Advertisement

MicroRNAs in cardiac disease

  • Gerald W. Dorn II
    Correspondence
    Reprint requests: Gerald W. Dorn II, Washington University Center for Pharmacogenomics, 660 S. Euclid Avenue, Campus Box 8220, St. Louis, MO 63110
    Affiliations
    Center for Pharmacogenomics, Department of Medicine, Washington University School of Medicine, Saint Louis, Mo
    Search for articles by this author
Published:January 24, 2011DOI:https://doi.org/10.1016/j.trsl.2010.12.013
      MicroRNAs (miRs) are transcriptionally regulated single-strand RNAs that depress protein expression through posttranscriptional mRNA silencing. A host of recent studies have established essential roles for miRs in cardiac development and cardiac health. Regulated myocardial miR expression is observed in a variety of cardiac syndromes, and serum miR levels are being evaluated as disease biomarkers. The manipulation of miR levels in mouse hearts using genetic techniques or engineered miR mimetics and antagonists is elucidating the roles of specific cardiac miRs in cardiac development, and in the cardiac response to injury or stress, and heart disease. The ability to target multiple factors within a single biological response pathway by a given miR has prompted the development of small miR-targeting molecules that can be readily delivered and have sustained in vivo effects. These advances establish a foundation for novel diagnostics and new therapeutic approaches for myocardial infarction, cardiac hypertrophy, and heart failure.

      Abbreviations:

      Dgcr8 (DiGeorge syndrome critical region 8), LVAD (left ventricular assist device), MHC (myosin heavy chain), PTU (propyl-thiouracil), miR (microRNA), pre-miR (precursor miR), pri-miR (primary nuclear miR), RISC (RNA-induced silencing complex)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Olson E.N.
        Gene regulatory networks in the evolution and development of the heart.
        Science. 2006; 313: 1922-1927
        • Hill J.A.
        • Olson E.N.
        Cardiac plasticity.
        N Engl J Med. 2008; 358: 1370-1380
        • Dellavalle R.P.
        • Petersen R.
        • Lindquist S.
        Preferential deadenylation of Hsp70 mRNA plays a key role in regulating Hsp70 expression in Drosophila melanogaster.
        Mol Cell Biol. 1994; 14: 3646-3659
        • Elbashir S.M.
        • Lendeckel W.
        • Tuschl T.
        RNA interference is mediated by 21- and 22-nucleotide RNAs.
        Genes Dev. 2001; 15: 188-200
        • Elbashir S.M.
        • Harborth J.
        • Lendeckel W.
        • Yalcin A.
        • Weber K.
        • Tuschl T.
        Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells.
        Nature. 2001; 411: 494-498
        • Lee R.C.
        • Ambros V.
        An extensive class of small RNAs in Caenorhabditis elegans.
        Science. 2001; 294: 862-864
        • Lau N.C.
        • Lim L.P.
        • Weinstein E.G.
        • Bartel D.P.
        An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans.
        Science. 2001; 294: 858-862
        • Lagos-Quintana M.
        • Rauhut R.
        • Lendeckel W.
        • Tuschl T.
        Identification of novel genes coding for small expressed RNAs.
        Science. 2001; 294: 853-858
        • Hammond S.M.
        • Boettcher S.
        • Caudy A.A.
        • Kobayashi R.
        • Hannon G.J.
        Argonaute2, a link between genetic and biochemical analyses of RNAi.
        Science. 2001; 293: 1146-1150
        • Hutvagner G.
        • Zamore P.D.
        A microRNA in a multiple-turnover RNAi enzyme complex.
        Science. 2002; 297: 2056-2060
        • Zhao Y.
        • Samal E.
        • Srivastava D.
        Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis.
        Nature. 2005; 436: 214-220
        • van Rooij E.
        • Sutherland L.B.
        • Liu N.
        • et al.
        A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure.
        Proc Natl Acad Sci U S A. 2006; 103: 18255-18260
        • van Rooij E.
        • Sutherland L.B.
        • Qi X.
        • Richardson J.A.
