. 1953; 118: 332-333
        • Riley J.F.
        • West G.B.
        The presence of histamine in tissue mast cells.
        J Physiol (Lond). 1953; 120: 528-537
        • Molderings G.J.
        • Homann J.
        • Raithel M.
        • Frieling T.
        Toward a global classification of mast cell activation diseases.
        J Allergy Clin Immunol. 2011; 127: 1311
        • Ibelgaufts H.
        “Mast cells” in COPE: cytokines and cells online pathfinder encyclopaedia.
        2015 (Available at:) (Accessed December 12, 2015)
        • Schwartz L.B.
        • Metcalfe D.D.
        • Miller J.S.
        • Earl H.
        • Sullivan T.
        Tryptase levels as an indicator of mast-cell activation in systemic anaphylaxis and mastocytosis.
        N Engl J Med. 1987; 316: 1622-1626
        • Schwartz L.B.
        • Sakai K.
        • Bradford T.R.
        • et al.
        The α form of human tryptase is the predominant type present in blood at baseline in normal subjects and is elevated in those with systemic mastocytosis.
        J Clin Invest. 1995; 96: 2702-2710
        • Borer-Reinhold M.
        • Haeberli G.
        • Bitzenhofer M.
        • et al.
        An increase in serum tryptase even below 11.4 ng/mL may indicate a mast cell-mediated hypersensitivity reaction: a prospective study in hymenoptera venom allergic patients.
        Clin Exp Allergy. 2011; 41: 1777-1783
        • Furitsu T.
        • Tsujimura T.
        • Tono T.
        • et al.
        Identification of mutations in the coding sequence of the proto-oncogene c-kit in a human mast cell leukemia cell line causing ligand-independent activation of c-kit product.
        J Clin Invest. 1993; 92: 1736-1744
        • Nagata H.
        • Worobec A.S.
        • Oh C.K.
        • et al.
        Identification of a point mutation in the catalytic domain of the protooncogene c-kit in peripheral blood mononuclear cells of patients who have mastocytosis with an associated hematologic disorder.
        Proc Natl Acad Sci U S A. 1995; 92: 10560-10564
        • Garcia-Montero A.C.
        • Jara-Acevedo M.
        • Teodosio C.
        • et al.
        KIT mutation in mast cells and other bone marrow hematopoietic cell lineages in systemic mast cell disorders: a prospective study of the Spanish network on mastocytosis (REMA) in a series of 113 patients.
        Blood. 2006; 108: 2366-2372
        • Escribano L.
        • Orfao A.
        • Díaz-Agustin B.
        • et al.
        Indolent systemic mast cell disease in adults: immunophenotypic characterization of bone marrow mast cells and its diagnostic implications.
        Blood. 1998; 91: 2731-2736
        • Iemura A.
        • Tsai M.
        • Ando A.
        • Wershil B.K.
        • Galli S.J.
        The c-kit ligand, stem cell factor, promotes mast cell survival by suppressing apoptosis.
        Am J Pathol. 1994; 144: 321-328
        • Metcalfe D.D.
        • Mekori J.A.
        • Rotten M.
        Mast cell ontogeny and apoptosis.
        Exp Dermatol. 1995; 4: 227-230
        • Ekoff M.
        • Lyberg K.
        • Krajewska M.
        • et al.
        Anti-apoptotic Bfl-1 is the major effector in activation-induced human mast cell survival.
        PLoS One. 2012; 7: e39117
        • Karlberg M.
        • Xiang Z.
        • Nilsson G.
        FcγRI-mediated activation of human mast cells promotes survival and induction of the pro-survival gene Bfl-1.
        J Clin Immunol. 2008; 28: 250-255
        • Möller C.
        • Xiang Z.
        • Nilsson G.
        Activation of mast cells by immunoglobulin E-receptor cross-linkage, but not through adenosine receptors, induces A1 expression and promotes survival.
        Clin Exp Allergy. 2003; 33: 1135-1140
        • Ekoff M.
        • Strasser A.
        • Nilsson G.
        FcεRI aggregation promotes survival of connective tissue-like mast cells but not mucosal-like mast cells.
        J Immunol. 2007; 178: 4177-4183
        • Möller C.
        • Alfredsson J.
        • Engström M.
        • et al.
        Stem cell factor promotes mast cell survival via inactivation of FOXO3a-mediated transcriptional induction and MEK-regulated phosphorylation of the proapoptotic protein Bim.
        Blood. 2005; 106: 1330-1336
        • Möller C.
        • Karlberg M.
        • Abrink M.
        • Nakayama K.I.
        • Motoyama N.
        • Nilsson G.
        Bcl-2 and Bcl-XL are indispensable for the late phase of mast cell development from mouse embryonic stem cells.
        Exp Hematol. 2007; 35: 385-393
        • Ullerås E.
        • Karlberg M.
        • Westerberg C.M.
        • et al.
        NFAT but not NF-κB is critical for transcriptional induction of the prosurvival gene A1 after IgE receptor activation in mast cells.
        Blood. 2008; 111: 3081-3089
        • Liu C.
        • Liu Z.
        • Li Z.
        • Wu Y.
        Molecular regulation of mast cell development and maturation.
        Mol Biol Rep. 2010; 37: 1993-2001
        • Roberts L.J.
        • Oates J.A.
        Biochemical diagnosis of systemic mast cell disorders.
        J Invest Dermatol. 1991; 96: 19S-25S
        • Sonneck K.
        • Florian S.
        • Müllauer L.
        • et al.
        Diagnostic and subdiagnostic accumulation of mast cells in the bone marrow of patients with anaphylaxis: monoclonal mast cell activation syndrome.
        Int Arch Allergy Immunol. 2007; 142: 158-164
        • Akin C.
        • Scott L.M.
        • Kocabas C.N.
        • et al.
        Demonstration of an aberrant mast-cell population with clonal markers in a subset of patients with “idiopathic” anaphylaxis.
        Blood. 2007; 110: 2331-2333
        • Valent P.
        • Akin C.
        • Escribano L.
        • et al.
        Standards and standardization in mastocytosis: consensus statements on diagnostics, treatment recommendations and response criteria.
        Eur J Clin Invest. 2007; 37: 435-453
        • Molderings G.J.
        • Kolck U.W.
        • Scheurlen C.
        • Brüss M.
        • Homann J.
        • Von Kügelgen I.
        Multiple novel alterations in Kit tyrosine kinase in patients with gastrointestinally pronounced systemic mast cell activation disorder.
        Scand J Gastroenterol. 2007; 42: 1045-1053
        • Molderings G.J.
        • Meis K.
        • Kolck U.W.
        • Homann J.
        • Frieling T.
        Comparative analysis of mutation of tyrosine kinase Kit in mast cells from patients with systemic mast cell activation syndrome and healthy subjects.
        Immunogenetics. 2010; 62: 721-727
        • Schwaab J.
        • Schnittger S.
        • Sotlar K.
        • et al.
        Comprehensive mutational profiling in advanced systemic mastocytosis.
        Blood. 2013; 122: 2460-2466
        • Chan J.
        • Tharp M.D.
        The detection of novel KIT mutations in mastocytosis.
        J Invest Dermatol. 2013; 133 (abstract 388): S66
        • Chan I.J.
        • Kasprowicz S.
        • Tharp M.D.
        Distinct signalling pathways for mutated KIT(V560G) and KIT(D816V) in mastocytosis.
        Clin Exp Dermatol. 2013; 38: 538-544
        • Nedoszytko B.
        • Niedoszytko M.
        • Lange M.
        • et al.
        Genetic background of mastocytosis, a synopsis of cooperative studies conducted by ECNM.
        J Investigative Dermatol. 2013; 133 (abstract 391): S66
        • Tefferi A.
        • Vainchenker W.
        Myeloproliferative neoplasms: molecular pathophysiology, essential clinical understanding, and treatment strategies.
        J Clin Oncol. 2011; 29: 573-582
        • Klampfl T.
        • Harutyunyan A.
        • Berg T.
        • et al.
        Genome integrity of myeloproliferative neoplasms in chronic phase and during disease progression.
        Blood. 2011; 118: 167-176
        • Soverini S.
        • De Benedittis C.
        • Mancini M.
        • et al.
        Genome-wide molecular portrait of aggressive systemic mastocytosis and mast cell leukemia depicted by whole exome sequencing and copy number variation analysis.
        Blood. 2015; 126 (4085)
        • Akin C.
        • Valent P.
        • Metcalfe D.D.
        Mast cell activation syndrome: proposed diagnostic criteria.
        J Allergy Clin Immunol. 2010; 126: 1099-1104e4
        • Haenisch B.
        • Nöthen M.M.
        • Molderings G.J.
        Systemic mast cell activation disease: the role of molecular genetic alterations in pathogenesis, heritability and diagnostics.
        Immunol. 2012; 137: 197-205
        • Molderings G.J.
        • Haenisch B.
        • Bogdanow M.
        • Fimmers R.
        • Nöthen M.M.
        Familial occurrence of systemic mast cell activation disease.
        PLoS One. 2013; 8: e76241
        • Valent P.
        • Akin C.
        • Arock M.
        • et al.
        Definitions, criteria, and global classification of mast cell disorders with special reference to mast cell activation syndromes: a consensus proposal.
        Int Arch Allergy Immunol. 2012; 157: 215-225
        • Afrin L.B.
        • Molderings G.J.
        A concise, practical guide to diagnostic assessment for mast cell activation disease.
        World J Hematol. 2014; 3: 1-17
        • Molderings G.J.
        • Brettner S.
        • Homann J.
        • Afrin L.B.
        Mast cell activation disease: a concise practical guide for diagnostic workup and therapeutic options.
        J Hematol Oncol. 2011; 4: 10
        • Horny H.P.
        • Metcalfe D.D.
        • Bennett J.M.
        • et al.
        Mastocytosis.
        in: Swerdlow S.H. Campo E. Harris N.L. WHO classification of tumors of hematopoietic and lymphoid tissues. 4th ed. International Agency for Research on Cancer, Lyon2008: 54-63
        • Akin C.
        • Metcalfe D.D.
        Chapter 15: mastocytosis and mast cell activation syndromes presenting as anaphylaxis.
        in: Castells M.C. Anaphylaxis and hypersensitivity reactions. Springer, New York2011: 245-256
        • Theoharides T.C.
        • Sismanopoulos N.
        • Delivanis D.-A.
        • Zhang B.
        • Hatziagelaki E.E.
        • Kalogeromitros D.
        Mast cells squeeze the heart and stretch the gird: their role in atherosclerosis and obesity.
        Trends Pharmacol Sci. 2011; 32: 534-542
        • Divoux A.
        • Moutel S.
        • Poitou C.
        • et al.
        Mast cells in human adipose tissue: link with morbid obesity, inflammatory status, and diabetes.
