Advertisement
Featured new investigator| Volume 153, ISSUE 1, P4-10, January 2009

Epigenetic regulation and the pathogenesis of systemic lupus erythematosus

  • Yujun Pan
    Affiliations
    Arthritis & Immunology Program, Oklahoma Medical Research Foundation, Department of Medicine, University of Oklahoma Health Sciences Center, and the U.S. Department of Veterans Affairs Medical Center, Oklahoma City, Okla
    Search for articles by this author
  • Amr H. Sawalha
    Correspondence
    Reprint requests: Amr H. Sawalha, 825 N.E. 13th Street, MS#24, Oklahoma City, OK 73104
    Affiliations
    Arthritis & Immunology Program, Oklahoma Medical Research Foundation, Department of Medicine, University of Oklahoma Health Sciences Center, and the U.S. Department of Veterans Affairs Medical Center, Oklahoma City, Okla
    Search for articles by this author
Published:November 17, 2008DOI:https://doi.org/10.1016/j.trsl.2008.10.007
      The pathogenesis of systemic lupus erythematosus (SLE) is incompletely understood. Studies in both lupus animal models and human disease indicate a clear role for epigenetic defects, particularly DNA methylation, in the pathogenesis of lupus. T-cell DNA from active lupus patients is hypomethylated, which results in overexpression of methylation-regulated genes, T-cell autoreactivity, and autoimmunity in vivo. Inducing an extracellular signal-regulated kinase (ERK) signaling defect in T cells using a transgenic mouse model resulted in reduced DNA methyltransferase 1 (DNMT1) expression, overexpression of methylation-sensitive genes, and anti-double-stranded DNA (anti-dsDNA) antibody production. ERK signaling is known to be defective in lupus T cells, and this defect is now explained by impaired T-cell protein kinase C (PKC) delta activation. Herein, we discuss how defective epigenetic regulation is involved in the pathogenesis of lupus, which includes both DNA methylation and histone modification changes.

      Abbreviations:

      5-azaC (5-azacytidine), DNMT (DNA methyltransferase), dsDNA (double-stranded DNA), ERK (extracellular signal-regulated kinase), HATs (histone acetyltransferases), HDACs (histone deacetylases), IFN-γ (interferon-γ), IgG (immunoglobulin-G), IL (interleukin), MBD (methyl CpG binding domain), MECP2 (methyl-CpG-binding protein 2), MTR (methionine synthase), NO (nitric oxide), PKC (protein kinase C), SCLE (subacute cutaneous lupus erythematosus), SLE (systemic lupus erythematosus), SNP (single nucleotide polymorphism), TNF-α (tumor necrosis factor-α), TSA (trichostatin A)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sawalha A.H.
        • Harley J.B.
        Antinuclear autoantibodies in systemic lupus erythematosus.
        Curr Opin Rheumatol. 2004; 16: 534-540
        • Sawalha A.H.
        • Jeffries M.
        • Webb R.
        • et al.
        Defective T-cell ERK signaling induces interferon-regulated gene expression and overexpression of methylation-sensitive genes similar to lupus patients.
        Genes Immun. 2008; 9: 368-378
        • Richardson B.
        Primer: epigenetics of autoimmunity.
        Nat Clin Pract Rheumatol. 2007; 3: 521-527
        • Sawalha A.H.
        • Richardson B.C.
        DNA methylation in the pathogenesis of systemic lupus erythematosus.
        Current Pharmacogenomics. 2005; 3: 73-78
        • Januchowski R.
        • Prokop J.
        • Jagodzinski P.P.
        Role of epigenetic DNA alterations in the pathogenesis of systemic lupus erythematosus.
        J Appl Genet. 2004; 45: 237-248
        • Balada E.
        • Ordi-Ros J.
        • Vilardell-Tarres M.
        DNA methylation and systemic lupus erythematosus.
        Ann N Y Acad Sci. 2007; 1108: 127-136
        • Sawalha A.H.
        Epigenetics and T-cell immunity.
        Autoimmunity. 2008; 41: 245-252
        • Matouk C.C.
        • Marsden P.A.
        Epigenetic regulation of vascular endothelial gene expression.