        • Hill J.
        • Olson E.N.
        Control of stress-dependent cardiac growth and gene expression by a microRNA.
        Science. 2007; 316: 575-579
        • Liu N.
        • Olson E.N.
        MicroRNA regulatory networks in cardiovascular development.
        Dev Cell. 2010; 18: 510-525
        • Yi R.
        • Qin Y.
        • Macara I.G.
        • Cullen B.R.
        Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs.
        Genes Dev. 2003; 17: 3011-3016
        • Hutvagner G.
        • McLachlan J.
        • Pasquinelli A.E.
        • Balint E.
        • Tuschl T.
        • Zamore P.D.
        A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA.
        Science. 2001; 293: 834-838
        • Liu Q.
        • Rand T.A.
        • Kalidas S.
        • et al.
        R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway.
        Science. 2003; 301: 1921-1925
        • Rao P.K.
        • Toyama Y.
        • Chiang H.R.
        • et al.
        Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure.
        Circ Res. 2009; 105: 585-594
        • Bernstein E.
        • Kim S.Y.
        • Carmell M.A.
        • et al.
        Dicer is essential for mouse development.
        Nat Genet. 2003; 35: 215-217
        • Zhao Y.
        • Ransom J.F.
        • Li A.
        • et al.
        Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2.
        Cell. 2007; 129: 303-317
        • Chen J.F.
        • Murchison E.P.
        • Tang R.
        • et al.
        Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure.
        Proc Natl Acad Sci U S A. 2008; 105: 2111-2116
        • da Costa Martins P.A.
        • Bourajjaj M.
        • Gladka M.
        • et al.
        Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling.
        Circulation. 2008; 118: 1567-1576
        • Saxena A.
        • Tabin C.J.
        MiRNA-processing enzyme Dicer is necessary for cardiac outflow tract alignment and chamber septation.
        Proc Natl Acad Sci U S A. 2010; 107: 87-91
        • Rajewsky N.
        MicroRNA target predictions in animals.
        Nat Genet. 2006; (Suppl:S8–13): 38
        • Grimson A.
        • Farh K.K.
        • Johnston W.K.
        • Garrett-Engele P.
        • Lim L.P.
        • Bartel D.P.
        MicroRNA targeting specificity in mammals: determinants beyond seed pairing.
        Mol Cell. 2007; 27: 91-105
        • Bartel D.P.
        MicroRNAs: target recognition and regulatory functions.
        Cell. 2009; 136: 215-233
        • Shin C.
        • Nam J.W.
        • Farh K.K.
        • Chiang H.R.
        • Shkumatava A.
        • Bartel D.P.
        Expanding the microRNA targeting code: functional sites with centered pairing.
        Mol Cell. 2010; 38: 789-802
        • Bartel D.P.
        MicroRNAs: genomics, biogenesis, mechanism, and function.
        Cell. 2004; 116: 281-297
        • Lim L.P.
        • Lau N.C.
        • Garrett-Engele P.
        • et al.
        Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs.
        Nature. 2005; 433: 769-773
        • Stark A.
        • Brennecke J.
        • Bushati N.
        • Russell R.B.
        • Cohen S.M.
        Animal microRNAs confer robustness to gene expression and have a significant impact on 3’UTR evolution.
        Cell. 2005; 123: 1133-1146
        • Condorelli G.
        • Latronico M.V.
        • Dorn G.W.
        2nd. MicroRNAs in heart disease: putative novel therapeutic targets?.
        Eur Heart J. 2010; 31: 649-658
        • Dorn G.W.
        2nd. MicroRNAs: redefining mechanisms in cardiac disease.
        J Cardiovasc Pharmacol. 2010; 56: 589-595
        • Huse J.T.
        • Brennan C.
        • Hambardzumyan D.
        • et al.
        The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo.
        Genes Dev. 2009; 23: 1327-1337
        • Ambros V.
        The functions of animal microRNAs.
        Nature. 2004; 431: 350-355
        • Matkovich S.J.
        • Zhang Y.
        • Van Booven D.J.
        • Dorn G.W.