        J Clin Endocrinol Metab. 2012; 97: E1677-E1685
        • Poglio S.
        • De Toni-Costes F.
        • Arnaud E.
        • et al.
        Adipose tissue as a dedicated reservoir of functional mast cell progenitors.
        Stem Cells. 2010; 28: 2065-2072
        • Ricote M.
        • Li A.C.
        • Willson T.M.
        • Kelly C.J.
        • Glass C.K.
        The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation.
        Nature. 1998; 391: 79-82
        • Fujitani Y.
        • Aritake K.
        • Kanaoka Y.
        • et al.
        Pronounced adipogenesis and increased insulin sensitivity caused by overproduction of prostaglandin D2 in vivo.
        FEBS J. 2010; 277: 1410-1419
        • Elias E.
        • Benrick A.
        • Behre C.J.
        • et al.
        Central nervous system lipocalin-type prostaglandin D2-synthase is correlated with orexigenic neuropeptides, visceral adiposity and markers of the hypothalamic-pituitary-adrenal axis in obese humans.
        J Neuroendocrinol. 2011; 23: 501-507
        • Alfter K.
        • von Kügelgen I.
        • Haenisch B.
        • et al.
        New aspects of liver abnormalities as part of the systemic mast cell activation syndrome.
        Liver Int. 2009; 29: 181-186
        • Guariguata L.
        • Whiting D.R.
        • Hambleton I.
        • Beagley J.
        • Linnenkamp U.
        • Shaw J.E.
        Global estimates of diabetes prevalence for 2013 and projections for 2035.
        Diabetes Res Clin Pract. 2014; 103: 137-149
        • Shi M.A.
        • Shi G.-P.
        Different roles of mast cells in obesity and diabetes: lessons from experimental animals and humans.
        Front Immunol. 2012; 3: 7
        • Geoffrey R.
        • Jia S.
        • Kwitek A.E.
        • et al.
        Evidence of a functional role for mast cells in the development of type 1 diabetes mellitus in the BioBreeding rat.
        J Immunol. 2006; 177: 7275-7286
        • Louvet C.
        • Szot G.L.
        • Lang J.
        • et al.
        Tyrosine kinase inhibitors reverse type 1 diabetes in nonobese diabetic mice.
        Proc Natl Acad Sci U S A. 2008; 105: 18895-18900
        • Tomioka M.
        • Ida S.
        • Shindoh Y.
        • Ishihara T.
        • Takishima T.
        Mast cells in bronchoalveolar lumen of patients with bronchial asthma.
        Am Rev Respir Dis. 1984; 129: 1000-1005
        • Fajt M.L.
        • Trudeau J.B.
        • Westcott J.Y.
        • Schwartz L.B.
        • Wenzel S.E.
        Th2 high asthmatic bronchoalveolar mast cells release less PGD2 and tryptase following acute stimulation.
        Am J Respir Crit Care Med. 2013; 187 (Available at:): A2399
        • Brightling C.E.
        • Bradding P.
        The re-emergence of the mast cell as a pivotal cell in asthma pathogenesis.
        Curr Allergy Asthma Rep. 2005; 5: 130-135
        • Erjefält J.S.
        Mast cells in human airways: the culprit?.
        Eur Respir Rev. 2014; 23: 299-307
        • Zierau O.
        • Zenclussen A.C.
        • Jensen F.
        Role of female sex hormones, estradiol and progesterone, in mast cell behavior.
        Front Immunol. 2012; 3: 169
        • Vasiadi M.
        • Kempuraj D.
        • Boucher W.
        • Kalogeromitros D.
        • Theoharides T.C.
        Progesterone inhibits mast cell secretion.
        Int J Immunopathol Pharmacol. 2006; 19: 787-794
        • Vinatier D.
        • Dufour P.
        • Tordjeman-Rizzi N.
        • Prolongeau J.F.
        • Depret-Moser S.
        • Monnier J.C.
        Immunological aspects of ovarian function: role of the cytokines.
        Eur J Obstet Gynecol Reprod Biol. 1995; 63: 155-168
        • Cairns A.
        • Constantinides P.
        Mast cells in human atherosclerosis.
        Science. 1954; 120: 31-32
        • Sun J.
        • Sukhova G.K.
        • Wolters P.J.
        • et al.
        Mast cells promote atherosclerosis by releasing proinflammatory cytokines.
        Nat Med. 2007; 13: 719-724
        • Pfenniger A.
        • Chanson M.
        • Kwak B.R.
        Connexins in atherosclerosis.
        Biochim Biophys Acta. 2013; 1828: 157-166
        • Moreno M.
        • Puig J.
        • Serrano M.
        • et al.
        Circulating tryptase as a marker for subclinical atherosclerosis in obese subjects.
        PLoS One. 2014; 9: e97014
        • Ramalho L.S.
        • Oliveira L.F.
        • Cavellani C.L.
        • et al.
        Role of mast cell chymase and tryptase in the progression of atherosclerosis: study in 44 autopsied cases.
        Ann Diagn Pathol. 2013; 17: 28-31
        • Ali A.S.
        • Lax A.S.
        • Liljeström M.
        • et al.
        Mast cells in atherosclerosis as a source of the cytokine RANKL.
        Clin Chem Lab Med. 2006; 44: 672-674
        • Bot I.
        • Shi G.P.
        • Kovanen P.T.
        Mast cells as effectors in atherosclerosis.
        Arterioscler Thromb Vasc Biol. 2015; 35: 265-271
        • Kelley J.L.
        • Chi D.S.
        • Abou-Auda W.
        • Smith J.K.
        • Krishnaswamy G.
        The molecular role of mast cells in atherosclerotic cardiovascular disease.
        Mol Med Today. 2000; 6: 304-308
        • Otsuka F.
        • Sakakura K.
        • Virmani R.
        Are mast cells the real culprit in atherosclerosis?.
        Eur Heart J. 2013; 34: 3681-3683
        • Fukuda K.
        • Straus S.
        • Hickie I.
        • Sharpe M.
        • Dobbins J.
        • Komaroff A.
        The chronic fatigue syndrome: a comprehensive approach to its definition and study. International Chronic Fatigue Syndrome Study Group.
        Ann Intern Med. 1994; 121: 953-959
        • Avellaneda Fernández A.
        • Pérez Martín A.
        • Izquierdo Martínez M.
        • et al.
        Chronic fatigue syndrome: aetiology, diagnosis and treatment.
        BMC Psychiatry. 2009; 9: S1
        • Griffith J.P.
        • Zarrouf F.A.
        A systematic review of chronic fatigue syndrome: don't assume it's depression.
        Prim Care Companion J Clin Psychiatry. 2008; 10: 120-128
        • Theoharides T.C.
        • Papaliodis D.
        • Tagen M.
        • Konstantinidou A.
        • Kempuraj D.
        • Clemons A.
        Chronic fatigue syndrome, mast cells, and tricyclic antidepressants.
        J Clin Psychopharmacol. 2005; 25: 515-520
        • Vasiadi M.
        • Newman J.
        • Theoharides T.C.
        Isoflavones inhibit poly(I: C)-induced serum, brain, and skin inflammatory mediators—relevance to chronic fatigue syndrome.
        J Neuroinflammation. 2014; 11: 168
        • Jason L.A.
        • Sorenson M.
        • Porter N.
        • Belkairous N.
        An etiological model for myalgic encephalomyelitis/chronic fatigue syndrome.
        Neurosci Med. 2011; 2: 14-27
        • Jones G.T.
        • Atzeni F.
        • Beasley M.
        • Flüß E.
        • Sarzi-Puttini P.
        • Macfarlane G.J.
        The prevalence of fibromyalgia in the general population—a comparison of the American College of Rheumatology 1990, 2010 and modified 2010 classification criteria.
        Arthritis Rheum. 2015; 67: 568-575
        • Baraniuk J.N.
        • Casado B.
        • Maibach H.
        • Clauw D.J.
        • Pannell L.K.
        • Hess S.S.
        A chronic fatigue syndrome—related proteome in human cerebrospinal fluid.
        BMC Neurol. 2005; 5: 22
        • Wolfe F.
        • Clauw D.J.
        • Fitzcharles M.A.
        • et al.
        The American College of Rheumatology preliminary diagnostic criteria for fibromyalgia and measurement of symptom severity.
        Arthritis Care Res (Hoboken). 2010; 62: 600-610
        • Hermine O.
        • Lortholary O.
        • Leventhal P.S.
        • et al.
        Case-control cohort study of patients' perceptions of disability in mastocytosis.
        PLoS One. 2008; 3: e2266
        • Afrin L.B.
        The presentation, diagnosis and treatment of mast cell activation syndrome: review article.
        Curr Allergy Clin Immunol. 2014; 3 (Available at:http://reference.sabinet.co.za/webx/access/electronic_journals/caci/caci_v27_n3_a2.pdf): 146-160
        • Blanco I.
        • Beritze N.
        • Arguelles M.
        • et al.
        Abnormal overexpression of mastocytes in skin biopsies of fibromyalgia patients.
        Clin Rheumatol. 2010; 29: 1403-1412
        • Enestrom S.
        • Bengtsson A.
        • Frodin T.
        Dermal IgG deposits and increase of mast cells in patients with fibromyalgia-relevant findings or epiphenomena?.
        Scand J Rheumatol. 1997; 26: 308-313
        • Lucas H.J.
        • Brauch C.M.
        • Settas L.
        • Theoharides T.C.
        Fibromyalgia—new concepts of pathogenesis and treatment.
        Int J Immunopathol Pharmacol. 2006; 19: 5-10
        • Salemi S.
        • Rethage J.
        • Wollina U.
        • et al.
        Detection of interleukin 1beta (IL-1beta), IL-6, and tumor necrosis factor-alpha in skin of patients with fibromyalgia.
        J Rheumatol. 2003; 30: 146-150
        • Pall M.L.
        The NO/ONOO-cycle as the cause of fibromyalgia and related illnesses: etiology, explanation and effective therapy.
        in: Pederson J.A. New research in fibromyalgia. Nova Science Publishers, 2006: 7 (Chapter 2)
        • Ford A.C.
        • Talley N.J.
        Mucosal inflammation as a potential etiological factor in irritable bowel syndrome: a systematic review.
        J Gastroenterol. 2011; 46: 421-431
        • Di Nardo G.
        • Barbara G.
        • Cucchiara S.
        • et al.
        Neuroimmune interactions at different intestinal sites are related to abdominal pain symptoms in children with IBS.
        Neurogastroenterol Motil. 2014; 26: 196-204
        • Klooker T.K.
        • Braak B.
        • Koopman K.E.
        • et al.
        The mast cell stabilizer ketotifen decreases visceral hypersensitivity and improves intestinal symptoms in patients with irritable bowel syndrome.