        Circ Res. 2008; 102: 873-887
        • Sawalha A.H.
        • Webb R.
        • Han S.
        • et al.
        Common variants within MECP2 confer risk of systemic lupus erythematosus.
        PLoS ONE. 2008; 3: e1727
        • Richardson B.
        • Scheinbart L.
        • Strahler J.
        • Gross L.
        • Hanash S.
        • Johnson M.
        Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis.
        Arthritis Rheum. 1990; 33: 1665-1673
        • Balada E.
        • Ordi-Ros J.
        • Serrano-Acedo S.
        • Martinez-Lostao L.
        • Rosa-Leyva M.
        • Vilardell-Tarres M.
        Transcript levels of DNA methyltransferases DNMT1, DNMT3A and DNMT3B in CD4+ T cells from patients with systemic lupus erythematosus.
        Immunology. 2008; 124: 339-347
        • Balada E.
        • Ordi-Ros J.
        • Serrano-Acedo S.
        • Martinez-Lostao L.
        • Vilardell-Tarres M.
        Transcript overexpression of the MBD2 and MBD4 genes in CD4+ T cells from systemic lupus erythematosus patients.
        J Leukoc Biol. 2007; 81: 1609-1616
        • Corvetta A.
        • Della Bitta R.
        • Luchetti M.M.
        • Pomponio G.
        5-Methylcytosine content of DNA in blood, synovial mononuclear cells and synovial tissue from patients affected by autoimmune rheumatic diseases.
        J Chromatogr. 1991; 566: 481-491
        • Richardson B.C.
        • Strahler J.R.
        • Pivirotto T.S.
        • et al.
        Phenotypic and functional similarities between 5-azacytidine-treated T cells and a T cell subset in patients with active systemic lupus erythematosus.
        Arthritis Rheum. 1992; 35: 647-662
        • Strickland F.M.
        • Richardson B.C.
        Epigenetics in human autoimmunity. Epigenetics in autoimmunity—DNA methylation in systemic lupus erythematosus and beyond.
        Autoimmunity. 2008; 41: 278-286
        • Yung R.L.
        • Quddus J.
        • Chrisp C.E.
        • Johnson K.J.
        • Richardson B.C.
        Mechanism of drug-induced lupus. I. Cloned Th2 cells modified with DNA methylation inhibitors in vitro cause autoimmunity in vivo.
        J Immunol. 1995; 154: 3025-3035
        • Mi X.B.
        • Zeng F.Q.
        Hypomethylation of interleukin-4 and -6 promoters in T cells from systemic lupus erythematosus patients.
        Acta Pharmacol Sin. 2008; 29: 105-112
        • Deng C.
        • Lu Q.
        • Zhang Z.
        • et al.
        Hydralazine may induce autoimmunity by inhibiting extracellular signal-regulated kinase pathway signaling.
        Arthritis Rheum. 2003; 48: 746-756
        • Luo Y.
        • Li Y.
        • Su Y.
        • et al.
        Abnormal DNA methylation in T cells from patients with subacute cutaneous lupus erythematosus.
        Br J Dermatol. 2008; 159: 827-833
        • Sawalha A.H.
        • Jeffries M.
        Defective DNA methylation and CD70 overexpression in CD4+ T cells in MRL/lpr lupus-prone mice.
        Eur J Immunol. 2007; 37: 1407-1413
        • Cornacchia E.
        • Golbus J.
        • Maybaum J.
        • Strahler J.
        • Hanash S.
        • Richardson B.
        Hydralazine and procainamide inhibit T cell DNA methylation and induce autoreactivity.
        J Immunol. 1988; 140: 2197-2200
        • Oelke K.
        • Lu Q.
        • Richardson D.
        • et al.
        Overexpression of CD70 and overstimulation of IgG synthesis by lupus T cells and T cells treated with DNA methylation inhibitors.
        Arthritis Rheum. 2004; 50: 1850-1860
        • Scheinbart L.S.
        • Johnson M.A.
        • Gross L.A.
        • Edelstein S.R.
        • Richardson B.C.
        Procainamide inhibits DNA methyltransferase in a human T cell line.