        2nd. Deep mRNA sequencing for in vivo functional analysis of cardiac transcriptional regulators: application to Galphaq.
        Circ Res. 2010; 106: 1459-1467
        • Matkovich S.J.
        • Van Booven D.J.
        • Eschenbacher W.H.
        • Dorn G.W.
        2nd. RISC RNA sequencing for context-specific identification of in vivo microRNA targets.
        Circ Res. 2011; 108: 12-26
        • Karginov F.V.
        • Conaco C.
        • Xuan Z.
        • et al.
        A biochemical approach to identifying microRNA targets.
        Proc Natl Acad Sci U S A. 2007; 104: 19291-19296
        • Chi S.W.
        • Zang J.B.
        • Mele A.
        • Darnell R.B.
        Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps.
        Nature. 2009; 460: 479-486
        • Baek D.
        • Villen J.
        • Shin C.
        • Camargo F.D.
        • Gygi S.P.
        • Bartel D.P.
        The impact of microRNAs on protein output.
        Nature. 2008; 455: 64-71
        • Toischer K.
        • Rokita A.G.
        • Unsold B.
        • et al.
        Differential cardiac remodeling in preload versus afterload.
        Circulation. 2010; 122: 993-1003
        • Thum T.
        • Galuppo P.
        • Wolf C.
        • et al.
        MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure.
        Circulation. 2007; 116: 258-267
        • Ikeda S.
        • Kong S.W.
        • Lu J.
        • et al.
        Altered microRNA expression in human heart disease.
        Physiol Genom. 2007; 31: 367-373
        • Sucharov C.
        • Bristow M.R.
        • Port J.D.
        MiRNA expression in the failing human heart: functional correlates.
        J Mol Cell Cardiol. 2008; 45: 185-192
        • Naga Prasad S.V.
        • Duan Z.H.
        • Gupta M.K.
        • et al.
        Unique microRNA profile in end-stage heart failure indicates alterations in specific cardiovascular signaling networks.
        J Biol Chem. 2009; 284: 27487-27499
        • Margulies K.B.
        • Matiwala S.
        • Cornejo C.
        • Olsen H.
        • Craven W.A.
        • Bednarik D.
        Mixed messages: transcription patterns in failing and recovering human myocardium.
        Circ Res. 2005; 96: 592-599
        • Matkovich S.J.
        • Van Booven D.J.
        • Youker K.A.
        • et al.
        Reciprocal regulation of myocardial microRNAs and messenger RNA in human cardiomyopathy and reversal of the microRNA signature by biomechanical support.
        Circulation. 2009; 119: 1263-1271
        • Mitchell P.S.
        • Parkin R.K.
        • Kroh E.M.
        • et al.
        Circulating microRNAs as stable blood-based markers for cancer detection.
        Proc Natl Acad Sci U S A. 2008; 105: 10513-10518
        • Hunter M.P.
        • Ismail N.
        • Zhang X.
        • et al.
        Detection of microRNA expression in human peripheral blood microvesicles.
        PLoS One. 2008; 3: e3694
        • Tijsen A.J.
        • Creemers E.E.
        • Moerland P.D.
        • et al.
        MiR423-5p as a circulating biomarker for heart failure.
        Circ Res. 2010; 106: 1035-1039
        • Kumarswamy R.
        • Anker S.D.
        • Thum T.
        MicroRNAs as circulating biomarkers for heart failure: questions about miR-423-5p.
        Circ Res. 2010; 106: e8-9
        • Taurino C.
        • Miller W.H.
        • McBride M.W.
        • et al.
        Gene expression profiling in whole blood of patients with coronary artery disease.
        Clin Sci (Lond). 2010; 119: 335-343
        • Voellenkle C.
        • van Rooij J.
        • Cappuzzello C.
        • et al.
        MicroRNA signatures in peripheral blood mononuclear cells of chronic heart failure patients.
        Physiol Genom. 2010; 42: 420-426
        • Fichtlscherer S.
        • De Rosa S.
        • Fox H.
        • et al.
