Advertisement

Stem cell technology for the treatment of acute and chronic renal failure

Published:August 06, 2010DOI:https://doi.org/10.1016/j.trsl.2010.07.005
      Acute and chronic renal failure are disorders with high rates of morbidity and mortality. Current treatment is based upon conventional dialysis to provide volume regulation and small solute clearance. There is growing recognition that renal failure is a complex disease state requiring a multifactorial therapy to address the short-comings of the conventional monofactorial approach. Kidney transplantation remains the most effective treatment, however, organ availability lags far behind demand. Many key kidney functions including gluconeogenesis, ammoniagenesis, metabolism of glutathione, catabolism of important peptide hormones, growth factors, and cytokines critical to multiorgan homeostasis and immunomodulation are provided by renal tubule cells. Therefore, cell-based therapies are promising multifactorial treatment approaches. In this review, current stem cell technologies including adult stem cells, embryonic stem cells and induced pluripotent stem cells will be discussed as cell sources for the treatment of acute and chronic renal failure.

      Abbreviations:

      AKI (acute kidney injury), ARF (acute renal failure), BRECS (bioartificial renal epithelial cell system), CVVH (continuous venovenous hemofiltration), ERSD (end-stage renal disease), EP (endothelial progenitor), EPO (erythropoietin), ES (embryonic stem), iPS (induced pluripotent stem), MAPC (multipotent adult progenitor cell), MM (metanephric mesenchyme), MOF (multiple organ failure), MSC (mesenchymal stem cell), PEC (parietal epithelial cell), RAD (renal tubule assist device), SC (stem cell), UB (ureteric bud)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • United States Renal Data System
        USRDS 2009 annual data report: atlas of end-stage renal disease in the United States.
        National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD2009
        • Nigam S.
        • Lieberthal W.
        Acute renal failure. III. The role of growth factors in the process of renal regeneration and repair.
        Am J Physiol Renal Physiol. 2000; 279: F3-F11
        • Thadhani R.
        • Pascual M.
        • Bonventre J.V.
        Acute renal failure.
        N Engl J Med. 1996; 334: 1448-1460
        • Lieberthal W.
        • Nigam S.K.
        Acute renal failure. II. Experimental models of acute renal failure: imperfect but indispensable.
        Am J Physiol Renal Physiol. 2000; 278: F1-F12
        • Lieberthal W.
        • Nigam S.K.
        Acute renal failure. I. Relative importance of proximal vs. distal tubular injury.
        Am J Physiol. 1998; 275: F623-F631
        • Breen D.
        • Bihari D.
        Acute renal failure as a part of multiple organ failure: the slippery slope of critical illness.
        Kidney Int Suppl. 1998; 66: S25-S33
        • Humes H.D.
        Cell therapy: leveraging nature’s therapeutic potential.
        J Am Soc Nephrol. 2003; 14: 2211-2213
        • Grove J.E.
        • Bruscia E.
        • Krause D.S.
        Plasticity of bone marrow-derived stem cells.
        Stem Cells. 2004; 22: 487-500
        • Alison M.R.
        • Poulsom R.
        • Forbes S.
        • Wright N.A.
        An introduction to stem cells.
        J Pathol. 2002; 197: 419-423
        • Rosenthal N.
        Prometheus’s vulture and the stem-cell promise.
        N Engl J Med. 2003; 349: 267-274
        • Rippon H.J.
        • Bishop A.E.
        Embryonic stem cells.
        Cell Prolif. 2004; 37: 23-34
        • Drazen J.M.
        Legislative myopia on stem cells.
        N Engl J Med. 2003; 349: 300
        • Daley G.Q.
        Cloning and stem cells—handicapping the political and scientific debates.
        N Engl J Med. 2003; 349: 211-212
        • de Wert G.
        • Mummery C.
        Human embryonic stem cells: research, ethics and policy.
        Hum Reprod. 2003; 18: 672-682
        • Phimister E.G.
        • Drazen J.M.