        J Rheumatol. 1991; 18: 530-534
        • Deng C.
        • Yang J.
        • Scott J.
        • Hanash S.
        • Richardson B.C.
        Role of the ras-MAPK signaling pathway in the DNA methyltransferase response to DNA hypomethylation.
        Biol Chem. 1998; 379: 1113-1120
        • Deng C.
        • Kaplan M.J.
        • Yang J.
        • et al.
        Decreased Ras-mitogen-activated protein kinase signaling may cause DNA hypomethylation in T lymphocytes from lupus patients.
        Arthritis Rheum. 2001; 44: 397-407
      1. Sawalha A.H, Jeffries, M, Webb R, et al. Defective T-cell ERK pathway signaling in mice induces interferon-regulated gene expression and overexpression of methylation sensitive genes similar to lupus patients. Genes Immun. In press.

        • Bennett L.
        • Palucka A.K.
        • Arce E.
        • et al.
        Interferon and granulopoiesis signatures in systemic lupus erythematosus blood.
        J Exp Med. 2003; 197: 711-723
        • Baechler E.C.
        • Batliwalla F.M.
        • Karypis G.
        • et al.
        Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus.
        Proc Natl Acad Sci U S A. 2003; 100: 2610-2615
        • Gorelik G.
        • Fang J.Y.
        • Wu A.
        • Sawalha A.H.
        • Richardson B.
        Impaired T cell protein kinase C delta activation decreases ERK pathway signaling in idiopathic and hydralazine-induced lupus.
        J Immunol. 2007; 179: 5553-5563
        • Yung R.
        • Powers D.
        • Johnson K.
        • et al.
        Mechanisms of drug-induced lupus. II. T cells overexpressing lymphocyte function-associated antigen 1 become autoreactive and cause a lupuslike disease in syngeneic mice.
        J Clin Invest. 1996; 97: 2866-2871
        • Yung R.
        • Chang S.
        • Hemati N.
        • Johnson K.
        • Richardson B.
        Mechanisms of drug-induced lupus. IV. Comparison of procainamide and hydralazine with analogs in vitro and in vivo.
        Arthritis Rheum. 1997; 40: 1436-1443
        • Lu Q.
        • Kaplan M.
        • Ray D.
        • Zacharek S.
        • Gutsch D.
        • Richardson B.
        Demethylation of ITGAL (CD11a) regulatory sequences in systemic lupus erythematosus.
        Arthritis Rheum. 2002; 46: 1282-1291
        • Lu Q.
        • Wu A.
        • Richardson B.C.
        Demethylation of the same promoter sequence increases CD70 expression in lupus T cells and T cells treated with lupus-inducing drugs.
        J Immunol. 2005; 174: 6212-6219
        • Kaplan M.J.
        • Lu Q.
        • Wu A.
        • Attwood J.
        • Richardson B.
        Demethylation of promoter regulatory elements contributes to perforin overexpression in CD4+ lupus T cells.
        J Immunol. 2004; 172: 3652-3661
        • Lu Q.
        • Wu A.
        • Ray D.
        • et al.
        DNA methylation and chromatin structure regulate T cell perforin gene expression.
        J Immunol. 2003; 170: 5124-5132
        • Kaplan M.J.
        • Lewis E.E.
        • Shelden E.A.
        • et al.
        The apoptotic ligands TRAIL, TWEAK, and Fas ligand mediate monocyte death induced by autologous lupus T cells.
        J Immunol. 2002; 169: 6020-6029
        • Denny M.F.
        • Chandaroy P.
        • Killen P.D.
        • et al.
        Accelerated macrophage apoptosis induces autoantibody formation and organ damage in systemic lupus erythematosus.
        J Immunol. 2006; 176: 2095-2104
        • Lu Q.
        • Wu A.
        • Tesmer L.
        • Ray D.
        • Yousif N.
        • Richardson B.
        Demethylation of CD40LG on the inactive X in T cells from women with lupus.
        J Immunol. 2007; 179: 6352-6358
        • Scofield R.H.
        • Bruner G.R.
        • Namjou B.
        • et al.