        Gut. 2010; 59: 1213-1221
        • Corinaldesi R.
        • Stanghellini V.
        • Cremon C.
        • et al.
        Effect of mesalazine on mucosal immune biomarkers in irritable bowel syndrome: a randomized controlled proof-of-concept study.
        Aliment Pharmacol Ther. 2009; 30: 245-252
        • Bafutto M.
        • Almeida J.R.
        • Leite N.V.
        • Oliveira E.C.
        • Gabriel-Neto S.
        • Rezende-Filho J.
        Treatment of postinfectious irritable bowel syndrome and noninfective irritable bowel syndrome with mesalazine.
        Arq Gastroenterol. 2011; 48: 36-40
        • Dorofeyev A.E.
        • Kiriyan E.A.
        • Vasilenko I.V.
        • Rassokhina O.A.
        • Elin A.F.
        Clinical, endoscopical and morphological efficacy of mesalazine in patients with irritable bowel syndrome.
        Clin Exp Gastroenterol. 2011; 4: 141-153
        • Theoharides T.C.
        Mast cells in irritable bowel syndrome and ulcerative colitis: function not numbers is what makes all the difference.
        Dig Dis Sci. 2014; 59: 897-898
        • Frieling T.
        • Meis K.
        • Kolck U.W.
        • et al.
        Evidence for mast cell activation in patients with therapy-resistant irritable bowel syndrome.
        Z Gastroenterol. 2011; 49: 191-194
        • Cremon C.
        • Gargano L.
        • Morselli-Labate A.M.
        • et al.
        Mucosal immune activation in irritable bowel syndrome: gender-dependence and association with digestive symptoms.
        Am J Gastroenterol. 2009; 104: 392-400
        • El-Serag H.B.
        • Sweet S.
        • Winchester C.C.
        • Dent J.
        Update on the epidemiology of gastro-oesophageal reflux disease: a systematic review.
        Gut. 2014; 63: 871-880
        • Jung H.K.
        Epidemiology of gastroesophageal reflux disease in Asia: a systematic review.
        J Neurogastroenterol Motil. 2011; 17: 14-27
        • El-Serag H.B.
        Epidemiology of non-erosive reflux disease.
        Digestion. 2008; 78: 6-10
        • Pace F.
        • Casini V.
        • Pallotta S.
        Heterogeneity of endoscopy negative heartburn: epidemiology and natural history.
        World J Gastroenterol. 2008; 14: 5233-5236
        • Beck M.
        Emerging type of heartburn defies drugs, diagnosis.
        Wall St J. 2012 Nov 12; (Available at:) (Accessed December 12, 2015)
        • Bennett A.E.
        • Goldblum J.R.
        • Odze R.D.
        Inflammatory disorders of the esophagus.
        in: Odze R.D. Goldblum J.R. Surgical pathology of the GI tract, liver, biliary tract and pancreas. 2nd ed. Saunders Elsevier Health Sciences, Philadelphia, Pennsylvania2009: 232
        • Brunning R.D.
        • McKenna R.W.
        • Rosai J.
        • Parkin J.L.
        • Risdall R.
        Systemic mastocytosis: extracutaneous manifestations.
        Am J Surg Pathol. 1983; 7: 425-438
        • Swieter M.
        • Lee T.D.
        • Stead R.H.
        • Fujimaki H.
        • Befus D.
        Mast cell pleomorphism: properties of intestinal mast cells.
        Adv Exp Med Biol. 1987; 216A: 613-623
        • Afrin L.B.
        Polycythemia from mast cell activation syndrome: lessons learned.
        Am J Med Sci. 2011; 342: 44-49
        • Afrin L.B.
        Burning mouth syndrome and mast cell activation disorder.
        Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011; 111: 465-472
        • Rosendorff C.
        • Black H.R.
        • Cannon C.P.
        • et al.
        • American Heart Association Council for High Blood Pressure Research; American Heart Association Council on Clinical Cardiology; American Heart Association Council on Epidemiology and Prevention
        Treatment of hypertension in the prevention and management of ischemic heart disease: a scientific statement from the American Heart Association Council for High Blood Pressure Research and the Councils on Clinical Cardiology and Epidemiology and Prevention.
        Circulation. 2007; 115: 2761-2788
        • Persell S.D.
        Prevalence of resistant hypertension in the United States, 2003-2008.
        Hypertension. 2011; 57: 1076-1080
        • Sarafidis P.A.
        • Georgianos P.
        • Bakris G.L.
        Resistant hypertension—its identification and epidemiology.
        Nat Rev Nephrol. 2013; 9: 51-58
        • Hajjar I.
        • Kotchen T.A.
        Trends in prevalence, awareness, treatment, and control of hypertension in the United States, 1988-2000.
        JAMA. 2003; 290: 199-206
        • Chobanian A.V.
        Shattuck Lecture. The hypertension paradox—more uncontrolled disease despite improved therapy.
        N Engl J Med. 2009; 361: 878-887
        • Freeman J.G.
        • Ryan J.J.
        • Shelburne C.P.
        • et al.
        Catecholamines in murine bone marrow derived mast cells.
        J Neuroimmunol. 2001; 119: 231-238
        • Silver R.B.
        • Reid A.C.
        • Mackins C.J.
        • et al.
        Mast cells: a unique source of renin.
        Proc Natl Acad Sci U S A. 2004; 101: 13607-13612
        • Reilly C.F.
        • Tewksbury D.A.
        • Schechter N.M.
        • Travis J.
        Rapid conversion of angiotensin I to angiotensin II by neutrophil and mast cell proteinases.
        J Biol Chem. 1982; 257: 8619-8622
        • Kalesnikoff J.
        • Galli S.J.
        New developments in mast cell biology.
        Nat Immunol. 2008; 9: 1215-1223
        • Shiota N.
        • Rysä J.
        • Kovanen P.T.
        • Ruskoaho H.
        • Kokkonen J.O.
        • Lindstedt K.A.
        A role for cardiac mast cells in the pathogenesis of hypertensive heart disease.
        J Hypertens. 2003; 21: 1935-1944
        • Welker P.
        • Krämer S.
        • Groneberg D.A.
        • et al.
        Increased mast cell number in human hypertensive nephropathy.
        Am J Physiol Renal Physiol. 2008; 295: F1103-F1109
        • Chen K.
        • Popel A.S.
        Vascular and perivascular nitric oxide release and transport: biochemical pathways of neuronal nitric oxide synthase (NOS1) and endothelial nitric oxide synthase (NOS3).
        Free Radic Biol Med. 2007; 42: 811-822
        • Mitani Y.
        • Ueda M.
        • Maruyama K.
        • et al.
        Mast cell chymase in pulmonary hypertension.
        Thorax. 1999; 54: 88-90
        • Montani D.
        • Lang I.M.
        Mast cells: bridging the gap between pre- and post-capillary pulmonary hypertension?.
        Eur Respir J. 2011; 37: 1303-1305
        • Farha S.
        • Sharp J.
        • Asosingh K.
        • et al.
        Mast cell number, phenotype, and function in human pulmonary arterial hypertension.
        Pulm Circ. 2012; 2: 220-228
        • Savai R.
        • Pullamsetti S.S.
        • Kolbe J.
        • et al.
        Immune and inflammatory cell involvement in the pathology of idiopathic pulmonary arterial hypertension.
        Am J Respir Crit Care Med. 2012; 186: 897-908
        • Aller M.A.
        • Arias J.L.
        • Arias J.
        The mast cell integrates the splanchnic and systemic inflammatory response in portal hypertension.
        J Transl Med. 2007; 5: 44
        • Bot I.
        • van Berkel T.J.
        • Biessen E.A.
        Mast cells: pivotal players in cardiovascular diseases.
        Curr Cardiol Rev. 2008; 4: 170-178
        • Xu J.M.
        • Shi G.P.
        Emerging role of mast cells and macrophages in cardiovascular and metabolic diseases.
        Endocr Rev. 2012; 33: 71-108
        • Chaldakov G.N.
        • Valchanov K.P.
        • Ghenev P.I.
        Role of adventitia in vascular remodeling in hypertension: a trophobiological view.
        Biomed Rev. 1996; 6: 5-10
        • Yang Z.
        • Montani J.P.
        Emerging roles of perivascular adipose tissue in regulation of vascular functions.
        Immunol Endocr Metabol Agents Medicinal Chem. 2007; 7: 137-141
        • Jha V.
        • Garcia-Garcia G.
        • Iseki K.
        • et al.
        Chronic kidney disease: global dimension and perspectives.
        Lancet. 2013; 382: 260-272
        • Collins A.J.
        • Foley R.N.
        • Chavers B.
        • et al.
        US Renal Data System 2013 Annual Data Report: CKD in the general population.
        Am J Kidney Dis. 2014; 63: e41-e50
        • Zhang L.
        • Wang F.
        • Wang L.
        • et al.
        Prevalence of chronic kidney disease in China: a cross-sectional survey.
        Lancet. 2012; 379: 815-822
        • Levey A.S.
        • Coresh J.
        Chronic kidney disease.
        Lancet. 2012; 379: 165-180
        • Fassett R.G.
        • Venuthurupalli S.K.
        • Gobe G.C.
        • Coombes J.S.
        • Cooper M.A.
        • Hoy W.E.
        Biomarkers in chronic kidney disease: a review.
        Kidney Int. 2011; 80: 806-821
        • Dungey M.
        • Hull K.L.
        • Smith A.C.
        • Burton J.O.
        • Bishop N.C.
        Inflammatory factors and exercise in chronic kidney disease.
        Int J Endocrinol. 2013; 2013: 569831
        • Impellizzeri D.
        • Esposito E.
        • Attley J.
        • Cuzzocrea S.
        Targeting inflammation: new therapeutic approaches in chronic kidney disease (CKD).
        Pharm Res. 2014; 81: 91-102
        • Miyamoto T.
        • Carrero J.J.
        • Stenvinkel P.
        Inflammation as a risk factor and target for therapy in chronic kidney disease.
        Curr Opin Nephrol Hypertens. 2011; 20: 662-668
        • Harrison D.G.
        • Marvar P.J.
        • Titze J.M.
        Vascular inflammatory cells in hypertension.
        Front Physiol. 2012; 3: 128
        • Harrison D.G.
        • Guzik T.J.
        • Lob H.E.
        • et al.
        Inflammation, immunity, and hypertension.
        Hypertension. 2011; 57: 132-140
        • Barbaro N.R.
        • Fontana V.
        • Modolo R.
        • et al.
        Increased arterial stiffness in resistant hypertension is associated with inflammatory biomarkers.
        Blood Press. 2015; 24: 7-13
        • Grgic I.
        • Duffield J.S.
        • Humphreys B.D.
        The origin of interstitial myofibroblasts in chronic kidney disease.