        Circulating microRNAs in patients with coronary artery disease.
        Circ Res. 2010; 107: 677-684
        • Ai J.
        • Zhang R.
        • Li Y.
        • et al.
        Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction.
        Biochem Biophys Res Commun. 2010; 391: 73-77
        • Cheng Y.
        • Tan N.
        • Yang J.
        • et al.
        A translational study of circulating cell-free microRNA-1 in acute myocardial infarction.
        Clin Sci (Lond). 2010; 119: 87-95
        • Wang G.K.
        • Zhu J.Q.
        • Zhang J.T.
        • et al.
        Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans.
        Eur Heart J. 2010; 31: 659-666
        • Adachi T.
        • Nakanishi M.
        • Otsuka Y.
        • et al.
        Plasma microRNA 499 as a biomarker of acute myocardial infarction.
        Clin Chem. 2010; 56: 1183-1185
        • D’Alessandra Y.
        • Devanna P.
        • Limana F.
        • et al.
        Circulating microRNAs are new and sensitive biomarkers of myocardial infarction.
        Eur Heart J. 2010; 31: 2765-2773
        • Corsten M.F.
        • Dennert R.
        • Jochems S.
        • et al.
        Circulating microRNA-208b and microRNA-499 reflect myocardial damage in cardiovascular disease.
        Circ Cardiovasc Genet. 2010; 3: 499-506
        • van Rooij E.
        • Quiat D.
        • Johnson B.A.
        • et al.
        A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance.
        Dev Cell. 2009; 17: 662-673
        • Wilson K.D.
        • Hu S.
        • Venkatasubrahmanyam S.
        • et al.
        Dynamic microRNA expression programs during cardiac differentiation of human embryonic stem cells: role for miR-499.
        Circ Cardiovasc Genet. 2010; 3: 426-435
        • Nakao K.
        • Minobe W.
        • Roden R.
        • Bristow M.R.
        • Leinwand L.A.
        Myosin heavy chain gene expression in human heart failure.
        J Clin Invest. 1997; 100: 2362-2370
        • McGuigan K.
        • Phillips P.C.
        • Postlethwait J.H.
        Evolution of sarcomeric myosin heavy chain genes: evidence from fish.
        Mol Biol Evol. 2004; 21: 1042-1056
        • Desjardins P.R.
        • Burkman J.M.
        • Shrager J.B.
        • Allmond L.A.
        • Stedman H.H.
        Evolutionary implications of three novel members of the human sarcomeric myosin heavy chain gene family.
        Mol Biol Evol. 2002; 19: 375-393
        • Miyata S.
        • Minobe W.
        • Bristow M.R.
        • Leinwand L.A.
        Myosin heavy chain isoform expression in the failing and nonfailing human heart.
        Circ Res. 2000; 86: 386-390
        • Morkin E.
        Control of cardiac myosin heavy chain gene expression.
        Microsc Res Tech. 2000; 50: 522-531
        • Bell M.L.
        • Buvoli M.
        • Leinwand L.A.
        Uncoupling of expression of an intronic microRNA and its myosin host gene by exon skipping.
        Mol Cell Biol. 2010; 30: 1937-1945
        • Corsten M.F.
        • Dennert R.
        • Jochems S.
        • et al.
        Circulating microRNA-208b and microRNA-499 reflect myocardial damage in cardiovascular disease.
        Circ Cardiovasc Genet. 2010; 3: 499-506
        • Amrani N.
        • Sachs M.S.
        • Jacobson A.
        Early nonsense: mRNA decay solves a translational problem.
        Nat Rev Mol Cell Biol. 2006; 7: 415-425
        • Dorn G.W.
        2nd. The fuzzy logic of physiological cardiac hypertrophy.
        Hypertension. 2007; 49: 962-970
        • Wilson K.D.
        • Hu S.
        • Venkatasubrahmanyam S.
        • et al.
        Dynamic microRNA expression programs during cardiac differentiation of human embryonic stem cells: role for miR-499.
        Circ Cardiovasc Genet. 2010; 3: 426-435
        • Li Q.
