Advertisement

Stem cell approaches for the treatment of type 1 diabetes mellitus

      Type 1 diabetes is characterized by near total absence of pancreatic b cells. Current treatments consisting of insulin injections and islet transplantation are clinically unsatisfactory. In order to develop a cure for type 1 diabetes, we must find a way to reverse autoimmunity, which underlies b cell destruction, as well as an effective strategy to generate new b cells. This article reviews the different approaches that are being taken to produce new b cells. Much emphasis has been placed on selecting the right non-b cell population, either in vivo or in vitro, as the starting material. Different cell types, including adult stem cells, other types of progenitor cells in situ, and even differentiated cell populations, as well as embryonic stem cells and induced pluripotent stem cells, will require different methods for islet and b cell induction. We discussed the pros and cons of the different strategies that are being used to re-invent the pancreatic b cell.

      Abbreviations:

      DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine), ES (embryonic stem), ESC (embryonic stem cells), FBS (fetal bovine serum), FGAd (first generation adenovirus), FGF10 (fibroblast growth factor 10), GCNF (germ cell nuclear factor), GSIS (glycemia stimulated insulin secretion), HDAd (helper-dependent adenovirus), hESC (human embryonic stem cells), iPSC (induced-pluripotent stem cells), Klf4 (Kruppel-like factor 4), MSC (mesenchymal stem cell), MEF (mouse embryonic fibroblasts), Ngn3 (neurogenin 3), Oct4 (Octamer-4), Pdx1 (pancreatic and duodenal homeobox 1), RA (retinoic acid), SCNT (somatic cell nuclear transfer), Shh (sonic hedgehog), STZ (streptozotocin), TGFβ (transforming growth factor-β)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • American Diabetes Association
        Economic costs of diabetes in the U.S. In 2007.
        Diabetes Care. 2008; 31: 596-615
        • Shapiro A.M.J.
        • Lakey J.R.T.
        • Ryan E.A.
        • et al.
        Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen.
        N Engl J Med. 2000; 343: 230-238
        • Harlan D.M.
        • Kenyon N.S.
        • Korsgren O.
        • Roep B.O.
        Immunology of Diabetes Society. Current advances and travails in islet transplantation.
        Diabetes. 2009; 58: 2175-2184
        • Shapiro A.M.
        • Ricordi C.
        • Hering B.J.
        • et al.
        International trial of the Edmonton protocol for islet transplantation.
        N Engl J Med. 2006; 355: 1318-1330
        • Rizzino A.
        A challenge for regenerative medicine: proper genetic programming, not cellular mimicry.
        Dev Dyn. 2007; 236: 3199-3207
        • Dor Y.
        • Brown J.
        • Martinez O.I.
        • Melton D.A.
        Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation.
        Nature. 2004; 429: 41-46
        • Teta M.
        • Rankin M.M.
        • Long S.Y.
        • Stein G.M.
        • Kushner J.A.
        Growth and regeneration of adult beta cells does not involve specialized progenitors.
        Dev Cell. 2007; 12: 817-826
        • Murtaugh L.C.
        Pancreas and beta-cell development: from the actual to the possible.
        Development. 2007; 134: 427-438
        • Gradwohl G.
        • Dierich A.
        • Lemeur M.
        • Guillemot F.
        Neruogenin3 is required for the development of the four endocrine cell lineages of the pancreas.
        Proc Natl Acad Sci USA. 2000; 97: 1607-1611
        • Gu G.
        • Dubauskaite J.
        • Melton D.A.
        Direct evidence for the pancreatic lineage:NGN3+ cells are islet progenitors and are distinct from duct progenitors.
        Development. 2002; 129: 2447-2457
        • Wang S.
        • Jensen J.N.
        • Seymour P.A.
        • et al.
        Sustained Neurog3 expression in hormone-expressing islet cells is required for endocrine maturation and function.
        Proc Natl Acad Sci USA. 2009; 106: 9715-9720
        • Xu X.
        • D’Hoker J.
        • Stange G.
        • et al.
        Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas.