        Pediatr Nephrol. 2012; 27: 183-193
        • López-Hernández F.J.
        • López-Novoa J.M.
        Role of TGF-β in chronic kidney disease: an integration of tubular, glomerular and vascular effects.
        Cell Tissue Res. 2012; 347: 141-154
        • Khatibzadeh S.
        • Farzadfar F.
        • Oliver J.
        • Ezzati M.
        • Moran A.
        Worldwide risk factors for heart failure: a systematic review and pooled analysis.
        Int J Cardiol. 2013; 168: 1186-1194
        • Kania G.
        • Blyszczuk P.
        • Müller-Edenborn B.
        • Eriksson U.
        Novel therapeutic options in inflammatory cardiomyopathy.
        Swiss Med Wkly. 2013; 143: w13841
        • Maron B.J.
        • Towbin J.A.
        • Thiene G.
        • et al.
        • American Heart Association; Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; Council on Epidemiology and Prevention
        Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention.
        Circulation. 2006; 113: 1807-1816
        • Passino C.
        • Barison A.
        • Vergaro G.
        • et al.
        Markers of fibrosis, inflammation, and remodeling pathways in heart failure.
        Clin Chim Acta. 2015; 443: 29-38
        • Dennert R.
        • van Paassen P.
        • Wolffs P.
        • et al.
        Differences in virus prevalence and load in the hearts of patients with idiopathic dilated cardiomyopathy with and without immune-mediated inflammatory diseases.
        Clin Vaccine Immunol. 2012; 19: 1182-1187
        • Kuusisto J.
        • Kärjä V.
        • Sipola P.
        • et al.
        Low-grade inflammation and the phenotypic expression of myocardial fibrosis in hypertrophic cardiomyopathy.
        Heart. 2012; 98: 1007-1013
        • Coughlin S.S.
        • Szklo M.
        • Baughman K.
        • Pearson T.A.
        Idiopathic dilated cardiomyopathy and atopic disease: epidemiologic evidence for an association with asthma.
        Am Heart J. 1989; 118: 768-774
        • Li J.
        • Lu H.
        • Plante E.
        • Meléndez G.C.
        • Levick S.P.
        • Janicki J.S.
        Stem cell factor is responsible for the rapid response in mature mast cell density in the acutely stressed heart.
        J Mol Cell Cardiol. 2012; 53: 469-474
        • Aguilar M.
        • Bhuket T.
        • Torres S.
        • Liu B.
        • Wong R.J.
        Prevalence of the metabolic syndrome in the United States, 2003-2012.
        JAMA. 2015; 313: 1973-1974
        • Zhang J.
        • Shi G.P.
        Mast cells and metabolic syndrome.
        Biochim Biophys Acta. 2012; 1822: 14-20
        • Baio J.
        • for the U.S. Centers for Disease Control
        Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2010.
        Surveillance Summaries. 2014; 63 (Available at:): 1-21
        • Zablotsky B.
        • Black L.I.
        • Maenner M.J.
        • Schieve L.A.
        • Blumberg S.J.
        Estimated prevalence of autism and other developmental disabilities following questionnaire changes in the 2014 National Health Interview Survey.
        (National Health Statistics Reports, No. 87)November 13, 2015 (Available at:)
        • Theoharides T.C.
        • Angelidou A.
        • Alysandratos K.D.
        • et al.
        Mast cell activation and autism.
        Biochim Biophys Acta. 2012; 1822: 34-41
        • Sanders S.J.
        • Murtha M.T.
        • Gupta A.R.
        • et al.
        De novo mutations revealed by whole-exome sequencing are strongly associated with autism.
        Nature. 2012; 485: 237-241
        • Wakefield A.J.
        • Murch S.H.
        • Anthony A.
        • et al.
        Ileal-lymphoid-nodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children.
        Lancet. 1998; 351: 637-641
        • Godlee F.
        • Smith J.
        • Marcovitch H.
        Wakefield's article linking MMR vaccine and autism was fraudulent.
        BMJ. 2011; 342: c7452
      1. Retraction–ileal-lymphoid-nodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children.
        Lancet. 2010; 375: 445
        • Demicheli V.
        • Rivetti A.
        • Debalini M.G.
        • Di Pietrantonj C.
        Vaccines for measles, mumps and rubella in children.
        Cochrane Database Syst Rev. 2012; 2: CD004407
        • Taylor L.E.
        • Swerdfeger A.L.
        • Eslick G.D.
        Vaccines are not associated with autism: an evidence-based meta-analysis of case-control and cohort studies.
        Vaccine. 2014; 32: 3623-3629
        • Maglione M.A.
        • Das L.
        • Raaen L.
        • et al.
        Safety of vaccines used for routine immunization of U.S. children: a systematic review.
        Pediatrics. 2014; 134: 325-337
        • Martínez-Lavín M.
        • Martínez-Martínez L.A.
        • Reyes-Loyola P.
        HPV vaccination syndrome: a questionnaire-based study.
        Clin Rheumatol. 2015; 34: 1981-1983
        • Hornig M.
        • Briese T.
        • Buie T.
        • et al.
        Lack of association between measles virus vaccine and autism with enteropathy: a case-control study.
        PLoS One. 2008; 3: e3140
        • Flaherty D.K.
        The vaccine-autism connection: a public health crisis caused by unethical medical practices and fraudulent science.
        Ann Pharmacother. 2011; 45: 1302-1304
        • Schmitt J.
        • Buske-Kirschbaum A.
        • Roessner V.
        Is atopic disease a risk factor for attention-deficit/hyperactivity disorder? A systematic review.
        Allergy. 2010; 65: 1506-1524
        • Yaghmaie P.
        • Koudelka C.W.
        • Simpson E.L.
        Mental health comorbidity in patients with atopic dermatitis.
        J Allergy Clin Immunol. 2013; 131: 428-433
        • Chen M.H.
        • Su T.P.
        • Chen Y.S.
        • et al.
        Is atopy in early childhood a risk factor for ADHD and ASD? A longitudinal study.
        J Psychosom Res. 2014; 77: 316-321
        • de Theije C.G.
        • Bavelaar B.M.
        • Lopes da Silva S.
        • et al.
        Food allergy and food-based therapies in neurodevelopmental disorders.
        Pediatr Allergy Immunol. 2014; 25: 218-226
        • Schaubschläger W.W.
        • Zabel P.
        • Schlaak M.
        Tartrazine-induced histamine release from gastric mucosa.
        Lancet. 1987; 2: 800-801
        • Arnold L.E.
        • Lofthouse N.
        • Hurt E.
        Artificial food colors and attention-deficit/hyperactivity symptoms: conclusions to dye for.
        Neurotherapeutics. 2012; 9: 599-609
        • Verlaet A.A.
        • Noriega D.B.
        • Hermans N.
        • Savelkoul H.F.
        Nutrition, immunological mechanisms and dietary immunomodulation in ADHD.
        Eur Child Adolesc Psychiatry. 2014; 23: 519-529
        • Moura D.S.
        • Georgin-Lavialle S.
        • Gaillard R.
        • Hermine O.
        Neuropsychological features of adult mastocytosis.
        Immunol Allergy Clin N Am. 2014; 34: 407-422
        • Jennings S.
        • Russell N.
        • Jennings B.
        • et al.
        The Mastocytosis Society survey on mast cell disorders: patient experiences and perceptions.
        J Allergy Clin Immunol Pract. 2014; 2: 70-76
        • Govier S.M.
        Principles of treatment for mast cell tumors.
        Clin Tech Small Anim Pract. 2003; 18: 103-106
        • Takahashi T.
        • Kadosawa T.
        • Nagase M.
        • et al.
        Visceral mast cell tumors in dogs: 10 cases (1982-1997).
        J Am Vet Med Assoc. 2000; 216: 222-226
        • Addolorato G.
        • Marsigli L.
        • Capristo E.
        • Caputo F.
        • Dall'Aglio C.
        • Baudanza P.
        Anxiety and depression: a common feature of health care seeking patients with irritable bowel syndrome and food allergy.
        Hepatogastroenterology. 1998; 45: 1559-1564
        • Piche T.
        • Saint-Paul M.C.
        • Dainese R.
        • et al.
        Mast cells and cellularity of the colonic mucosa correlated with fatigue and depression in irritable bowel syndrome.
        Gut. 2008; 57: 468-473
        • Yuan H.P.
        • Li Z.
        • Zhang Y.
        • Li X.P.
        • Li F.K.
        • Li Y.Q.
        Anxiety and depression are associated with increased counts and degranulation of duodenal mast cells in functional dyspepsia.
        Int J Clin Exp Med. 2015; 8: 8010-8014
        • Berk M.
        • Williams L.J.
        • Jacka F.N.
        • et al.
        So depression is an inflammatory disease, but where does the inflammation come from?.
        BMC Med. 2013; 11: 200
        • Raison C.L.
        • Capuron L.
        • Miller A.H.
        Cytokines sing the blues: inflammation and the pathogenesis of depression.
        Trends Immunol. 2006; 27: 24-31
        • Skaper S.D.
        • Facci L.
        • Giusti P.
        Neuroinflammation, microglia and mast cells in the pathophysiology of neurocognitive disorders: a review.
        CNS Neurol Disord Drug Targets. 2014; 13: 1654-1666
        • Graziottin A.
        • Skaper S.D.
        • Fusco M.
        Mast cells in chronic inflammation, pelvic pain and depression in women.
        Gynecol Endocrinol. 2014; 30: 472-477
        • Hodes G.E.
        • Kana V.
        • Menard C.
        • Merad M.
        • Russo S.J.
        Neuroimmune mechanisms of depression.
        Nat Neurosci. 2015; 18: 1386-1393
        • Tonelli L.H.
        • Virk G.
        • Joppy B.
        • Postolache T.T.
        Experimentally-induced allergy to tree pollen induces depressive-like behavior and mast cell activation in the brain of female rats.
        Biol Psychiatry. 2006; 59: 75S
        • Gurgel J.A.
        • Lima-Júnior R.C.
        • Rabelo C.O.
        • Pessoa B.B.
        • Brito G.A.
        • Ribeiro R.A.
        Amitriptyline, clomipramine, and maprotiline attenuate the inflammatory response by inhibiting neutrophil migration and mast cell degranulation.
        Rev Bras Psiquiatr. 2013; 35: 387-392
        • Meggs W.J.
        Neurogenic inflammation and sensitivity to environmental chemicals.
        Environ Health Perspect. 1993; 101: 234-238
        • Pigatto P.D.
        • Minoia C.
        • Ronchi A.
        • et al.
        Allergological and toxicological aspects in a multiple chemical sensitivity cohort.
        Oxid Med Cell Longev. 2013; 2013: 356235
        • Worm M.
        • Eckermann O.
        • Dölle S.
