Advertisement

The role of prostacyclin in lung cancer

  • Meredith A. Tennis
    Affiliations
    Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver Health Sciences, Denver, Colo
    Search for articles by this author
  • Michelle Vanscoyk
    Affiliations
    Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver Health Sciences, Denver, Colo
    Search for articles by this author
  • Robert L. Keith
    Affiliations
    Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver Health Sciences, Denver, Colo

    Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, Denver VA Medical Center, Denver, Colo
    Search for articles by this author
  • Robert A. Winn
    Correspondence
    Reprint requests: Robert A. Winn, MD, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado Denver Health Sciences Center, 12700 E. 19th Avenue, Aurora, CO 80045
    Affiliations
    Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver Health Sciences, Denver, Colo

    Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, Denver VA Medical Center, Denver, Colo
    Search for articles by this author
      Prostanoids are bioactive lipids that interact with 7-membrane-spanning G-protein–coupled receptors on target cells to impart their biologic effects.1 They include prostaglandins, prostacyclin, and thromboxane. Prostanoids are widely distributed; mediate several diverse biologic effects like platelet aggregation and smooth-muscle contraction; and are known to be involved in allergies, acquired immunity, and cancer metastasis.2 Prostanoids have also been associated with breast and endometrial cancer promotion, and with the inhibition of melanoma. The role of prostanoids in the development of lung disease has been poorly understood. In particular, prostacyclin possesses significant anti-inflammatory and antimetastatic properties and is the main product of cyclooxygenase-2 activity in the lung. In fact, the balance of the various members of the prostanoids family, specifically the prosoglandins PGE2 and prostacyclin (PGI2), seems to play an increasingly important role in the development of lung cancer. Gaining a better understanding of prostanoids and their associated pathways is critical to the future development of molecular-based and pharmaceutical treatments of lung disease.

      Abbreviations:

      cAMP (cyclic adenosine 3′,5′-monophosphate), COX (cyclooxygenase), IL (interleukin), NSCLC (non-small cell lung carcinoma), PG (prostaglandin), PGES (PGE synthase), PGFS (PGF2 synthase), PGI2 (prostacyclin), PGIS (PGI2 synthase), PPAR (peroxisomal proliferator activated receptor), TXA2 (thromboxane)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Iniguez M.A.
        • Cacheiro-Llaguno C.
        • Cuesta N.
        • Diaz-Munoz M.D.
        • Fresno M.
        Prostanoid function and cardiovascular disease.
        Arch Physiol Biochem. 2008; 114: 201-209
        • Nakahata N.
        Thromboxane A2: physiology/pathophysiology, cellular signal transduction and pharmacology.
        Pharmacol Ther. 2008; 118: 18-35
        • Simmons D.L.
        • Botting R.M.
        • Hla T.
        Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition.
        Pharmacol Rev. 2004; 56: 387-437
        • Park J.Y.
        • Pillinger M.H.
        • Abramson S.B.
        Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases.
        Clin Immunol. 2006; 119: 229-240
        • Wang D.
        • Dubois R.N.
        Prostaglandins and cancer.
        Gut. 2006; 55: 115-122
        • Sugimoto Y.
        • Narumiya S.
        Prostaglandin E receptors.
        J Biol Chem. 2007; 282: 11613-11617
        • Zheng Y.
        • Ritzenthaler J.D.
        • Sun X.
        • Roman J.
        • Han S.
        Prostaglandin E2 stimulates human lung carcinoma cell growth through induction of integrin-linked kinase: the involvement of EP4 and Sp1.
        Cancer Res. 2009; 69: 896-904
        • Alaa M.
        • Suzuki M.
        • Yoshino M.
        • et al.
        Prostaglandin E2 receptor 2 overexpression in squamous cell carcinoma of the lung correlates with p16INK4A methylation and an unfavorable prognosis.
        Int J Oncol. 2009; 34: 805-812
        • Yamaki T.