        Cell. 2008; 132: 197-207
        • Kushner J.A.
        • Weir G.C.
        • Bonner-Weir S.
        Ductal origin hypothesis of pancreatic regeneration under attack.
        Cell Metab. 2010; 11: 2-3
        • Bonner-Weir S.
        • Sharma A.
        Are there pancreatic progenitor cells from which new islets form after birth?.
        Nat Clin Pract Endocrinol Metab. 2006; 2: 240-241
        • Teta M.
        • Long S.Y.
        • Wartschow L.M.
        • Rankin M.M.
        • Kushner J.A.
        Very slow turnover of beta-cells in aged adult mice.
        Diabetes. 2005; 54: 2557-2567
        • Perfetti R.
        • Zhou J.
        • Doyle M.E.
        • Egan J.M.
        Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum homeobox-1 expression and increases endocrine cell mass in the pancreas of old, glucose-intolerant rats.
        Endocrinology. 2000; 141: 4600-4605
        • Brubaker P.L.
        Minireview: update on incretin biology: focus on glucagon-like peptide-1.
        Endocrinology. 2010; 151: 1984-1989
        • Thorel F.
        • Nepote V.
        • Avril I.
        • et al.
        Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss.
        Nature. 2010; 464: 1132-1133
        • Collombat P.
        • Xu X.
        • Ravassard P.
        • et al.
        The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells.
        Cell. 2009; 138: 449-462
        • Inada A.
        • Nienaber C.
        • Katsuta H.
        • et al.
        Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth.
        Proc Natl Acad Sci USA. 2008; 105: 19915-19919
        • Bonner-Weir S.
        • Inada A.
        • Yatoh S.
        • et al.
        Transdifferentiation of pancreatic ductal cells to endocrine beta-cells.
        Biochem Soc Trans. 2008; 36: 353-356
        • Solar M.
        • Cardalda C.
        • Houbracken I.
        • et al.
        Pancreatic exocrine duct cells give rise to insulin-producing beta cells during embryogenesis but not after birth.
        Dev Cell. 2009; 17: 849-860
        • Kopinke D.
        • Murtaugh L.C.
        Exocrine-to-endocrine differentiation is detectable only prior to birth in the uninjured mouse pancreas.
        BMC Dev Biol. 2010; 10: 38
        • Baeyens L.
        • De B.S.
        • Lardon J.
        • Mfopou J.K.
        • Rooman I.
        • Bouwens L.
        In vitro generation of insulin-producing beta cells from adult exocrine pancreatic cells.
        Diabetologia. 2005; 48: 49-57
        • Zhao M.
        • Amiel S.A.
        • Christie M.R.
        • Rela M.
        • Heaton N.
        • Huang G.C.
        Insulin-producing cells derived from human pancreatic non-endocrine cell cultures reverse streptozotocin-induced hyperglycaemia in mice.
        Diabetologia. 2005; 48: 2051-2061
        • Zhou Q.
        • Brown J.
        • Kanarek A.
        • Rajagopal J.
        • Melton D.A.
        In vivio reprogramming of adult pancreatic exocrine cells to beta-cells.
        Nature. 2008; 455: 627-632
        • Zaret K.S.
        • Grompe M.
        Generation and regeneration of cells of the liver and pancreas.
        Science. 2008; 322: 1490-1494
        • Oertel M.
        • Shafritz D.A.
        Stem cells, cell transplantation and liver repopulation.
        Biochim Biophys Acta. 2008; 1782: 61-74
        • Kim S.
        • Shin J.S.
        • Kim H.J.
        • Fisher R.C.
        • Lee M.J.
        • Kim C.W.
        Streptozotocin-induced diabetes can be reversed by hepatic oval cell activation through hepatic transdifferentiation and pancreatic islet regeneration.
        Lab Invest. 2007; 87: 702-712
        • Yang L.
        • Li S.
        • Hatch H.
        • et al.
        In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells.
        Proc Natl Acad Sci USA. 2002; 99: 8078-8083
        • Ferber S.
        • Halkin A.
        • Cohan H.
        • et al.
        Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia.
        Nat Med. 2000; 6: 568-572
        • Perl S.
        • Hirshberg B.
        • Harlan D.M.
        • Tisdale J.F.
        How much insulin is enough? A quantitative assessment of the transdifferentiaton potential of liver.
        Diabetologia. 2007; 50: 690-692
        • Kojima H.
        • Fujimiya M.
        • Matsumura K.
        • et al.
        NeuroD-betacellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice.
        Nat Med. 2003; 9: 596-603
        • Miyatsuka T.
        • Kaneto H.
        • Kajimoto Y.
        • et al.
        Ectopically expressed PDX-1 in liver initiates endocrine and exocrine pancreas differentiation but causes dysmorphogenesis.
        Biochem Biophys Res Commun. 2003; 310: 1017-1025
        • Yechoor V.
        • Liu V.
        • Espiritu C.
        • et al.
        Neurogenin3 is sufficient for in vivo transdetermination of hepatic progenitors cells into islet-like structures but not transdifferentiation of hepatocytes.
        Dev Cell. 2009; 16: 358-373
        • Yechoor V.
        • Liu V.
        • Paul A.
        • et al.
        Gene therapy with neurogenin 3 and betacellulin reverses major metabolic problems in insulin-deficient diabetic mice.
        Endocrinology. 2009; 150: 4863-4873
        • Hadorn E.
        Problems of determination and transdetermination.
        Brookhaven Symp Biol. 1965; 18: 148-161
        • Hadorn E.
        Transdetermination in cells.
        Sci Am. 1968; 219: 110-114
        • Friedenstein A.J.
        • Chailakhjan R.K.
        • Lalykina K.S.
        The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells.
        Cell Tissue Kinet. 1970; 3: 393-403
        • Friedenstein A.J.
        • Chailakhyan R.K.
        • Latsinik N.V.
        • Panasyuk A.F.
        • Keiliss-Borok I.V.
        Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo.
        Transplantation. 1974; 17: 331-340
        • Uccelli A.
        • Moretta L.
        • Pistoia V.
        Mesenchymal stem cells in health and disease.
        Nat Rev Immunol. 2008; 8: 726-736
        • Vija L.
        • Farge D.
        • Gautier J.F.
        • et al.
        Mesenchymal stem cells: Stem cell therapy perspectives for type 1 diabetes.
        Diabetes Metab. 2009; 35: 85-93
        • Bianco P.
        • Robey P.G.
        • Simmons P.J.
        Mesenchymal stem cells: revisiting history, concepts, and assays.
        Cell Stem Cell. 2008; 2: 313-319
        • Prockop D.J.
        Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms.
        Mol Ther. 2009; 17: 939-946
        • Crisan M.
        • Yap S.
        • Casteilla L.
        • Andriolo G.
        • Lazzari L.
        • Péault B.
        A perivascular origin for mesenchymal stem cells in multiple human organs.
        Cell Stem Cell. 2008; 3: 301-313
        • Caplan A.I.
        Why are MSCs therapeutic? New data: new insight.
        J Pathol. 2009; 217: 318-324
        • Corselli M.
        • Chen C.W.
        • Crisan M.
        • et al.
        Perivascular ancestors of adult multipotent stem cells.
        Arterioscler Thromb Vasc Biol. 2010; 30: 1104-1109
        • Ankrum J.
        • Karp J.M.
        Mesenchymal stem cell therapy: two steps forward, one step back.
        Trends Mol Med. 2010; 16: 203-209
        • Evans M.J.
        • Kaufman M.H.
        Establishment in culture of pluripotential cells from mouse embryos.
        Nature. 1981; 292: 154-156
        • Thomson J.A.
        • Itskovitz-Eldor J.
        • Shapiro S.S.
        • et al.
        Embryonic stem cell lines derived from human blastocysts.
        Science. 1998; 282: 1145-1147
        • Boiani M.
        • Scholer H.R.
        Regulatory networks in embryo-derived pluripotent stem cells.
        Nat Rev Mol Cell Biol. 2005; 6: 872-884
        • Nichols J.