        • et al.
        Triggers and treatment of anaphylaxis: an analysis of 4,000 cases from Germany, Austria and Switzerland.
        Dtsch Arztebl Int. 2014; 111: 367-375
        • Afrin L.B.
        • Pöhlau D.
        • Raithel M.
        • et al.
        Mast cell activation disease: an underappreciated cause of neurologic and psychiatric symptoms and diseases.
        Brain Behav Immun. 2015; 50: 314-321
        • Meggs W.J.
        Neurogenic switching: a hypothesis for a mechanism for shifting the site of inflammation in allergy and chemical sensitivity.
        Environ Health Perspect. 1995; 103: 54-56
        • Meggs W.J.
        Mechanisms of allergy and chemical sensitivity.
        Toxicol Ind Health. 1999; 15: 331-338
        • Vandenplas O.
        • Wiszniewska M.
        • Raulf M.
        • et al.
        • European Academy of Allergy and Clinical Immunology
        EAACI position paper: irritant-induced asthma.
        Allergy. 2014; 69: 1141-1153
        • De Luca C.
        • Raskovic D.
        • Pacifico V.
        • Thai J.C.
        • Korkina L.
        The search for reliable biomarkers of disease in multiple chemical sensitivity and other environmental intolerances.
        Int J Environ Res Public Health. 2011; 8: 2770-2797
        • Alessandrini M.
        • Micarelli A.
        • Chiaravalloti A.
        • et al.
        Involvement of subcortical brain structures during olfactory stimulation in multiple chemical sensitivity.
        Brain Topogr. 2016; 29: 243-252
        • Héron A.
        • Dubayle D.
        A focus on mast cells and pain.
        J Neuroimmunol. 2013; 264: 1-7
        • Dantoft T.M.
        • Elberling J.
        • Brix S.
        • Szecsi P.B.
        • Vesterhauge S.
        • Skovbjerg S.
        An elevated pro-inflammatory cytokine profile in multiple chemical sensitivity.
        Psychoneuroendocrinology. 2014; 40: 140-150
        • Meggs W.J.
        • Dunn K.A.
        • Bloch R.M.
        • Goodman P.E.
        • Davidoff A.L.
        Prevalence and nature of allergy and chemical sensitivity in a general population.
        Arch Environ Health. 1996; 51: 275-282
        • Caress S.M.
        • Steinemann A.C.
        Asthma and chemical hypersensitivity: prevalence, etiology, and age of onset.
        Toxicol Ind Health. 2009; 25: 71-78
        • Overstreet D.H.
        • Djuric V.
        Links between multiple chemical sensitivity and asthma in a rat model of cholinergic hypersensitivity: a brief review.
        Toxicol Ind Health. 1999; 15: 517-521
        • Heuser G.
        Mast cell disorder to be ruled out in MCS.
        Arch Environ Health. 2000; 55: 284-285
        • Nemeth E.
        • Ganz T.
        Anemia of inflammation.
        Hematol Oncol Clin North Am. 2014; 28 (vi): 671-681
        • Guralnik J.M.
        • Eisenstaedt R.S.
        • Ferrucci L.
        • Klein H.G.
        • Woodman R.C.
        Prevalence of anemia in persons 65 years and older in the United States: evidence for a high rate of unexplained anemia.
        Blood. 2004; 104: 2263-2268
        • Anisman H.
        • Baines M.G.
        • Berczi I.
        • et al.
        Neuroimmune mechanisms in health and disease: 2. Disease.
        CMAJ. 1996; 155: 1075-1082
        • Afrin L.B.
        • Wan Z.
        • Hill E.G.
        Characterization of common blood test abnormalities potentially aiding diagnosis of mast cell activation syndrome: a preliminary analysis.
        Blood. 2013; 122 (Available at:): 5240
        • Weiss G.
        • Goodnough L.T.
        Anemia of chronic disease.
        N Engl J Med. 2005; 352: 1011-1023
        • Buck I.
        • Morceau F.
        • Grigorakaki C.
        • Dicato M.
        • Diederich M.
        Linking anemia to inflammation and cancer: the crucial role of TNFalpha.
        Biochem Pharmacol. 2009; 77: 1572-1579
        • Hale L.P.
        • Kant E.P.
        • Greer P.K.
        • Foster W.M.
        Iron supplementation decreases severity of allergic inflammation in murine lung.
        PLoS One. 2012; 7: e45667
        • Geller A.I.
        • Shehab N.
        • Weidle N.J.
        • et al.
        Emergency department visits for adverse events related to dietary supplements.
        N Engl J Med. 2015; 373: 1531-1540
        • Cancelo-Hidalgo M.J.
        • Castelo-Branco C.
        • Palacios S.
        • et al.
        Tolerability of different oral iron supplements: a systematic review.
        Curr Med Res Opin. 2013; 29: 291-303
        • Lee T.W.
        • Kolber M.R.
        • Fedorak R.N.
        • van Zanten S.V.
        Iron replacement therapy in inflammatory bowel disease patients with iron deficiency anemia: a systematic review and meta-analysis.
        J Crohns Colitis. 2012; 6: 267-275
        • Okam M.M.
        • Mandell E.
        • Hevelone N.
        • Wentz R.
        • Ross A.
        • Abel G.A.
        Comparative rates of adverse events with different formulations of intravenous iron.
        Am J Hematol. 2012; 87: E123-E124
        • Huang Y.J.
        • Ke W.M.
        • Huang W.I.
        • Chen W.W.
        The disproportionate analysis of intravenous iron-containing medicines related adverse reactions in Taiwan.
        Pharmacoepidemiol Drug Saf. 2014; 23: 374
        • Sayed B.A.
        • Christy A.
        • Quirion M.R.
        • Brown M.A.
        The master switch: the role of mast cells in autoimmunity and tolerance.
        Annu Rev Immunol. 2008; 26: 705-739
        • Koné-Paut I.
        • Galeotti C.
        Current treatment recommendations and considerations for cryopyrin-associated periodic syndrome.
        Expert Rev Clin Immunol. 2015; 11: 1083-1092
        • Nakamura Y.
        • Franchi L.
        • Kambe N.
        • Meng G.
        • Strober W.
        • Núñez G.
        Critical role for mast cells in interleukin-1β-driven skin inflammation associated with an activating mutation in the nlrp3 protein.
        Immunity. 2012; 37: 85-95
        • Berger G.S.
        Chapter 1: Epidemiology of endometriosis.
        in: Nezhat C.R. Berger G.S. Nezhat F.R. Buttram Jr., V.C. Nezhat C.H. Endometriosis: advanced management and surgical techniques. Springer, New York1995: 3-7
        • Janssen E.B.
        • Rijkers A.C.
        • Hoppenbrouwers K.
        • Meuleman C.
        • D'Hooghe T.M.
        Prevalence of endometriosis diagnosed by laparoscopy in adolescents with dysmenorrhea or chronic pelvic pain: a systematic review.
        Hum Reprod Update. 2013; 19: 570-582
      2. Gruppo italiano per lo studio dell'endometriosi. Endometriosis: prevalence and anatomical distribution of endometriosis in women with selected gynaecological conditions: results from a multicentric Italian study.
        Hum Reprod. 1994; 9: 1158-1162
        • Eskenazi B.
        • Warner M.L.
        Epidemiology of endometriosis.
        Obstet Gynecol Clin North Am. 1997; 24: 235-258
        • Vercellini P.
        • Crosignani P.G.
        • Somigliana E.
        • Berlanda N.
        • Barbara G.
        • Fedele L.
        Medical treatment for rectovaginal endometriosis: what is the evidence?.
        Hum Reprod. 2009; 24: 2504-2514
        • Nnoaham K.E.
        • Hummelshoj L.
        • Webster P.
        • et al.
        • World Endometriosis Research Foundation Global Study of Women's Health consortium
        Impact of endometriosis on quality of life and work productivity: a multicenter study across ten countries.
        Fertil Steril. 2011; 96: 366-373.e8
        • Tirlapur S.A.
        • Kuhrt K.
        • Chaliha C.
        • Ball E.
        • Meads C.
        • Khan K.S.
        The ‘evil twin syndrome’ in chronic pelvic pain: a systematic review of prevalence studies of bladder pain syndrome and endometriosis.
        Int J Surg. 2013; 11: 233-237
        • Weissman M.M.
        • Gross R.
        • Fyer A.
        • et al.
        Interstitial cystitis and panic disorder: a potential genetic syndrome.
        Arch Gen Psychiatry. 2004; 61: 273-279
        • D'Cruz O.J.
        • Uckun F.M.
        Targeting mast cells in endometriosis with Janus kinase 3 inhibitor, JANEX-1.
        Am J Reprod Endocrinol. 2007; 58: 75-97
        • Anaf V.
        • Chapron C.
        • El Nakadi I.
        • De Moor V.
        • Simonart T.
        • Noël J.-C.
        Pain, mast cells, and nerves in peritoneal, ovarian, and deep infiltrating endometriosis.
        Fertil Steril. 2006; 86: 1336-1343
        • Kempuraj D.
        • Papadopoulou N.
        • Stanford E.J.
        • et al.
        Increased numbers of activated mast cells in endometriosis lesions positive for corticotropin-releasing hormone and urocortin.
        Am J Reprod Immunol. 2004; 52: 267-275
        • Uchiide I.
        • Ihara T.
        • Sugamata M.
        Increased activated mast cells in stromal lesions of human endometriosis.
        J Am Assoc Gynecol Laparosc. 2002; 9: S76
        • Al-Jefout M.
        • Black K.
        • Schulke L.
        • et al.
        Novel finding of high density of activated mast cells in endometrial polyps.
        Fertil Steril. 2009; 92: 1104-1106
        • Palomba S.
        • Falbo A.
        • Chiossi G.
        • et al.
        Low-grade chronic inflammation in pregnant women with polycystic ovary syndrome: a prospective controlled clinical study.
        J Clin Endocrinol Metab. 2014; 99: 2942-2951
        • Razi M.
        • Malekinejad H.
        • Nagafi G.-R.
        • et al.
        Study of the mast cells distribution and heterogeneity in experimentally induced cystic ovaries in rats.
        Int J Appl Res Vet Med. 2010; 8: 124-132
        • Deveci I.
        • Sürmeli M.
        • Senem Deveci H.
        • et al.
        Effects of polycystic ovary syndrome and menopause on rat soft palate and base of tongue.
        Otolaryngol Head Neck Surg. 2013; 148: 595-601
        • Chand N.
        • Mihas A.A.
        Celiac disease: current concepts in diagnosis and treatment.
        J Clin Gastroenterol. 2006; 40: 3-14
        • Lavö B.
        • Knutson L.
        • Lööf L.
        • Odlind B.
        • Venge P.
        • Hällgren R.