        Two fillips for human embryonic stem cells.
        N Engl J Med. 2004; 350: 1351-1352
        • Saxen L.
        Organogenesis of the kidney.
        Cambridge University Press, Cambridge, UK1987
        • Al-Awqati Q.
        • Oliver J.A.
        Stem cells in the kidney.
        Kidney Int. 2002; 61: 387-395
        • Herzlinger D.
        • Koseki C.
        • Mikawa T.
        • al-Awqati Q.
        Metanephric mesenchyme contains multipotent stem cells whose fate is restricted after induction.
        Development. 1992; 114: 565-572
        • Oliver J.A.
        • Barasch J.
        • Yang J.
        • Herzlinger D.
        • Al-Awqati Q.
        Metanephric mesenchyme contains embryonic renal stem cells.
        Am J Physiol Renal Physiol. 2002; 283: F799-F809
        • Oliver J.A.
        • Maarouf O.
        • Cheema F.H.
        • Martens T.P.
        • Al-Awqati Q.
        The renal papilla is a niche for adult kidney stem cells.
        J Clin Invest. 2004; 114: 795-804
        • Sagrinati C.
        • Netti G.S.
        • Mazzinghi B.
        • et al.
        Isolation and characterization of multipotent progenitor cells from the Bowman’s capsule of adult human kidneys.
        J Am Soc Nephrol. 2006; 17: 2443-2456
        • Humphreys B.D.
        • Bonventre J.V.
        The contribution of adult stem cells to renal repair.
        Nephrol Ther. 2007; 3: 3-10
        • Bussolati B.
        • Camussi G.
        Stem cells in acute kidney injury.
        Contrib Nephrol. 2007; 156: 250-258
        • Romagnani P.
        Toward the identification of a “renopoietic system”?.
        Stem Cells. 2009; 27: 2247-2253
        • Little M.H.
        • Bertram J.F.
        Is there such a thing as a renal stem cell?.
        J Am Soc Nephrol. 2009; 20: 2112-2117
        • Safirstein R.
        Renal regeneration: reiterating a developmental paradigm.
        Kidney Int. 1999; 56: 1599-1600
        • Nony P.A.
        • Schnellmann R.G.
        Mechanisms of renal cell repair and regeneration after acute renal failure.
        J Pharmacol Exp Ther. 2003; 304: 905-912
        • Forbes S.J.
        • Vig P.
        • Poulsom R.
        • Wright N.A.
        • Alison M.R.
        Adult stem cell plasticity: new pathways of tissue regeneration become visible.
        Clin Sci (Lond). 2002; 103: 355-369
        • Anderson D.J.
        • Gage F.H.
        • Weissman I.L.
        Can stem cells cross lineage boundaries?.
        Nat Med. 2001; 7: 393-395
        • Weissman I.L.
        • Anderson D.J.
        • Gage F.
        Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations.
        Annu Rev Cell Dev Biol. 2001; 17: 387-403
        • Jiang Y.
        • Jahagirdar B.N.
        • Reinhardt R.L.
        • et al.
        Pluripotency of mesenchymal stem cells derived from adult marrow.
        Nature. 2002; 418: 41-49
        • Ratajczak M.Z.
        • Kucia M.
        • Majka M.
        • Reca R.
        • Ratajczak J.
        Heterogeneous populations of bone marrow stem cells—are we spotting on the same cells from the different angles?.
        Folia Histochem Cytobiol. 2004; 42: 139-146
        • Kale S.
        • Karihaloo A.
        • Clark P.R.
        • Kashgarian M.
        • Krause D.S.
        • Cantley L.G.
        Bone marrow stem cells contribute to repair of the ischemically injured renal tubule.
        J Clin Invest. 2003; 112: 42-49
        • Szczypka M.S.
        • Westover A.J.
        • Clouthier S.G.
        • Ferrara J.L.
        • Humes H.D.
        Rare incorporation of bone marrow-derived cells into kidney after folic acid-induced injury.
