Advertisement

New therapies for the failing heart: trans-genes versus trans-cells

  • Vincenzo Lionetti
    Affiliations
    Sector of Medicine, Scuola Superiore Sant'Anna, Pisa, Italy

    Fondazione G. Monasterio Regione Toscana-CNR, Pisa, Italy
    Search for articles by this author
  • Fabio A. Recchia
    Correspondence
    Reprint requests: Fabio A Recchia, MD, PhD, Department of Physiology, New York Medical College, Valhalla, NY 10595
    Affiliations
    Sector of Medicine, Scuola Superiore Sant'Anna, Pisa, Italy

    Fondazione G. Monasterio Regione Toscana-CNR, Pisa, Italy

    Department of Physiology, New York Medical College, Valhalla, NY
    Search for articles by this author
      During the past 30 years, hundreds of pharmacological agents have been developed for the treatment of heart failure; yet few of them ultimately have been tested in patients. Such a disconcerting debacle has spurred the search for non pharmacological therapies, including those based on cardiac delivery of transgenes and stem cells. Cardiac gene therapy preceded stem cell therapy by approximately 10 years; however, both of them already have known an initial phase of enormous enthusiasm followed by moderate-to-strong skepticism, not necessarily justified. The aim of the present review is to discuss succinctly some key aspects of these 2 biological therapies and to argue that, after a phase of disillusionment, gene therapy for the failing heart likely will have the chance to regain the stage. In fact, discoveries in stem cell biology might revitalize gene therapy and, vice versa, gene therapy might potentiate synergistically the regenerative capacity of stem cells.

      Abbreviations:

      AAV1 (adeno-associated viral vectors), HF (heart failure), LV (left ventricular), SERCA2a (sarcoplasmic reticulum calcium ATPase), VEGF (vascular endothelial growth factor)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Packer M.
        The impossible task of developing a new treatment for heart failure.
        J Card Fail. 2002; 8: 193-196
        • Capecchi M.R.
        High efficiency transformation by direct microinjection of DNA into cultured mammalian cells.
        Cell. 1980; 22: 479-488
        • Miller D.A.
        • Jolly D.J.
        • Friedmann T.
        • Verma I.M.
        A transmissible retrovirus expressing human hypoxanthine phosphoribosyltransferase (HPRT): gene transfer into cells obtained from humans deficient in HPRT.
        Proc Natl Acad Sci U S A. 1983; 80: 4709-4713
        • Miller A.D.
        • Eckner R.J.
        • Jolly D.J.
        • Friedmann T.
        • Verma I.M.
        Expression of a retrovirus encoding human HPRT in mice.
        Science. 1984; 225: 630-632
        • Lin H.
        • Parmacek M.S.
        • Morle G.
        • Bolling S.
        • Leiden J.M.
        Expression of recombinant genes in myocardium in vivo after direct injection of DNA.
        Circulation. 1990; 82: 2217-2221
        • Stewart D.J.
        • Hilton J.D.
        • Arnold J.M.
        • et al.
        Angiogenic gene therapy in patients with nonrevascularizable ischemic heart disease: a phase 2 randomized, controlled trial of AdVEGF(121) (AdVEGF121) versus maximum medical treatment.
        Gene Ther. 2006; 13: 1503-1511
        • Yang Z.J.
        • Xu S.L.
        • Chen B.
        • et al.
        Hepatocyte growth factor plays a critical role in the regulation of cytokine production and induction of endothelial progenitor cell mobilization: a pilot gene therapy study in patients with coronary heart disease.
        Clin Exp Pharmacol Physiol. 2009; 36: 790-796
        • Stewart D.J.
        • Kutryk M.J.
        • Fitchett D.
        • et al.
        VEGF gene therapy fails to improve perfusion of ischemic myocardium in patients with advanced coronary disease: results of the NORTHERN trial.
        Mol Ther. 2009; 17: 1109-1115
        • Jackson K.A.
        • Majka S.M.
        • Wang H.
        • et al.
        Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells.
        J Clin Invest. 2001; 107: 1395-1402
        • Kocher A.A.
        • Schuster M.D.
        • Szaboles M.J.
        • et al.
        Neovascularization of ischemic myocardium by human bone-marrow derived angioblasts prevents cardiomyocyte apoptosis, reduces remodelling and improves cardiac function.
        Nat Med. 2001; 7: 430-436
        • Menasche P.
        • Hagege A.A.
        • Scorsin M.
        • et al.
        Myoblast transplantation for heart failure.
        Lancet. 2001; 357: 279-280
        • Orlic D.
        • Kajstura J.
        • Chimenti S.
        • et al.
        Bone marrow cells regenerate infarcted myocardium.
        Nature. 2001; 410: 701-705
        • Yoon P.D.
        • Kao R.L.
        • Magovern G.J.
        Myocardial regeneration. Transplanting satellite cells into damaged myocardium.
        Tex Heart Inst J. 1995; 22: 119-125
        • Bittner R.E.
        • Schöfer C.
        • Weipoltshammer K.
        • et al.
        Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice.
        Anat Embryol. 1999; 199: 391-396
        • Tomita S.
        • Li R.K.
        • Weisel R.D.
        • et al.
        Autologous transplantation of bone marrow cells improves damaged heart function.
        Circulation. 1999; 100: II247-II256
        • Liechty K.W.
        • MacKenzie T.C.
        • Shaaban A.F.
        • et al.
        Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep.
        Nat Med. 2000; 6: 1282-1286
        • Reinecke H.
        • Minami E.
        • Zhu W.Z.
        • Laflamme M.A.
        Cardiogenic differentiation and transdifferentiation of progenitor cells.
        Circ Res. 2008; 103: 1058-1071
        • Piepoli M.F.
        Transplantation of progenitor cells and regeneration of damaged myocardium: more facts or doubts? Insights from experimental and clinical studies.
        J Cardiovasc Med. 2009; 10: 624-634
        • Martin-Rendon E.
        • Brunskill S.
        • Doree C.
        • et al.
        Stem cell treatment for acute myocardial infarction.
        Cochrane Database Syst Rev. 2008; (CD006536)
        • Zhang S.N.
        • Sun A.J.
        • Ge J.B.
        • et al.
        Intracoronary autologous bone marrow stem cells transfer for patients with acute myocardial infarction: A meta-analysis of randomised controlled trials.
        Int J Cardiol. 2009; 136: 178-185
        • Schächinger V.
        • Assmus B.
        • Erbs S.
        • et al.
        Intracoronary infusion of bone marrow-derived mononuclear cells abrogates adverse left ventricular remodelling post-acute myocardial infarction: insights from the reinfusion of enriched progenitor cells and infarct remodelling in acute myocardial infarction (REPAIR-AMI) trial.
        Eur J Heart Fail. 2009; 11: 973-979
        • Murry C.E.
        • Soonpaa M.H.
        • Reinecke H.
        • Schleyer H.
        Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts.
        Nature. 2004; 428: 654-668
        • Menasché P.
        • Alfieri O.
        • Janssens S.
        • et al.
        The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation.
        Circulation. 2008; 117: 1189-1200
        • Smith R.R.
        • Barile L.
        • Cho H.C.