        Challenge with gliadin induces eosinophil and mast cell activation in the jejunum of patients with celiac disease.
        Am J Med. 1989; 87: 655-660
        • Strobel S.
        • Busuttil A.
        • Ferguson A.
        Human intestinal mucosal mast cells: expanded population in untreated coeliac disease.
        Gut. 1983; 24: 222-227
        • Suranyi Y.
        • Freier S.
        • Faber J.
        • Dollberg L.
        Intestinal mast cells in different stages of celiac disease.
        Isr J Med Sci. 1986; 22: 370-375
        • Garrote J.A.
        • Arranz E.
        • Tellería J.J.
        • Castro J.
        • Calvo C.
        • Blanco-Quirós A.
        TNF alpha and LT alpha gene polymorphisms as additional markers of celiac disease susceptibility in a DQ2-positive population.
        Immunogenetics. 2002; 54: 551-555
        • Saluja R.
        • Ketelaar M.E.
        • Hawro T.
        • Church M.K.
        • Maurer M.
        • Nawijn M.C.
        The role of the IL-33/IL-1RL1 axis in mast cell and basophil activation in allergic disorders.
        Mol Immunol. 2015; 63: 80-85
        • Pontillo A.
        • Brandao L.
        • Guimaraes R.
        • Segat L.
        • Araujo J.
        • Crovella S.
        Two SNPs in NLRP3 gene are involved in the predisposition to type-1 diabetes and celiac disease in a pediatric population from northeast Brazil.
        Autoimmunity. 2010; 43: 583-589
        • Pontillo A.
        • Vendramin A.
        • Catamo E.
        • Fabris A.
        • Crovella S.
        The missense variation Q705K in CIAS1/NALP3/NLRP3 gene and an NLRP1 haplotype are associated with celiac disease.
        Am J Gastroenterol. 2011; 106: 539-544
        • Elahi M.M.
        • Asotra K.
        • Matata B.M.
        • Mastana S.S.
        Tumor necrosis factor alpha-308 gene locus promoter polymorphism: an analysis of association with health and disease.
        Biochim Biophys Acta. 2009; 1792: 163-172
        • Groschwitz K.R.
        • Ahrens R.
        • Osterfeld H.
        • et al.
        Mast cells regulate homeostatic intestinal epithelial migration and barrier function by a chymase/Mcpt4-dependent mechanism.
        Proc Natl Acad Sci U S A. 2009; 106: 22381-22386
        • Nilsen E.M.
        • Jahnsen F.L.
        • Lundin K.E.
        • et al.
        Gluten induces an intestinal cytokine response strongly dominated by interferon gamma in patients with celiac disease.
        Gastroenterology. 1998; 115: 551-563
        • Brottveit M.
        • Beitnes A.C.
        • Tollefsen S.
        • et al.
        Mucosal cytokine response after short-term gluten challenge in celiac disease and non-celiac gluten sensitivity.
        Am J Gastroenterol. 2013; 108: 842-850
        • Przemioslo R.T.
        • Lundin K.E.
        • Sollid L.M.
        • Nelufer J.
        • Ciclitira P.J.
        Histological changes in small bowel mucosa induced by gliadin sensitive T lymphocytes can be blocked by anti-interferon gamma antibody.
        Gut. 1995; 36: 874-879
        • Maiuri L.
        • Picarelli A.
        • Boirivant M.
        • et al.
        Definition of the initial immunologic modifications upon in vitro gliadin challenge in the small intestine of celiac patients.
        Gastroenterology. 1996; 110: 1368-1378
        • Ludvigsson J.F.
        • Lindelöf B.
        • Rashtak S.
        • Rubio-Tapia A.
        • Murray J.A.
        Does urticaria risk increase in patients with celiac disease? A large population-based cohort study.
        Eur J Dermatol. 2013; 23: 681-687
        • Hemminki K.
        • Li X.
        • Sundquist J.
        • Sundquist K.
        Subsequent autoimmune or related disease in asthma patients: clustering of diseases or medical care?.
        Ann Epidemiol. 2010; 20: 217-222
        • Haussmann J.
        • Sekar A.
        Chronic urticaria: a cutaneous manifestation of celiac disease.
        Can J Gastroenterol. 2006; 20: 291-293
        • Levine A.
        • Dalal I.
        • Bujanover Y.
        Celiac disease associated with familial chronic urticaria and thyroid autoimmunity in a child.
        Pediatrics. 1999; 104: e25
        • Gabrielli M.
        • Candelli M.
        • Cremonini F.
        • et al.
        Idiopathic chronic urticaria and celiac disease.
        Dig Dis Sci. 2005; 50: 1702-1704
        • Biesiekierski J.R.
        • Newnham E.D.
        • Irving P.M.
        • et al.
        Gluten causes gastrointestinal symptoms in subjects without celiac disease: a double-blind randomized placebo-controlled trial.
        Am J Gastroenterol. 2011; 106: 508-514
        • Verdu E.F.
        • Armstrong D.
        • Murray J.A.
        Between celiac disease and irritable bowel syndrome: the “no man's land” of gluten sensitivity.
        Am J Gastroenterol. 2009; 104: 1587-1594
        • Miner Jr., P.B.
        The role of the mast cell in clinical gastrointestinal disease with special reference to systemic mastocytosis.
        J Invest Dermatol. 1991; 96: 40S-43S
        • Hahn H.P.
        • Hornick J.L.
        Immunoreactivity for CD25 in gastrointestinal mucosal mast cells is specific for systemic mastocytosis.
        Am J Surg Pathol. 2007; 31: 1669-1676
        • Doyle L.A.
        • Sepehr G.J.
        • Hamilton M.J.
        • Akin C.
        • Castells M.C.
        • Hornick J.L.
        A clinicopathologic study of 24 cases of systemic mastocytosis involving the gastrointestinal tract and assessment of mucosal mast cell density in irritable bowel syndrome and asymptomatic patients.
        Am J Surg Pathol. 2014; 38: 832-843
        • Levy D.
        Migraine pain, meningeal inflammation, and mast cells.
        Curr Pain Headache Rep. 2009; 13: 237-240
        • Raddant A.C.
        • Russo A.F.
        Calcitonin gene-related peptide in migraine: intersection of peripheral inflammation and central modulation.
        Expert Rev Mol Med. 2011; 13: e36
        • Sicuteri F.
        Mast cells and their active substances: their role in the pathogenesis of migraine.
        Headache. 1963; 3: 86-92
        • Theoharides T.C.
        Brief proposal: mast cells and migraines.
        Perspect Biol Med. 1983; 26: 672-675
        • Theoharides T.C.
        • Donelan J.
        • Kandere-Grzybowska K.
        • Konstantinidou A.
        The role of mast cells in migraine pathophysiology.
        Brain Res Brain Res Rev. 2005; 49: 65-76
        • Theoharides T.C.
        • Spanos C.
        • Pang X.
        • et al.
        Stress-induced intracranial mast cell degranulation: a corticotropin-releasing hormone-mediated effect.
        Endocrinology. 1995; 136: 5745-5750
        • Rozniecki J.J.
        • Dimitriadou V.
        • Lambracht-Hall M.
        • Pang X.
        • Theoharides T.C.
        Morphological and functional demonstration of rat dura mater mast cell-neuron interactions in vitro and in vivo.
        Brain Res. 1999; 849: 1-15
        • Zhang X.C.
        • Strassman A.M.
        • Burstein R.
        • Levy D.
        Sensitization and activation of intracranial meningeal nociceptors by mast cell mediators.
        J Pharmacol Exp Ther. 2007; 322: 806-812
        • Messlinger K.
        Migraine: where and how does the pain originate?.
        Exp Brain Res. 2009; 196: 179-193
        • Antonova M.
        • Wienecke T.
        • Olesen J.
        • Ashina M.
        Prostaglandins in migraine: update.
        Curr Opin Neurol. 2013; 26: 269-275
        • Peroutka S.J.
        Neurogenic inflammation and migraine: implications for the therapeutics.
        Mol Interv. 2005; 5: 304-311
        • Durham P.L.
        Inhibition of calcitonin gene-related peptide function: a promising strategy for treating migraine.
        Headache. 2008; 48: 1269-1275
        • Russo A.F.
        Calcitonin gene-related peptide (CGRP): a new target for migraine.
        Annu Rev Pharmacol Toxicol. 2015; 55: 533-552
        • Ba'albaki H.
        • Rapoport A.
        Mast cells activate the renin angiotensin system and contribute to migraine: a hypothesis.
        Headache. 2008; 48: 1499-1505
        • Frydas S.
        • Varvara G.
        • Murmura G.
        • et al.
        Impact of capsaicin on mast cell inflammation.
        Int J Immunopathol Pharmacol. 2013; 26: 597-600
        • Vincent L.
        • Vang D.
        • Nguyen J.
        • et al.
        Mast cell activation contributes to sickle cell pathobiology and pain in mice.
        Blood. 2013; 122: 1853-1862
        • Gu Q.
        • Wang L.
        • Huang F.
        • Schwarz W.
        Stimulation of TRPV1 by green laser light.
        Evid Based Complement Alternat Med. 2012; 2012: 857123
        • Rozniecki J.J.
        • Letourneau R.
        • Sugiultzoglu M.
        • Spanos C.
        • Gorbach J.
        • Theoharides T.C.
        Differential effect of histamine 3 receptor-active agents on brain, but not peritoneal, mast cell activation.
        J Pharmacol Exp Ther. 1999; 290: 1427-1435
        • Tietjen G.E.
        • Bushnell C.D.
        • Herial N.A.
        • Utley C.
        • White L.
        • Hafeez F.
        Endometriosis is associated with prevalence of comorbid conditions in migraine.
        Headache. 2007; 47: 1069-1078
        • Martin V.T.
        • Fanning K.M.
        • Serrano D.
        • Buse D.C.
        • Reed M.L.
        • Lipton R.B.
        Asthma is a risk factor for new onset chronic migraine: results from the American migraine prevalence and prevention study.
        Headache. 2016; 56: 118-131
        • Yoshimoto R.
        • Miyamoto Y.
        • Shimamura K.
        • et al.
        Therapeutic potential of histamine H3 receptor agonist for the treatment of obesity and diabetes mellitus.
        Proc Natl Acad Sci U S A. 2006; 103: 13866-13871
        • Chatterjea D.
        • Martinov T.
        Mast cells: versatile gatekeepers of pain.
        Mol Immunol. 2015; 63: 38-44
        • Aich A.
        • Afrin L.B.
        • Gupta K.
        Mast cell-mediated mechanisms of nociception.
        Int J Mol Sci. 2015; 16: 29069-29092
        • Allen R.P.
        • Picchietti D.
        • Hening W.A.
        • Trenkwalder C.
        • Walters A.S.
        • Montplaisi J.