        Klinefelter's syndrome (47,XXY) in male systemic lupus erythematosus patients: support for the notion of a gene-dose effect from the X chromosome.
        Arthritis Rheum. 2008; 58: 2511-2517
        • Emlen W.
        • Niebur J.
        • Kadera R.
        Accelerated in vitro apoptosis of lymphocytes from patients with systemic lupus erythematosus.
        J Immunol. 1994; 152: 3685-3692
        • Gaipl U.S.
        • Munoz L.E.
        • Grossmayer G.
        • et al.
        Clearance deficiency and systemic lupus erythematosus (SLE).
        J Autoimmun. 2007; 28: 114-121
        • Qiao B.
        • Wu J.
        • Chu Y.W.
        • et al.
        Induction of systemic lupus erythematosus-like syndrome in syngeneic mice by immunization with activated lymphocyte-derived DNA.
        Rheumatol (Oxford). 2005; 44: 1108-1114
        • Wen Z.K.
        • Xu W.
        • Xu L.
        • et al.
        DNA hypomethylation is crucial for apoptotic DNA to induce systemic lupus erythematosus-like autoimmune disease in SLE-non-susceptible mice.
        Rheumatol (Oxford). 2007; 46: 1796-1803
        • Anders H.J.
        A toll for lupus.
        Lupus. 2005; 14: 417-422
        • Park B.L.
        • Kim L.H.
        • Shin H.D.
        • Park Y.W.
        • Uhm W.S.
        • Bae S.C.
        Association analyses of DNA methyltransferase-1 (DNMT1) polymorphisms with systemic lupus erythematosus.
        J Hum Genet. 2004; 49: 642-646
        • Burzynski M.
        • Duriagin S.
        • Mostowska M.
        • Wudarski M.
        • Chwalinska-Sadowska H.
        • Jagodzinski P.P.
        MTR 2756 A > G polymorphism is associated with the risk of systemic lupus erythematosus in the Polish population.
        Lupus. 2007; 16: 450-454
        • Sestak A.L.
        • Nath S.K.
        • Sawalha A.H.
        • Harley J.B.
        Current status of lupus genetics.
        Arthritis Res Ther. 2007; 9: 210
        • Chahrour M.
        • Jung S.Y.
        • Shaw C.
        • et al.
        MeCP2, a key contributor to neurological disease, activates and represses transcription.
        Science. 2008; 320: 1224-1229
        • Strahl B.D.
        • Allis C.D.
        The language of covalent histone modifications.
        Nature. 2000; 403: 41-45
        • Peterson C.L.
        • Laniel M.A.
        Histones and histone modifications.
        Curr Biol. 2004; 14: R546-R551
        • Ducasse M.
        • Brown M.A.
        Epigenetic aberrations and cancer.
        Mol Cancer. 2006; 5: 60
        • Garcia B.A.
        • Busby S.A.
        • Shabanowitz J.
        • Hunt D.F.
        • Mishra N.
        Resetting the epigenetic histone code in the MRL-lpr/lpr mouse model of lupus by histone deacetylase inhibition.
        J Proteome Res. 2005; 4: 2032-2042
        • Mishra N.
        • Reilly C.M.
        • Brown D.R.
        • Ruiz P.
        • Gilkeson G.S.
        Histone deacetylase inhibitors modulate renal disease in the MRL-lpr/lpr mouse.
        J Clin Invest. 2003; 111: 539-552
        • Reilly C.M.
        • Mishra N.
        • Miller J.M.
        • et al.
        Modulation of renal disease in MRL/lpr mice by suberoylanilide hydroxamic acid.
        J Immunol. 2004; 173: 4171-4178
        • Forster N.
        • Gallinat S.
        • Jablonska J.
        • Weiss S.
        • Elsasser H.P.
        • Lutz W.
        p300 protein acetyltransferase activity suppresses systemic lupus erythematosus-like autoimmune disease in mice.
        J Immunol. 2007; 178: 6941-6948
        • Hu N.
        • Qiu X.
        • Luo Y.
        • et al.
        Abnormal histone modification patterns in lupus CD4+ T cells.
        J Rheumatol. 2008; 35: 804-810