        Stem Cells. 2005; 23: 44-54
        • Gupta S.
        • Verfaillie C.
        • Chmielewski D.
        • Kim Y.
        • Rosenberg M.E.
        A role for extrarenal cells in the regeneration following acute renal failure.
        Kidney Int. 2002; 62: 1285-1290
        • Lange C.
        • Tögel F.
        • Ittrich H.
        • et al.
        Administered mesenchymal stem cells enhance recovery from ischemia/reperfusion-induced acute renal failure in rats.
        Kidney Int. 2005; 68: 1613-1617
        • Togel F.
        • Hu Z.
        • Weiss K.
        • Isaac J.
        • Lange C.
        • Westenfelder C.
        Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms.
        Am J Physiol Renal Physiol. 2005; 289: F31-F42
        • Togel F.
        • Weiss K.
        • Yang Y.
        • Hu Z.
        • Zhang P.
        • Westenfelder C.
        Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury.
        Am J Physiol Renal Physiol. 2007; 292: F1626-F1635
        • Phinney D.G.
        • Prockop D.J.
        Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views.
        Stem Cells. 2007; 25: 2896-2902
        • Bruno S.
        • Grange C.
        • Deregibus M.C.
        • et al.
        Mesenchymal stem cell-derived microvesicles protect against acute tubular injury.
        J Am Soc Nephrol. 2009; 20: 1053-1067
        • Camussi G.
        • Deregibus M.C.
        • Tetta C.
        Paracrine/endocrine mechanism of stem cells on kidney repair: role of microvesicle-mediated transfer of genetic information.
        Curr Opin Nephrol Hypertens. 2010; 19: 7-12
        • Giordano A.
        • Galderisi U.
        • Marino I.R.
        From the laboratory bench to the patient’s bedside: an update on clinical trials with mesenchymal stem cells.
        J Cell Physiol. 2007; 211: 27-35
        • Togel F.E.
        • Westenfelder C.
        Mesenchymal stem cells: a new therapeutic tool for AKI.
        Nat Rev Nephrol. 2010; 6: 179-183
        • Ezquer F.E.
        • Ezquer M.E.
        • Parrau D.B.
        • Carpio D.
        • Yañez A.J.
        • Conget P.A.
        Systemic administration of multipotent mesenchymal stromal cells reverts hyperglycemia and prevents nephropathy in type 1 diabetic mice.
        Biol Blood Marrow Transplant. 2008; 14: 631-640
        • Zhou H.
        • Tian H.M.
        • Long Y.
        • et al.
        Mesenchymal stem cells transplantation mildly ameliorates experimental diabetic nephropathy in rats.
        Chin Med J (Engl). 2009; 122: 2573-2579
        • Goligorsky M.S.
        • Kuo M.C.
        • Patschan D.
        • Verhaar M.C.
        Review article: endothelial progenitor cells in renal disease.
        Nephrology (Carlton). 2009; 14: 291-297
        • Steenhard B.M.
        • Isom K.S.
        • Cazcarro P.
        Integration of embryonic stem cells in metanephric kidney organ culture.
        J Am Soc Nephrol. 2005; 16: 1623-1631
        • Kobayashi T.
        • Tanaka H.
        • Kuwana H.
        • et al.
        Wnt4-transformed mouse embryonic stem cells differentiate into renal tubular cells.
        Biochem Biophys Res Commun. 2005; 336: 585-595
        • Kim D.
        • Dressler G.R.
        Nephrogenic factors promote differentiation of mouse embryonic stem cells into renal epithelia.
        J Am Soc Nephrol. 2005; 16: 3527-3534
        • Morizane R.
        • Monkawa T.
        • Itoh H.
        Differentiation of murine embryonic stem and induced pluripotent stem cells to renal lineage in vitro.
        Biochem Biophys Res Commun. 2009; 390: 1334-1339
        • Takahashi K.
        • Yamanaka S.
        Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.
        Cell. 2006; 126: 663-676
        • Okita K.