        • Restless Legs Syndrome Diagnosis and Epidemiology workshop at the National Institutes of Health; International Restless Legs Syndrome Study Group
        Restless legs syndrome: diagnostic criteria, special considerations, and epidemiology. A report from the restless legs syndrome diagnosis and epidemiology workshop at the National Institutes of Health.
        Sleep Med. 2003; 4: 101-119
        • Weinstock L.B.
        • Walters A.S.
        • Paueksakon P.
        Restless legs syndrome—theoretical roles of inflammatory and immune mechanisms.
        Sleep Med Rev. 2012; 16: 341-354
        • Theoharides T.C.
        • Zhang B.
        • Conti P.
        Decreased mitochondrial function and increased brain inflammation in bipolar disorder and other neuropsychiatric diseases.
        J Clin Psychopharmacol. 2011; 31: 685-687
        • Conti P.
        • Shaik-Dasthagirisaheb Y.B.
        Mast cell serotonin immunoregulatory effects impacting on neuronal function: implications for neurodegenerative and psychiatric disorders.
        i. 2015; 28: 147-153
        • Heleniak E.
        • O'Desky I.
        Histamine and prostaglandins in schizophrenia: revisited.
        Med Hypotheses. 1999; 52: 37-42
        • Tiligada E.
        • Zampeli E.
        • Sander K.
        • Stark H.
        Histamine H3 and H4 receptors as novel drug targets.
        Expert Opin Investig Drugs. 2009; 18: 1519-1531
        • Arrang J.-M.
        Histamine and schizophrenia.
        Int Rev Neurobiol. 2007; 78: 247-287
        • Shan L.
        • Unmehopa U.
        • Bao A.-M.
        • Swaab D.F.
        Chapter 9: increased expression of histamine methyltransferase-mRNA and astrocyte markers in the prefrontal cortex in schizophrenia.
        in: Swaab D.F. Bao A.M. The human histaminergic system in health and neuropsychiatric disorders. University of Amsterdam, 2012 (Ph.D. thesis)
        • Drexhage R.C.
        • Weigelt K.
        • van Beveren N.
        • et al.
        Immune and neuroimmune alterations in mood disorders and schizophrenia.
        Int Rev Neurobiol. 2011; 101: 169-201
        • Skaper S.D.
        • Giusti P.
        • Facci L.
        Microglia and mast cells: two tracks on the road to neuroinflammation.
        FASEB J. 2012; 26: 3103-3117
        • Czerski P.M.
        • Rybakowski F.
        • Kapelski P.
        • et al.
        Association of tumor necrosis factor -308G/A promoter polymorphism with schizophrenia and bipolar affective disorder in a Polish population.
        Neuropsychobiology. 2008; 57: 88-94
        • Ito C.
        • Ouchi Y.
        Toward schizophrenia genes: genetics and transcriptome.
        Drug Dev Res. 2003; 60: 111-118
        • Garakani A.
        • Win T.
        • Virk S.
        • Gupta S.
        • Kaplan D.
        • Masand P.S.
        Comorbidity of irritable bowel syndrome in psychiatric patients: a review.
        Am J Ther. 2003; 10: 61-67
        • Smith D.J.
        • Langan J.
        • McLean G.
        • Guthrie B.
        • Mercer S.W.
        Schizophrenia is associated with excess multiple physical-health comorbidities but low levels of recorded cardiovascular disease in primary care: cross-sectional study.
        BMJ Open. 2013; 3: e002808
        • Buckley P.F.
        • Miller B.J.
        • Lehrer D.S.
        • Castle D.J.
        Psychiatric comorbidities and schizophrenia.
        Schizophr Bull. 2009; 35: 383-402
        • Ross R.G.
        • Heinlein S.
        • Tregellas H.
        High rates of comorbidity are found in childhood-onset schizophrenia.
        Schizophr Res. 2006; 88: 90-95
        • Lambert T.J.
        • Velakoulis D.
        • Pantelis C.
        Medical comorbidity in schizophrenia.
        Med J Aust. 2003; 178: S67-S70
        • Carney C.P.
        • Jones L.
        • Woolson R.F.
        Medical comorbidity in women and men with schizophrenia: a population-based controlled study.
        J Gen Intern Med. 2006; 21: 1133-1137
        • Christoforou A.
        • Le Hellard S.
        • Thomson P.A.
        • et al.
        Association analysis of the chromosome 4p15-p16 candidate region for bipolar disorder and schizophrenia.
        Mol Psychiatry. 2007; 12: 1011-1025
        • Leboyer M.
        • Soreca I.
        • Scott J.
        • et al.
        Can bipolar disorder be viewed as a multi-system inflammatory disease?.
        J Affect Disord. 2012; 141: 1-10
        • Fiedorowicz J.G.
        • Prossin A.R.
        • Johnson C.P.
        • Christensen G.E.
        • Magnotta V.A.
        • Wemmie J.A.
        Peripheral inflammation during abnormal mood states in bipolar I disorder.
        J Affect Disord. 2015; 187: 172-178
        • Patel J.P.
        • Frey B.N.
        Disruption in the blood-brain barrier: the missing link between brain and body inflammation in bipolar disorder?.
        Neural Plast. 2015; 2015: 708306
        • Amoruso A.
        • Bardelli C.
        • Cattaneo C.I.
        • Fresu L.G.
        • Manzetti E.
        • Brunelleschi S.
        Neurokinin (NK)-1 receptor expression in monocytes from bipolar disorder patients: a pilot study.
        J Affect Disord. 2015; 178: 188-192
        • Soczynska J.K.
        • Kennedy S.H.
        • Goldstein B.I.
        • Lachowski A.
        • Woldeyohannes H.O.
        • McIntyre R.S.
        The effect of tumor necrosis factor antagonists on mood and mental health-associated quality of life: novel hypothesis-driven treatments for bipolar depression?.
        Neurotoxicology. 2009; 30: 497-521
        • de Góis Queiroz A.I.
        • Medeiros C.D.
        • Ribeiro B.M.
        • de Lucena D.F.
        • Macêdo D.S.
        Angiotensin receptor blockers for bipolar disorder.
        Med Hypotheses. 2013; 80: 259-263
        • Panaccione I.
        • Spalletta G.
        • Sani G.
        Neuroinflammation and excitatory symptoms in bipolar disorder.
        Neuroimmunol Neuroinflammation. 2015; 2: 215-227
        • Jones K.A.
        • Thomsen C.
        The role of the innate immune system in psychiatric disorders.
        Mol Cell Neurosci. 2013; 53: 52-62
        • Rege S.
        • Hodgkinson S.J.
        Immune dysregulation and autoimmunity in bipolar disorder: synthesis of the evidence and its clinical application.
        Aust N Z J Psychiatry. 2013; 47: 1136-1151
        • Barbosa I.G.
        • Machado-Vieira R.
        • Soares J.C.
        • Teixeira A.L.
        The immunology of bipolar disorder.
        Neuroimmunomodulation. 2014; 21: 117-122
        • Rosenblat J.D.
        • Cha D.S.
        • Mansur R.B.
        • McIntyre R.S.
        Inflamed moods: a review of the interactions between inflammation and mood disorders.
        Prog Neuropsychopharmacol Biol Psychiatry. 2014; 53: 23-34
        • Munkholm K.
        • Braüner J.V.
        • Kessing L.V.
        • Vinberg M.
        Cytokines in bipolar disorder vs. healthy control subjects: a systematic review and meta-analysis.
        J Psychiatr Res. 2013; 47: 1119-1133
        • Debnath M.
        • Doyle K.M.
        • Langan C.
        • McDonald C.
        • Leonard B.
        • Cannon D.M.
        Recent advances in psychoneuroimmunology: inflammation in psychiatric disorders.
        Transl Neurosci. 2011; 2: 121-137
        • Kumarguru B.N.
        • Natarajan M.
        • Nagarajappa A.H.
        The pathology of lithium induced nephropathy: a case report and review, with emphasis on the demonstration of mast cells.
        J Clin Diagn Res. 2013; 7: 374-377
        • Lotrich F.E.
        • Butters M.A.
        • Aizenstein H.
        • Marron M.M.
        • Reynolds 3rd, C.F.
        • Gildengers A.G.
        The relationship between interleukin-1 receptor antagonist and cognitive function in older adults with bipolar disorder.
        Int J Geriatr Psychiatry. 2014; 29: 635-644
        • Rolstad S.
        • Jakobsson J.
        • Sellgren C.
        • et al.
        CSF neuroinflammatory biomarkers in bipolar disorder are associated with cognitive impairment.
        Eur Neuropsychopharmacol. 2015; 25: 1091-1098
        • Kim H.K.
        • Chen W.
        • Andreazza A.C.
        The potential role of the NLRP3 inflammasome as a link between mitochondrial complex I dysfunction and inflammation in bipolar disorder.
        Neural Plast. 2015; 2015: 408136
        • Benros M.E.
        • Waltoft B.L.
        • Nordentoft M.
        • et al.
        Autoimmune diseases and severe infections as risk factors for mood disorders: a nationwide study.
        JAMA Psychiatry. 2013; 70: 812-820
        • Nassar A.
        • Azab A.N.
        Effects of lithium on inflammation.
        ACS Chem Neurosci. 2014; 5: 451-458
        • Dziwota E.
        • Drapala B.
        • Gaj M.
        • Skoczen N.
        • Olajossy M.
        Bipolar affective disorder: a review of novel forms of therapy.
        Curr Issues Pharm Med Sci. 2015; 28: 105-110
        • Branton M.H.
        • Kopp J.B.
        TGF-beta and fibrosis.
        Microbes Infect. 1999; 1: 1349-1365
        • Garbuzenko E.
        • Nagler A.
        • Pickholtz D.
        • et al.
        Human mast cells stimulate fibroblast proliferation, collagen synthesis and lattice contraction: a direct role for mast cells in skin fibrosis.
        Clin Exp Allergy. 2002; 32: 237-246
        • Li Q.Y.
        • Raza-Ahmad A.
        • MacAulay M.A.
        • et al.
        The relationship of mast cells and their secreted products to the volume of fibrosis in posttransplant hearts.
        Transplantation. 1992; 53: 1047-1051
        • Turlington B.S.
        • Edwards W.D.
        Quantitation of mast cells in 100 normal and 92 diseased human hearts. Implications for interpretation of endomyocardial biopsy specimens.
        Am J Cardiovasc Pathol. 1988; 2: 151-157
        • Kawanami O.
        • Ferrans V.J.
        • Fulmer J.D.
        • Crystal R.G.
        Ultrastructure of pulmonary mast cells in patients with fibrotic lung disorders.
        Lab Invest. 1979; 40: 717-734
        • Roberts I.S.
        • Brenchley P.E.
        Mast cells: the forgotten cells of renal fibrosis.