        • Endoh K.
        • Miyahara M.
        • et al.
        Prostaglandin E2 activates Src signaling in lung adenocarcinoma cell via EP3.
        Cancer Lett. 2004; 214: 115-120
        • Kreutzer M.
        • Fauti T.
        • Kaddatz K.
        • et al.
        Specific components of prostanoid-signaling pathways are present in non-small cell lung cancer cells.
        Oncol Rep. 2007; 18: 497-501
        • Eichele K.
        • Ramer R.
        • Hinz B.
        R(+)-Methanandamide-induced apoptosis of human cervical carcinoma cells involves a cyclooxygenase-2-dependent pathway.
        Pharm Res. 2009; 26: 346-355
        • Byrns M.C.
        • Penning T.M.
        Type 5 17beta-hydroxysteroid dehydrogenase/prostaglandin F synthase (AKR1C3): role in breast cancer and inhibition by nonsteroidal antiinflammatory drug analogs.
        Chem Biol Interact. 2009; 178: 221-227
        • Payne C.A.
        • Maleki S.
        • Messina M.
        • et al.
        Loss of prostaglandin D2 synthase: a key molecular event in the transition of a low-grade astrocytoma to an anaplastic astrocytoma.
        Mol Cancer Ther. 2008; 7: 3420-3428
        • Richard C.L.
        • Lowthers E.L.
        • Blay J.
        15-Deoxy-delta(12,14)-prostaglandin J(2) down-regulates CXCR4 on carcinoma cells through PPARgamma- and NFkappaB-mediated pathways.
        Exp Cell Res. 2007; 313: 3446-3458
        • Hata A.N.
        • Breyer R.M.
        Pharmacology and signaling of prostaglandin receptors: multiple roles in inflammation and immune modulation.
        Pharmacol Ther. 2004; 103: 147-166
        • Scher J.U.
        • Pillinger M.H.
        15d-PGJ2: the anti-inflammatory prostaglandin?.
        Clin Immunol. 2005; 114: 100-109
        • Stella Tsai C.S.
        • Luo S.F.
        • Ning C.C.
        • Lin C.L.
        • Jiang M.C.
        • Liao C.F.
        Acetylsalicylic acid regulates MMP-2 activity and inhibits colorectal invasion of murine B16F0 melanoma cells in C57BL/6J mice: effects of prostaglandin F(2)alpha.
        Biomed Pharmacother. 2008;
        • Chao Y.C.
        • Pan S.H.
        • Yang S.C.
        • et al.
        Claudin-1 is a metastasis suppressor and correlates with clinical outcome in lung adenocarcinoma.
        Am J Respir Crit Care Med. 2009; 179: 123-133
        • Sales K.J.
        • Grant V.
        • Jabbour H.N.
        Prostaglandin E2 and F2alpha activate the FP receptor and up-regulate cyclooxygenase-2 expression via the cyclic AMP response element.
        Mol Cell Endocrinol. 2008; 285: 51-61
        • Dogne J.M.
        • Hanson J.
        • Pratico D.
        Thromboxane, prostacyclin and isoprostanes: therapeutic targets in atherogenesis.
        Trends Pharmacol Sci. 2005; 26: 639-644
        • Fetalvero K.M.
        • Martin K.A.
        • Hwa J.
        Cardioprotective prostacyclin signaling in vascular smooth muscle.
        Prostaglandins Other Lipid Mediat. 2007; 82: 109-118
        • Nemenoff R.A.
        • Meyer A.M.
        • Hudish T.M.
        • et al.
        Prostacyclin prevents murine lung cancer independent of the membrane receptor by activation of peroxisomal proliferator-activated receptor gamma.
        Cancer Prev Res. 2008; 1: 349-356
        • Keith R.L.
        • Geraci M.W.
        Prostacyclin in lung cancer.
        J Thorac Oncol. 2006; 1: 503-505
        • Grommes C.