        • Ichisaka T.
        • Yamanaka S.
        Generation of germline-competent induced pluripotent stem cells.
        Nature. 2007; 448: 313-317
        • Esteban M.A.
        • Wang T.
        • Qin B.
        • et al.
        Vitamin C enhances the generation of mouse and human induced pluripotent stem cells.
        Cell Stem Cell. 2010; 6: 71-79
        • Feng Q.
        • Lu S.J.
        • Klimanskaya I.
        • et al.
        Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence.
        Stem Cells. 2010; 28: 704-712
        • Kim D.
        • Kim C.H.
        • Moon J.I.
        • et al.
        Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins.
        Cell Stem Cell. 2009; 4: 472-476
        • Yokoo T.
        • Kawamura T.
        • Kobayashi E.
        Kidney organogenesis and regeneration: a new era in the treatment of chronic renal failure?.
        Clin Exp Nephrol. 2008; 12: 326-331
        • Hammerman M.R.
        Growing new kidneys in situ.
        Clin Exp Nephrol. 2004; 8: 169-177
        • Woolf A.S.
        • Palmer S.J.
        • Snow M.L.
        • Fine L.G.
        Creation of a functioning chimeric mammalian kidney.
        Kidney Int. 1990; 38: 991-997
        • Rogers S.A.
        • Lowell J.A.
        • Hammerman N.A.
        • Hammerman M.R.
        Transplantation of developing metanephroi into adult rats.
        Kidney Int. 1998; 54: 27-37
        • Hammerman M.R.
        Tissue engineering the kidney.
        Kidney Int. 2003; 63: 1195-1204
        • Saito A.
        • Kazama J.J.
        • Iino N.
        • et al.
        Bioengineered implantation of megalin-expressing cells: a potential intracorporeal therapeutic model for uremic toxin protein clearance in renal failure.
        J Am Soc Nephrol. 2003; 14: 2025-2032
        • Orive G.
        • Hernández R.M.
        • Rodríguez Gascón A.
        • et al.
        History, challenges and perspectives of cell microencapsulation.
        Trends Biotechnol. 2004; 22: 87-92
        • Chang T.M.
        • Prakash S.
        Therapeutic uses of microencapsulated genetically engineered cells.
        Mol Med Today. 1998; 4: 221-227
        • Goldberg M.A.
        • Glass G.A.
        • Cunningham J.M.
        • Bunn H.F.
        The regulated expression of erythropoietin by two human hepatoma cell lines.
        Proc Natl Acad Sci U S A. 1987; 84: 7972-7976
        • Humes H.D.
        Implantable device and use thereof.
        Nephros Therapeutics, Inc., Ann Arbor, MI1998
        • Humes H.D.
        Bioartificial kidney for full renal replacement therapy.
        Semin Nephrol. 2000; 20: 71-82
        • Amiel G.E.
        • Yoo J.J.
        • Atala A.
        Renal therapy using tissue-engineered constructs and gene delivery.
        World J Urol. 2000; 18: 71-79
        • Lanza R.P.
        • Chung H.Y.
        • Yoo J.J.
        • et al.
        Generation of histocompatible tissues using nuclear transplantation.
        Nat Biotechnol. 2002; 20: 689-696
        • Koh C.J.
        • Atala A.
        Therapeutic cloning applications for organ transplantation.
        Transpl Immunol. 2004; 12: 193-201
        • Hochedlinger K.
        • Jaenisch R.
        Monoclonal mice generated by nuclear transfer from mature B and T donor cells.
        Nature. 2002; 415: 1035-1038
        • Meissner A.
        • Jaenisch R.
        Mammalian nuclear transfer.
        Dev Dyn. 2006; 235: 2460-2469
        • Humes H.D.
        • Cieslinski D.A.
        Interaction between growth factors and retinoic acid in the induction of kidney tubulogenesis in tissue culture.
        Exp Cell Res. 1992; 201: 8-15
        • Humes H.D.
        • Krauss J.C.