        J Clin Pathol. 2000; 53: 858-862
        • DeBruin E.J.
        • Gold M.
        • Lo B.C.
        • et al.
        Mast cells in human health and disease.
        Methods Mol Biol. 2015; 1220: 93-119
        • Armbrust T.
        • Batusic D.
        • Ringe B.
        • Ramadori G.
        Mast cells distribution in human liver disease and experimental rat liver fibrosis. Indications for mast cell participation in development of liver fibrosis.
        J Hepatol. 1997; 26: 1042-1054
        • Zimnoch L.
        • Szynaka B.
        • Puchalski Z.
        Mast cells and pancreatic stellate cells in chronic pancreatitis with differently intensified fibrosis.
        Hepatogastroenterology. 2002; 49: 1135-1138
        • Mangieri D.
        • Corradi D.
        • Martorana D.
        • et al.
        Eotaxin/CCL11 in idiopathic retroperitoneal fibrosis.
        Nephrol Dial Transplant. 2012; 27: 3875-3884
        • Worobec A.S.
        • Semere T.
        • Nagata H.
        • Metcalfe D.D.
        Clinical correlates of the presence of the asp816Val c-kit mutation in the peripheral blood mononuclear cells of patients with mastocytosis.
        Cancer. 1998; 83: 2120-2129
        • Peart K.M.
        • Ellis H.A.
        Quantitative observations on iliac bone marrow mast cells in chronic renal failure.
        J Clin Pathol. 1975; 28: 947-955
        • Lennert K.
        • Parwaresch M.R.
        Mast cells and mast cell neoplasia: a review.
        Histopathology. 1979; 3: 349-365
        • Afrin L.B.
        Sclerosing mediastinitis and mast cell activation syndrome.
        Pathol Res Pract. 2012; 208: 181-185
        • Conti P.
        • Kempuraj D.
        Important role of mast cells in multiple sclerosis.
        Mult Scler Relat Disord. 2016; 5: 77-80
        • Bolton C.
        • Smith P.
        Defining and regulating acute inflammatory lesion formation during the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis.
        CNS Neurol Disord Drug Targets. 2015; 14: 915-935
        • Walker-Caulfield M.E.
        • Hatfield J.K.
        • Brown M.A.
        Dynamic changes in meningeal inflammation correspond to clinical exacerbations in a murine model of relapsing-remitting multiple sclerosis.
        J Neuroimmunol. 2015; 278: 112-122
        • Russi A.E.
        • Brown M.A.
        The meninges: new therapeutic targets for multiple sclerosis.
        Transl Res. 2015; 165: 255-269
        • Wynn T.A.
        • Ramalingam T.R.
        Mechanisms of fibrosis: therapeutic translation for fibrotic disease.
        Nat Med. 2012; 18: 1028-1040
        • Overed-Sayer C.
        • Rapley L.
        • Mustelin T.
        • Clarke D.L.
        Are mast cells instrumental for fibrotic diseases?.
        Front Pharmacol. 2014; 4: 174
        • Olney H.J.
        • Le Beau M.M.
        Cytogenetic diagnosis of myelodysplastic syndromes.
        in: Deeg H.J. Bowen D.T. Gore S.D. Haferlach T. Le Beau M.M. Niemeyer C. Myelodysplastic syndromes. Springer-Verlag, 2013: 41-72
        • Leclere M.
        • Desnoyers M.
        • Beauchamp G.
        • Lavoie J.P.
        Comparison of four staining methods for detection of mast cells in equine bronchoalveolar lavage fluid.
        J Vet Intern Med. 2006; 20: 377-381
        • Feyerabend T.B.
        • Hausser H.
        • Tietz A.
        • et al.
        Loss of histochemical identity in mast cells lacking carboxypeptidase A.
        Mol Cell Biol. 2005; 25: 6199-6210
        • Kounis N.G.
        Coronary hypersensitivity disorder: the Kounis syndrome.
        Clin Ther. 2013; 35: 563-571
        • Biteker M.
        Current understanding of Kounis syndrome.
        Expert Rev Clin Immunol. 2010; 6: 777-788
        • Kounis N.G.
        Kounis syndrome: a monster for the atopic patient.
        Cardiovasc Diagn Ther. 2013; 3: 1-4
        • Gianni M.
        • Dentali F.
        • Grandi A.M.
        • Sumner G.
        • Hiralal R.
        • Lonn E.
        Apical ballooning syndrome or Takotsubo cardiomyopathy: a systematic review.
        Eur Heart J. 2006; 27: 1523-1529
        • Yanagawa Y.
        • Nishi K.
        • Tomiharu N.
        • Kawaguchi T.
        A case of Takotsubo cardiomyopathy associated with Kounis syndrome.
        Int J Cardiol. 2009; 132: e65-e67
        • Vultaggio A.
        • Matucci A.
        • Del Pace S.
        • et al.
        Tako-Tsubo-like syndrome during anaphylactic reaction.
        Eur J Heart Fail. 2007; 9: 209-211
        • Buchanan J.A.
        • Zakrzewska J.M.
        Burning mouth syndrome.
        BMJ Clin Evid. 2010; 2010: 1301
        • Shibao C.
        • Arzubiaga C.
        • Roberts II, L.J.
        • et al.
        Hyperadrenergic postural tachycardia syndrome in mast cell activation disorders.
        Hypertension. 2005; 45: 385-390
        • Raj S.R.
        The postural tachycardia syndrome (POTS): pathophysiology, diagnosis and management.
        Indian Pacing Electrophysiol J. 2006; 6: 84-99
        • Afrin L.B.
        Mast cell activation syndrome as a significant comorbidity in sickle cell disease.
        Am J Med Sci. 2014; 348: 460-464
        • Afrin L.B.
        Utility of continuous diphenhydramine infusion in severe mast cell activation syndrome.
        Blood. 2015; 126 (Available at:): 5194
        • Hiromura K.
        • Kurosawa M.
        • Yano S.
        • Naruse T.
        Tubulointerstitial mast cell infiltration in glomerulonephritis.
        Am J Kidney Dis. 1998; 32: 593-599
        • Timoshanko J.R.
        • Kitching A.R.
        • Semple T.J.
        • Tipping P.G.
        • Holdsworth S.R.
        A pathogenetic role for mast cells in experimental crescentic glomerulonephritis.
        J Am Soc Nephrol. 2006; 17: 150-159
        • Kindblom L.-G.
        Factor VIII-related antigen and mast cells.
        Acta Pathol Microbiol Scand. 1982; 90A: 437-439
        • Akiyama M.
        • Watanabe Y.
        • Nishikawa T.
        Immunohistochemical characterization of human cutaneous mast cells in urticaria pigmentosa (cutaneous mastocytosis).
        Pathol Int. 1991; 41: 344-349
        • Undas A.
        • Cieśla-Dul M.
        • Drążkiewicz T.
        • Potaczek D.P.
        • Sadowski J.
        Association between atopic diseases and venous thromboembolism: a case-control study in patients aged 45 years or less.
        J Thromb Haemost. 2011; 9: 870-873
        • Heymann W.R.
        Chronic urticaria and angioedema associated with thyroid autoimmunity: review and therapeutic implications.
        J Am Acad Dermatol. 1999; 40: 229-232
        • Levy Y.
        • Segal N.
        • Weintrob N.
        • Danon Y.L.
        Chronic urticaria: association with thyroid autoimmunity.
        Arch Dis Child. 2003; 88: 517-519
        • Melander A.
        • Sundler F.
        Significance of thyroid mast cells in thyroid hormone secretion.
        Endocrinology. 1972; 90: 802-807
        • Catini C.
        • Legnaioli M.
        Role of mast cells in health: daily rhythmic variations in their number, exocytotic activity, histamine and serotonin content in the rat thyroid gland.
        Eur J Histochem. 1992; 36: 501-516
        • Kuei N.
        • Patel N.
        • Xu H.
        • et al.
        Characteristics and potential biomarkers for chronic pain in patients with sickle cell disease.
        Blood. 2015; 126 (Available at:) (Accessed December 12, 2015): 986
        • Kutlar A.
        GLEE-ful for sickle cell pain?.
        Blood. 2013; 122: 1846-1847
        • Afrin L.B.
        Mast cell activation disorder masquerading as pure red cell aplasia.
        Int J Hematol. 2010; 91: 907-908
        • Afrin L.B.
        Mast cell activation syndrome masquerading as agranulocytosis.
        Mil Med. 2012; 177: 113-117
        • Cheung I.
        • Vadas P.
        A new disease cluster: mast cell activation syndrome, postural orthostatic tachycardia syndrome, and Ehlers-Danlos syndrome.
        J Allergy Clin Immunol. 2015; 135 (abstract 209): AB65
        • Benarroch E.E.
        Postural tachycardia syndrome: a heterogeneous and multifactorial disorder.
        Mayo Clin Proc. 2012; 87: 1214-1225
        • Louisias M.
        • Silverman S.
        • Maitland A.
        Prevalence of allergic disorders and mast cell activation syndrome and in patients with Ehlers Danlos syndrome.
        Ann Allergy Asthma Immunol. 2013; 111: A12-A13
        • Garland E.M.
        • Celedonio J.E.
        • Raj S.R.
        Postural tachycardia syndrome: beyond orthostatic intolerance.
        Curr Neurol Neurosci Rep. 2015; 15: 60
        • Mathias C.J.
        • Low D.A.
        • Iodice V.
        • Owens A.P.
        • Kirbis M.
        • Grahame R.
        Postural tachycardia syndrome–current experience and concepts.
        Nat Rev Neurol. 2011; 8: 22-34
        • Lyons J.J.
        • Sun G.
        • Stone K.D.
        • et al.
        Mendelian inheritance of elevated serum tryptase associated with atopy and connective tissue abnormalities.
        J Allergy Clin Immunol. 2014; 133: 1471-1474
        • Slavik T.
        • Montgomery E.A.
        Cronkhite-Canada syndrome six decades on: the many faces of an enigmatic disease.
        J Clin Pathol. 2014; 67: 891-897
        • Van Dellen R.G.
        • Rodysill K.J.
        • Batts K.P.
        The Cronkhite-Canada syndrome: evidence for gut mast cell involvement.
        J Allergy Clin Immunol. 1999; 103: S46
        • Samet J.D.
        • Horton K.M.
        • Fishman E.K.
        • Iacobuzio-Donahue C.A.
        Cronkhite-Canada syndrome: gastric involvement diagnosed by MDCT.
        Case Rep Med. 2009; 2009: 148795
        • Myint H.
        • Bhala N.
        • Stace N.
        A rapid clinical response to anti-tumor necrosis factor alpha therapy in refractory Cronkhite-Canada syndrome.
        Luminal Clin J Gastroenterol Hepatol. 2014; 29: 124-139