        • Landreth G.E.
        • Heneka M.T.
        Antineoplastic effects of peroxisome proliferator-activated receptor gamma agonists.
        Lancet Oncol. 2004; 5: 419-429
        • He P.
        • Borland M.G.
        • Zhu B.
        • et al.
        Effect of ligand activation of peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) in human lung cancer cell lines.
        Toxicology. 2008; 254: 112-117
        • Pedchenko T.V.
        • Gonzalez A.L.
        • Wang D.
        • DuBois R.N.
        • Massion P.P.
        Peroxisome proliferator-activated receptor beta/delta expression and activation in lung cancer.
        Am J Respir Cell Mol Biol. 2008; 39: 689-696
        • Miggin S.M.
        • Kinsella B.T.
        Investigation of the mechanisms of G protein: effector coupling by the human and mouse prostacyclin receptors. Identification of critical species-dependent differences.
        J Biol Chem. 2002; 277: 27053-27064
        • Chow K.B.
        • Jones R.L.
        • Wise H.
        Protein kinase A-dependent coupling of mouse prostacyclin receptors to Gi is cell-type dependent.
        Eur J Pharmacol. 2003; 474: 7-13
        • Forman B.M.
        • Chen J.
        • Evans R.M.
        Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta.
        Proc Natl Acad Sci USA. 1997; 94: 4312-4317
        • Bishop-Bailey D.
        Peroxisome proliferator-activated receptors in the cardiovascular system.
        Br J Pharmacol. 2000; 129: 823-834
        • Wakasugi M.
        • Noguchi T.
        • Inoue M.
        • et al.
        Vitamin D3 stimulates the production of prostacyclin by vascular smooth muscle cells.
        Prostaglandins. 1991; 42: 127-136
        • Awad A.B.
        • Smith A.J.
        • Fink C.S.
        Plant sterols regulate rat vascular smooth muscle cell growth and prostacyclin release in culture.
        Prostaglandins Leukot Essent Fatty Acids. 2001; 64: 323-330
        • Smith L.H.
        • Boutaud O.
        • Breyer M.
        • Morrow J.D.
        • Oates J.A.
        • Vaughan D.E.
        Cyclooxygenase-2-dependent prostacyclin formation is regulated by low density lipoprotein cholesterol in vitro.
        Arterioscler Thromb Vasc Biol. 2002; 22: 983-988
        • Hassid A.
        Stimulation of prostacyclin synthesis by thromboxane A2-like prostaglandin endoperoxide analogues in cultured vascular smooth muscle cells.
        Biochem Biophys Res Commun. 1984; 123: 21-26
        • Dwyer-Nield L.D.
        • Srebernak M.C.
        • Barrett B.S.
        • et al.
        Cytokines differentially regulate the synthesis of prostanoid and nitric oxide mediators in tumorigenic versus non-tumorigenic mouse lung epithelial cell lines.
        Carcinogenesis. 2005; 26: 1196-1206
        • Ermert L.
        • Dierkes C.
        • Ermert M.
        Immunohistochemical expression of cyclooxygenase isoenzymes and downstream enzymes in human lung tumors.
        Clin Cancer Res. 2003; 9: 1604-1610
        • Stearman R.S.
        • Dwyer-Nield L.
        • Zerbe L.
        • et al.
        Analysis of orthologous gene expression between human pulmonary adenocarcinoma and a carcinogen-induced murine model.
        Am J Pathol. 2005; 167: 1763-1775
        • Stearman R.S.
        • Grady M.C.
        • Nana-Sinkam P.
        • Varella-Garcia M.
        • Geraci M.W.
        Genetic and epigenetic regulation of the human prostacyclin synthase promoter in lung cancer cell lines.
        Mol Cancer Res. 2007; 5: 295-308
        • Dohadwala M.
        • Yang S.C.
        • Luo J.
        • et al.