        • Cieslinski D.A.
        • Funke A.J.
        Tubulogenesis from isolated single cells of adult mammalian kidney: clonal analysis with a recombinant retrovirus.
        Am J Physiol. 1996; 271: F42-F49
        • MacKay S.M.
        • Funke A.J.
        • Buffington D.A.
        • Humes H.D.
        Tissue engineering of a bioartificial renal tubule.
        ASAIO J. 1998; 44: 179-183
        • Humes H.D.
        • MacKay S.M.
        • Funke A.J.
        • Buffington D.A.
        Tissue engineering of a bioartificial renal tubule assist device: in vitro transport and metabolic characteristics.
        Kidney Int. 1999; 55: 2502-2514
        • Nikolovski J.
        • Gulari E.
        • Humes H.D.
        Design engineering of a bioartificial renal tubule cell therapy device.
        Cell Transplant. 1999; 8: 351-364
        • Tiranathanagul K.
        • Eiam-Ong S.
        • Humes H.D.
        The future of renal support: high-flux dialysis to bioartificial kidneys.
        Crit Care Clin. 2005; 21: 379-394
        • Humes H.D.
        • Fissell W.H.
        • Weitzel W.F.
        The bioartificial kidney in the treatment of acute renal failure.
        Kidney Int Suppl. 2002; : 121-125
        • Humes H.D.
        • Buffington D.A.
        • MacKay S.M.
        • Funke A.J.
        • Weitzel W.F.
        Replacement of renal function in uremic animals with a tissue-engineered kidney.
        Nat Biotechnol. 1999; 17: 451-455
        • Humes H.D.
        • Fissell W.H.
        • Weitzel W.F.
        • et al.
        Metabolic replacement of kidney function in uremic animals with a bioartificial kidney containing human cells.
        Am J Kidney Dis. 2002; 39: 1078-1087
        • Humes H.D.
        • Buffington D.A.
        • Lou L.
        • et al.
        Cell therapy with a tissue-engineered kidney reduces the multiple-organ consequences of septic shock.
        Crit Care Med. 2003; 31: 2421-2428
        • Humes H.D.
        • Weitzel W.F.
        • Bartlett R.H.
        • et al.
        Initial clinical results of the bioartificial kidney containing human cells in ICU patients with acute renal failure.
        Kidney Int. 2004; 66: 1578-1588
        • Tumlin J.
        • Wali R.
        • Williams W.
        • et al.
        Efficacy and safety of renal tubule cell therapy for acute renal failure.
        J Am Soc Nephrol. 2008; 19: 1034-1040
        • Fahy G.M.
        • Wowk B.
        • Wu J.
        Cryopreservation of complex systems: the missing link in the regenerative medicine supply chain.
        Rejuvenation Res. 2006; 9: 279-291
        • Westover A.
        • Buffington H.
        • Humes H.D.
        Enhanced propagation of adult human renal epithelial cells.
        American Society of Nephrology, Washington, DC2009
        • Buffington D.
        • Hageman G.
        • Wang M.
        • et al.
        Design of a compact cryopreservable bioartificial renal cell system.
        American Society of Nephrology, Washington, DC2009
      1. Rojas A, Hageman G, Lou L, et al. Animal model of a wearable bioartificial kidney using peritoneal dialysis. ASAIO 2009 Annual Meeting; Baltimore, MD, 2009.

        • Song J.
        • Jung J.
        • Ding F.
        • et al.
        Uremic animal model of bioartifical renal cell system (BRECS) using continuous flow peritoneal dialysis-based extracorporeal circuit.
        American Society of Nephrology, Washington, DC2009
        • Gerecht-Nir S.
        • Itskovitz-Eldor J.
        Human embryonic stem cells: a potential source for cellular therapy.
        Am J Transplant. 2004; 4: 51-57
        • Drukker M.
        • Benvenisty N.
        The immunogenicity of human embryonic stem-derived cells.
        Trends Biotechnol. 2004; 22: 136-141