        • Zevnik B.
        • Anastassiadis K.
        • et al.
        Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4.
        Cell. 1998; 95: 379-391
        • Avilion A.A.
        • Nicolis S.K.
        • Pevny L.H.
        • Perez L.
        • Vivian N.
        • Lovell-Badge R.
        Multipotent cell lineages in early mouse development depend on SOX2 function.
        Genes Dev. 2003; 17: 126-140
        • Mitsui K.
        • Tokuzawa Y.
        • Itoh H.
        • et al.
        The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells.
        Cell. 2003; 113: 631-642
        • Chambers I.
        • Colby D.
        • Robertson M.
        • et al.
        Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells.
        Cell. 2003; 113: 643-655
        • Boyer L.A.
        • Lee T.I.
        • Cole M.F.
        • et al.
        Core transcriptional regulatory circuitry in human embryonic stem cells.
        Cell. 2005; 122: 947-956
        • Loh Y.H.
        • Wu Q.
        • Chew J.L.
        • et al.
        The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells.
        Nat Genet. 2006; 38: 431-440
        • Masui S.
        • Nakatake Y.
        • Toyooka Y.
        • et al.
        Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells.
        Nat Cell Biol. 2007; 9: 625-635
        • Fuhrmann G.
        • Chung A.C.
        • Jackson K.J.
        • et al.
        Mouse germline restriction of Oct4 expression by germ cell nuclear factor.
        Dev Cell. 2001; 1: 377-387
        • Gu P.
        • LeMenuet D.
        • Chung A.C.
        • Mancini M.
        • Wheeler D.A.
        • Cooney A.J.
        Orphan nuclear receptor GCNF is required for the repression of pluripotency genes during retinoic acid-induced embryonic stem cell differentiation.
        Mol Cell Biol. 2005; 25: 8507-8519
        • Gidekel S.
        • Pizov G.
        • Bergman Y.
        • Pikarsky E.
        Oct-3/4 is a dose-dependent oncogenic fate determinant.
        Cancer Cell. 2003; 4: 361-370
        • Blum B.
        • Benvenisty N.
        The tumorigenicity of human embryonic stem cells.
        Adv Cancer Res. 2008; 100: 133-158
        • Schuldiner M.
        • Itskovitz-Eldor J.
        • Benvenisty N.
        Selective ablation of human embryonic stem cells expressing a “suicide” gene.
        Stem Cells. 2003; 21: 257-265
        • Zwaka T.P.
        • Thomson J.A.
        Differentiation of human embryonic stem cells occurs through symmetric cell division.
        Stem Cells. 2005; 23: 146-149
        • Gurdon J.B.
        • Uehlinger V.
        “Fertile” intestine nuclei.
        Nature. 1966; 210: 1240-1241
        • Campbell K.H.
        • McWhir J.
        • Ritchie W.A.
        • Wilmut I.
        Sheep cloned by nuclear transfer from a cultured cell line.
        Nature. 1996; 380: 64-66
        • Takahashi K.
        • Yamanaka S.
        Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.
        Cell. 2006; 126: 663-676
        • Takahashi K.
        • Tanabe K.
        • Ohnuki M.
        • et al.
        Induction of pluripotent stem cells from adult human fibroblasts by defined factors.
        Cell. 2007; 131: 861-872
        • Jaenisch R.
        • Young R.
        Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming.
        Cell. 2008; 132: 567-582
        • Chin M.H.
        • Mason M.J.
        • Xie W.
        • et al.
        Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures.
        Cell Stem Cell. 2009; 5: 111-123
        • Stadtfeld M.
        • Apostolou E.
        • Akutsu H.
        • et al.
        Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells.
        Nature. 2010; 465: 175-181
        • Maherali N.
        • Sridharan R.
        • Xie W.
        • et al.
        Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution.
        Cell Stem Cell. 2007; 1: 55-70
        • Okita K.
        • Ichisaka T.
        • Yamanaka S.
        Generation of germline-competent induced pluripotent stem cells.
        Nature. 2007; 448: 313-317
        • Zhao X.Y.