        Cyclooxygenase-2-dependent regulation of E-cadherin: prostaglandin E(2) induces transcriptional repressors ZEB1 and snail in non-small cell lung cancer.
        Cancer Res. 2006; 66: 5338-5345
        • Keith R.L.
        • Miller Y.E.
        • Hoshikawa Y.
        • et al.
        Manipulation of pulmonary prostacyclin synthase expression prevents murine lung cancer.
        Cancer Res. 2002; 62: 734-740
        • Keith R.L.
        • Miller Y.E.
        • Hudish T.M.
        • et al.
        Pulmonary prostacyclin synthase overexpression chemoprevents tobacco smoke lung carcinogenesis in mice.
        Cancer Res. 2004; 64: 5897-5904
        • Keith R.L.
        • Geraci M.W.
        • Nana-Sinkam S.P.
        • et al.
        Prostaglandin E2 receptor subtype 2 (EP2) null mice are protected against murine lung tumorigenesis.
        Anticancer Res. 2006; 26: 2857-2861
        • Gomberg-Maitland M.
        • Olschewski H.
        Prostacyclin therapies for the treatment of pulmonary arterial hypertension.
        Eur Respir J. 2008; 31: 891-901
        • Pola R.
        • Gaetani E.
        • Flex A.
        • et al.
        Comparative analysis of the in vivo angiogenic properties of stable prostacyclin analogs: a possible role for peroxisome proliferator-activated receptors.
        J Mol Cell Cardiol. 2004; 36: 363-370
        • Reginato M.J.
        • Krakow S.L.
        • Bailey S.T.
        • Lazar M.A.
        Prostaglandins promote and block adipogenesis through opposing effects on peroxisome proliferator-activated receptor gamma.
        J Biol Chem. 1998; 273: 1855-1858
        • Meyer-Kirchrath J.
        • Debey S.
        • Glandorff C.
        • Kirchrath L.
        • Schror K.
        Gene expression profile of the Gs-coupled prostacyclin receptor in human vascular smooth muscle cells.
        Biochem Pharmacol. 2004; 67: 757-765
        • Zhou W.
        • Hashimoto K.
        • Goleniewska K.
        • et al.
        Prostaglandin I2 analogs inhibit proinflammatory cytokine production and T cell stimulatory function of dendritic cells.
        J Immunol. 2007; 178: 702-710
        • Biscetti F.
        • Gaetani E.
        • Flex A.
        • et al.
        Selective activation of peroxisome proliferator-activated receptor (PPAR)alpha and PPAR gamma induces neoangiogenesis through a vascular endothelial growth factor-dependent mechanism.
        Diabetes. 2008; 57: 1394-1404
        • Neilan T.G.
        • Jassal D.S.
        • Scully M.F.
        • et al.
        Iloprost attenuates doxorubicin-induced cardiac injury in a murine model without compromising tumour suppression.
        Eur Heart J. 2006; 27: 1251-1256
        • Nana-Sinkam S.P.
        • Lee J.D.
        • Sotto-Santiago S.
        • et al.
        Prostacyclin prevents pulmonary endothelial cell apoptosis induced by cigarette smoke.
        Am J Respir Crit Care Med. 2007; 175: 676-685
        • Bren-Mattison Y.
        • Van Putten V.
        • Chan D.
        • Winn R.
        • Geraci M.W.
        • Nemenoff R.A.
        Peroxisome proliferator-activated receptor-gamma (PPAR(gamma)) inhibits tumorigenesis by reversing the undifferentiated phenotype of metastatic non-small-cell lung cancer cells (NSCLC).
        Oncogene. 2005; 24: 1412-1422
        • Michaud C.M.
        • Murray C.J.
        • Bloom B.R.
        Burden of disease—implications for future research.
        JAMA. 2001; 285: 535-539
        • Jemal A.
        • Siegel R.
        • Ward E.
        • et al.
        Cancer statistics, 2006.
        CA Cancer J Clin. 2006; 56: 106-130