        • Song X.W.
        • Zou J.
        • et al.
        Attenuation of microRNA-1 derepresses the cytoskeleton regulatory protein twinfilin-1 to provoke cardiac hypertrophy.
        J Cell Sci. 2010; 123: 2444-2452
        • Liu N.
        • Bezprozvannaya S.
        • Williams A.H.
        • et al.
        MicroRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart.
        Genes Dev. 2008; 22: 3242-3254
        • Krutzfeldt J.
        • Rajewsky N.
        • Braich R.
        • et al.
        Silencing of microRNAs in vivo with ”antagomirs“.
        Nature. 2005; 438: 685-689
        • Care A.
        • Catalucci D.
        • Felicetti F.
        • et al.
        MicroRNA-133 controls cardiac hypertrophy.
        Nat Med. 2007; 13: 613-618
        • Matkovich S.J.
        • Wang W.
        • Tu Y.
        • et al.
        MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts.
        Circ Res. 2010; 106: 166-175
        • Duisters R.F.
        • Tijsen A.J.
        • Schroen B.
        • et al.
        MiR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling.
        Circ Res. 2009; 104: 170-178
        • Dong S.
        • Cheng Y.
        • Yang J.
        • et al.
        MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction.
        J Biol Chem. 2009; 284: 29514-29525
        • Wang S.
        • Aurora A.B.
        • Johnson B.A.
        • et al.
        The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis.
        Dev Cell. 2008; 15: 261-271
        • Fish J.E.
        • Santoro M.M.
        • Morton S.U.
        • et al.
        MiR-126 regulates angiogenic signaling and vascular integrity.
        Dev Cell. 2008; 15: 272-284
        • Nicoli S.
        • Standley C.
        • Walker P.
        • Hurlstone A.
        • Fogarty K.E.
        • Lawson N.D.
        MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis.
        Nature. 2010; 464: 1196-1200
        • Hu S.
        • Huang M.
        • Li Z.
        • et al.
        MicroRNA-210 as a novel therapy for treatment of ischemic heart disease.
        Circulation. 2010; 122: S124-S131
        • Huang X.
        • Ding L.
        • Bennewith K.L.
        • et al.
        Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation.
        Mol Cell. 2009; 35: 856-867
        • Kim H.W.
        • Haider H.K.
        • Jiang S.
        • Ashraf M.
        Ischemic preconditioning augments survival of stem cells via miR-210 expression by targeting caspase-8-associated protein 2.
        J Biol Chem. 2009; 284: 33161-33168
        • Bonauer A.
        • Carmona G.
        • Iwasaki M.
        • et al.
        MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice.
        Science. 2009; 324: 1710-1713
        • van Rooij E.
        • Sutherland L.B.
        • Thatcher J.E.
        • et al.
        Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis.
        Proc Natl Acad Sci U S A. 2008; 105: 13027-13032
        • Thum T.
        • Gross C.
        • Fiedler J.
        • et al.
        MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts.
        Nature. 2008; 456: 980-984
        • Sayed D.
        • He M.
        • Hong C.
        • et al.
        MicroRNA-21 is a downstream effector of AKT that mediates its antiapoptotic effects via suppression of Fas ligand.
        J Biol Chem. 2010; 285: 20281-20290
        • Patrick D.M.
        • Montgomery R.L.
        • Qi X.
        • et al.
        Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice.
        J Clin Invest. 2010; 120: 3912-3916
        • Patrick D.M.
        • Montgomery R.L.
        • Qi X.
        • et al.
        Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice.
        J Clin Invest. 2010; 120: 3912-3916
        • Wang X.
        • Zhang X.
        • Ren X.P.
        • et al.
        MicroRNA-494 targeting both proapoptotic and antiapoptotic proteins protects against ischemia/reperfusion-induced cardiac injury.
        Circulation. 2010; 122: 1308-1318
        • Andl T.
        miRNAs: miracle or mirage?: the limes against the barbaric floods of leaky and undesired transcripts.
        Organogenesis. 2007; 3: 25-33