        • Li W.
        • Lv Z.
        • et al.
        iPS cells produce viable mice through tetraploid complementation.
        Nature. 2009; 461: 86-90
        • Boland M.J.
        • Hazen J.L.
        • Nazor K.L.
        • et al.
        Adult mice generated from induced pluripotent stem cells.
        Nature. 2009; 461: 91-94
        • Kang L.
        • Wang J.
        • Zhang Y.
        • Gao S.
        iPS cells can support full-term development of tetraploid blastocyst-complemented embryos.
        Cell Stem Cell. 2009; 5: 135-138
        • Park I.H.
        • Zhao R.
        • West J.A.
        • et al.
        Reprogramming of human somatic cells to pluripotency with defined factors.
        Nature. 2008; 451: 141-146
        • Yu J.
        • Vodyanik M.A.
        • Smuga-Otto K.
        • et al.
        Induced pluripotent stem cell lines derived from human somatic cells.
        Science. 2007; 318: 1917-1920
        • Kiskinis E.
        • Eggan K.
        Progress toward the clinical application of patient-specific pluripotent stem cells.
        J Clin Invest. 2010; 120: 51-59
        • Dimos J.T.
        • Rodolfa K.T.
        • Niakan K.K.
        • et al.
        Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons.
        Science. 2008; 321: 1218-1221
        • Park I.H.
        • Arora N.
        • Huo H.
        • et al.
        Disease-specific induced pluripotent stem cells.
        Cell. 2008; 134: 877-886
        • Maehr R.
        • Chen S.
        • Snitow M.
        • et al.
        Generation of pluripotent stem cells from patients with type 1 diabetes.
        Proc Natl Acad Sci USA. 2009; 106: 15768-15773
        • Miura K.
        • Okada Y.
        • Aoi T.
        • et al.
        Variation in the safety of induced pluripotent stem cell lines.
        Nat Biotechnol. 2009; 27: 743-745
        • Knoepfler P.S.
        Myc goes global: new tricks for an old oncogene.
        Cancer Res. 2007; 67: 5061-5063
        • Rowland B.D.
        • Bernards R.
        • Peeper D.S.
        The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene.
        Nat Cell Biol. 2005; 7: 1074-1082
        • Yu J.
        • Hu K.
        • Smuga-Otto K.
        • Stewart R.
        • Slukvin II,
        • Thomson J.A.
        Human induced pluripotent stem cells free of vector and transgene sequences.
        Science. 2009; 324: 797-801
        • Woltjen K.
        • Michael I.P.
        • Mohseni P.
        • et al.
        piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells.
        Nature. 2009; 458: 766-770
        • Kim D.
        • Kim C.H.
        • Moon J.I.
        • et al.
        Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins.
        Cell Stem Cell. 2009; 4: 472-476
        • Silva J.
        • Nichols J.
        • Theunissen T.W.
        • et al.
        Nanog is the gateway to the pluripotent ground state.
        Cell. 2009; 138: 722-737
        • Huangfu D.
        • Maehr R.
        • Guo W.
        • et al.
        Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds.
        Nat Biotechnol. 2008; 26: 795-797
        • Mauritz C.
        • Schwanke K.
        • Reppel M.
        • et al.
        Generation of functional murine cardiac myocytes from induced pluripotent stem cells.
        Circulation. 2008; 118: 507-517
        • Zhang S.C.
        • Wernig M.
        • Duncan I.D.
        • Brüstle O.
        • Thomson J.A.
        In vitro differentiation of transplantable neural precursors from human embryonic stem cells.
        Nat Biotechnol. 2001; 19: 1129-1133
        • D’Amour K.A.
        • Bang A.G.
        • Eliazer S.
        • et al.
        Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells.
        Nat Biotechnol. 2006; 24: 1392-1401
        • Jiang J.
        • Au M.
        • Lu K.
        • et al.
        Generation of insulin-producing islet-like clusters from human embryonic stem cells.
        Stem Cells. 2007; 25: 1940-1953
        • Zhang D.