        • et al.
        Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens.
        Circulation. 2007; 115: 896-908
        • Tang X.L.
        • Rokosh G.
        • Sanganalmath S.K.
        • et al.
        Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction.
        Circulation. 2010; 121: 293-305
        • Hare J.M.
        • Traverse J.H.
        • Henry T.D.
        • et al.
        A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction.
        J Am Coll Cardiol. 2009; 54: 2277-2286
        • Madonna R.
        • De Caterina R.
        Adipose tissue: a new source for cardiovascular repair.
        J Cardiovasc Med. 2010; 11: 71-80
        • Ventura C.
        • Cantoni S.
        • Bianchi F.
        • et al.
        Hyaluronan mixed esters of butyric and retinoic Acid drive cardiac and endothelial fate in term placenta human mesenchymal stem cells and enhance cardiac repair in infarcted rat hearts.
        J Biol Chem. 2007; 282: 14243-14252
        • Vinge L.E.
        • Raake P.W.
        • Koch W.J.
        Gene therapy in heart failure.
        Circ Res. 2008; 102: 1458-1470
        • Byrne M.J.
        • Power J.M.
        • Preovolos A.
        • Mariani J.A.
        • Hajjar R.J.
        • Kaye D.M.
        Recirculating cardiac delivery of AAV2/1SERCA2a improves myocardial function in an experimental model of heart failure in large animals.
        Gene Ther. 2008; 15: 1550-1557
        • Wittköpper K.
        • Fabritz L.
        • Neef S.
        • et al.
        Constitutively active phosphatase inhibitor-1 improves cardiac contractility in young mice but is deleterious after catecholaminergic stress and with aging.
        J Clin Invest. 2010; 120: 617-626
        • Liu Q.
        • Chen X.
        • Macdonnell S.M.
        • et al.
        Protein kinase C{alpha}, but not PKC{beta} or PKC{gamma}, regulates contractility and heart failure susceptibility: implications for ruboxistaurin as a novel therapeutic approach.
        Circ Res. 2009; 105: 194-200
        • Jaski B.E.
        • Jessup M.L.
        • Mancini D.M.
        • et al.
        Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID Trial), a first-in-human phase 1/2 clinical trial.
        J Card Fail. 2009; 15: 171-181
        • Mangi A.A.
        • Noiseux N.
        • Kong D.
        • et al.
        Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts.
        Nat Med. 2003; 9: 1195-1201
        • Matsumoto R.
        • Omura T.
        • Yoshiyama M.
        • et al.
        Vascular endothelial growth factor-expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction.
        Arterioscler Thromb Vasc Biol. 2005; 25: 1168-1173
        • van Til N.P.
        • Stok M.
        • Aerts Kaya F.S.
        • et al.
        Lentiviral gene therapy of murine hematopoietic stem cells ameliorates the Pompe disease phenotype.
        Blood. 2010; 115: 5329-5337
        • Gnecchi M.
        • Zhang Z.
        • Ni A.
        • Dzau V.J.
        Paracrine mechanisms in adult stem cell signaling and therapy.
        Circ Res. 2008; 103: 1204-1219
        • Burchfield J.S.
        • Dimmeler S.
        Role of paracrine factors in stem and progenitor cell mediated cardiac repair and tissue fibrosis.
        Fibrogenesis Tissue Repair. 2008; 1: 4
        • Ferrarini M.
        • Arsic N.
        • Recchia F.A.
        • et al.
        Adeno-associated virus-mediated transduction of VEGF165 improves cardiac tissue viability and functional recovery after permanent coronary occlusion in conscious dogs.
        Circ Res. 2006; 98: 954-961
        • Zentilin L.
        • Puligadda U.
        • Lionetti V.
        • et al.
        Cardiomyocyte VEGFR-1 activation by VEGF-B induces compensatory hypertrophy and preserves cardiac function after myocardial infarction.
        FASEB J. 2010; 24: 1467-1478
        • Pepe M.
        • Mamdani M.
        • Zentilin L.
        • et al.
        Intramyocardial VEGF-B167 gene delivery delays the progression towards congestive failure in dogs with pacing-induced dilated cardiomyopathy.
        Circ Res. 2010; 106: 1893-1903
        • Everly M.J.
        Cardiac transplantation in the United States: an analysis of the UNOS registry.
        Clin Transpl. 2008; : 35-43
        • Gupta S.
        • Maitra R.
        • Young D.
        • Gupta A.
        • Sen S.
        Silencing the myotrophin gene by RNA interference leads to the regression of cardiac hypertrophy.
        Am J Physiol Heart Circ Physiol. 2009; 297: H627-H636
        • Suckau L.
        • Fechner H.
        • Chemaly E.
        • et al.
        Long-term cardiac-targeted RNA interference for the treatment of heart failure restores cardiac function and reduces pathological hypertrophy.
        Circulation. 2009; 119: 1241-1252
        • Ye Y.
        • Hu Z.
        • Lin Y.
        • Zhang C.
        • Perez-Polo J.R.
        Downregulation of microRNA-29 by antisense inhibitors and a PPAR-{gamma} agonist protects against myocardial ischaemia-reperfusion injury.
        Cardiovasc Res. 2010 Mar 13; ([Epub ahead of print])
        • Leor J.
        • Tuvia S.
        • Guetta V.
        • et al.
        Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in Swine.
        J Am Coll Cardiol. 2009; 54: 1014-1023
        • Lionetti V.
        • Cantoni S.
        • Cavallini C.
        • et al.
        Hyaluronan mixed esters of butyric and retinoic acid affording myocardial survival and repair without stem cell transplantation.
        J Biol Chem. 2010; 285: 9949-9961