        • Jiang W.
        • Liu M.
        • et al.
        Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells.
        Cell Res. 2009; 19: 429-438
        • Spence J.R.
        • Wells J.M.
        Translational embryology: using embryonic principles to generate pancreatic endocrine cells from embryonic stem cells.
        Dev Dyn. 2007; 236: 3218-3227
        • Lumelsky N.
        • Blondel O.
        • Laeng P.
        • Velasco I.
        • Ravin R.
        • McKay R.
        Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets.
        Science. 2001; 292: 1389-1394
        • Lendahl U.
        • Zimmerman L.B.
        • McKay R.D.
        CNS stem cells express a new class of intermediate filament protein.
        Cell. 1990; 60: 585-595
        • Kroon E.
        • Martinson L.A.
        • Kadoya K.
        • et al.
        Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo.
        Nat Biotechnol. 2008; 26: 443-452
        • Tremblay K.D.
        • Hoodless P.A.
        • Bikoff E.K.
        • et al.
        Formation of the definitive endoderm in mouse is a Smad2-dependent process.
        Development. 2000; 127: 3079-3090
        • Vincent S.D.
        • Dunn N.R.
        • Hayashi S.
        • Norris D.P.
        • Robertson E.J.
        Cell fate decisions within the mouse organizer are governed by graded Nodal signals.
        Genes Dev. 2003; 17: 1646-1662
        • Borowiak M.
        • Maehr R.
        • Chen S.
        • et al.
        Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells.
        Cell Stem Cell. 2009; 4: 348-358
        • Hebrok M.
        • Kim S.K.
        • Melton D.A.
        Notochord repression of endodermal Sonic hedgehog permits pancreas development.
        Genes Dev. 1998; 12: 1705-1713
        • Hebrok M.
        • Kim S.K.
        • St J.B.
        • McMahon A.P.
        • Melton D.A.
        Regulation of pancreas development by hedgehog signaling.
        Development. 2000; 127: 4905-4913
        • Wells J.M.
        • Melton D.A.
        Vertebrate endoderm development.
        Annu Rev Cell Dev Biol. 1999; 15: 393-410
        • Martin M.
        • Gallego-Llamas J.
        • Ribes V.
        • et al.
        Dorsal pancreas agenesis in retinoic acid-deficient Raldh2 mutant mice.
        Dev Biol. 2005; 284: 399-411
        • Wang Z.
        • Dolle P.
        • Cardoso W.V.
        • Niederreither K.
        Retinoic acid regulates morphogenesis and patterning of posterior foregut derivatives.
        Dev Biol. 2006; 297: 433-445
        • Kumar M.
        • Jordan N.
        • Melton D.
        • Grapin-Botton A.
        Signals from lateral plate mesoderm instruct endoderm toward a pancreatic fate.
        Dev Biol. 2003; 259: 109-122
        • Apelqvist A.
        • Li H.
        • Sommer L.
        • et al.
        Notch signalling controls pancreatic cell differentiation.
        Nature. 1999; 400: 877-881
        • Hald J.
        • Hjorth J.P.
        • German M.S.
        • Madsen O.D.
        • Serup P.
        • Jensen J.
        Activated Notch1 prevents differentiation of pancreatic acinar cells and attenuate endocrine development.
        Dev Biol. 2003; 260: 426-437
        • Sanvito F.
        • Herrera P.L.
        • Huarte J.
        • et al.
        TGF-beta 1 influences the relative development of the exocrine and endocrine pancreas in vitro.
        Development. 1994; 120: 3451-3462
        • Miralles F.
        • Czernichow P.
        • Scharfmann R.
        Follistatin regulates the relative proportions of endocrine versus exocrine tissue during pancreatic development.
        Development. 1998; 125: 1017-1024
        • Castaing M.
        • Peault B.
        • Basmaciogullari A.
        • Casal I.
        • Czernichow P.
        • Scharfmann R.
        Blood glucose normalization upon transplantation of human embryonic pancreas into beta-cell-deficient SCID mice.
        Diabetologia. 2001; 44: 2066-2076