Advertisement

Involvement of microRNAs in lung cancer biology and therapy

  • Xi Liu
    Affiliations
    Department of Pharmacology and Toxicology, and the Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH
    Search for articles by this author
  • Lorenzo F. Sempere
    Affiliations
    Department of Medicine, and the Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH
    Search for articles by this author
  • Yongli Guo
    Affiliations
    Department of Pharmacology and Toxicology, and the Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH
    Search for articles by this author
  • Murray Korc
    Affiliations
    Department of Pharmacology and Toxicology, and the Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH

    Department of Medicine, and the Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH

    Dartmouth-Hitchcock Medical Center, Lebanon, NH
    Search for articles by this author
  • Sakari Kauppinen
    Affiliations
    University of Aalborg, Horsholm, Denmark

    Santaris Pharma, Horsholm, Denmark
    Search for articles by this author
  • Sarah J. Freemantle
    Affiliations
    Department of Pharmacology and Toxicology, and the Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH
    Search for articles by this author
  • Ethan Dmitrovsky
    Correspondence
    Reprint requests: Ethan Dmitrovsky, MD, Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
    Affiliations
    Department of Pharmacology and Toxicology, and the Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH

    Department of Medicine, and the Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH

    Dartmouth-Hitchcock Medical Center, Lebanon, NH
    Search for articles by this author
Published:February 07, 2011DOI:https://doi.org/10.1016/j.trsl.2011.01.001
      MicroRNAs (miRNAs) are a class of small RNAs that regulate gene expression. Expression profiles of specific miRNAs have improved cancer diagnosis and classification as well as provided prognostic information in many human cancers, including lung cancer. Tumor-suppressive and oncogenic miRNAs were uncovered in lung carcinogenesis. The biological functions of these miRNAs in lung cancer were validated recently in well-characterized cellular, murine transgenic as well as transplantable lung cancer models, and in human paired normal-malignant lung tissue banks and tissue arrays. Tumor-suppressive and oncogenic miRNAs that were identified in lung cancer will be reviewed here. Emphasis is placed on highlighting those functionally validated miRNAs that are not only biomarkers of lung carcinogenesis but also candidate pharmacologic targets. How these miRNA findings advance an understanding of lung cancer biology and how they could improve lung cancer therapy are discussed in this article.

      Abbreviations:

      ISH (in situ hybridization), LATS2 (large tumor suppressor 2), LNA (locked nucleic acid), miRNAs (microRNAs), NSCLC (non-small cell lung cancer), pre-miRNA (precursor miRNA), PPP2R2A (PP2A regulatory subunit B alpha isoform), pri-miRNAs (primary miRNAs), RISC (RNA-induced silencing complex), SCLC (small cell lung cancer)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lagos-Quintana M.
        • Rauhut R.
        • Lendeckel W.
        • Tuschl T.
        Identification of novel genes coding for small expressed RNAs.
        Science. 2001; 294: 853-858
        • Lau N.C.
        • Lim L.P.
        • Weinstein E.G.
        • Bartel D.P.
        An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans.
        Science. 2001; 294: 858-862
        • Lee R.C.
        • Ambros V.
        An extensive class of small RNAs in Caenorhabditis elegans.
        Science. 2001; 294: 862-864
        • Kim V.N.
        MicroRNA biogenesis: coordinated cropping and dicing.
        Nat Rev Mol Cell Biol. 2005; 6: 376-385
        • Yi R.
        • Qin Y.
        • Macara I.G.
        • Cullen B.R.
        Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs.
        Genes Dev. 2003; 17: 3011-3016
        • Mingot J.M.
        • Bohnsack M.T.
        • Jakle U.
        • Gorlich D.
        Exportin 7 defines a novel general nuclear export pathway.
        EMBO J. 2004; 23: 3227-3236
        • Lund E.
        • Guttinger S.
        • Calado A.
        • Dahlberg J.E.
        • Kutay U.
        Nuclear export of microRNA precursors.
        Science. 2004; 303: 95-98
        • Gregory R.I.
        • Chendrimada T.P.
        • Cooch N.
        • Shiekhattar R.
        Human RISC couples microRNA biogenesis and posttranscriptional gene silencing.
        Cell. 2005; 123: 631-640
        • Carthew R.W.
        • Sontheimer E.J.
        Origins and mechanisms of miRNAs and siRNAs.
        Cell. 2009; 136: 642-655
        • Bartel D.P.
        MicroRNAs: target recognition and regulatory functions.
        Cell. 2009; 136: 215-233
        • Ambros V.
        The functions of animal microRNAs.
        Nature. 2004; 431: 350-355
        • Selbach M.
        • Schwanhausser B.
        • Thierfelder N.
        • Fang Z.
        • Khanin R.
        • Rajewsky N.
        Widespread changes in protein synthesis induced by microRNAs.
        Nature. 2008; 455: 58-63
        • Baek D.
        • Villen J.
        • Shin C.
        • Camargo F.D.
        • Gygi S.P.
        • Bartel D.P.
        The impact of microRNAs on protein output.
        Nature. 2008; 455: 64-71
        • Liu X.
        • Sempere L.F.
        • Ouyang H.
        • et al.
        MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors.
        J Clin Invest. 2010; 120: 1298-1309
        • Liu C.J.
        • Tsai M.M.
        • Hung P.S.
        • et al.
        miR-31 ablates expression of the HIF regulatory factor FIH to activate the HIF pathway in head and neck carcinoma.
        Cancer Res. 2010; 70: 1635-1644
        • Valastyan S.
        • Chang A.
        • Benaich N.
        • Reinhardt F.
        • Weinberg R.A.
        Concurrent suppression of integrin alpha5, radixin, and RhoA phenocopies the effects of miR-31 on metastasis.
        Cancer Res. 2010; 70: 5147-5154
        • Valastyan S.
        • Reinhardt F.
        • Benaich N.
        • et al.
        A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis.
        Cell. 2009; 137: 1032-1046
        • Jemal A.
        • Siegel R.
        • Ward E.
        • Hao Y.
        • Xu J.
        • Thun M.J.
        Cancer statistics, 2009.
        CA Cancer J Clin. 2009; 59: 225-249
        • He L.
        • Hannon G.J.
        MicroRNAs: small RNAs with a big role in gene regulation.
        Nat Rev Genet. 2004; 5: 522-531
        • Karube Y.
        • Tanaka H.
        • Osada H.
        • et al.
        Reduced expression of Dicer associated with poor prognosis in lung cancer patients.
        Cancer Sci. 2005; 96: 111-115
        • Kumar M.S.
        • Lu J.
        • Mercer K.L.
        • Golub T.R.
        • Jacks T.
        Impaired microRNA processing enhances cellular transformation and tumorigenesis.
        Nat Genet. 2007; 39: 673-677
        • Esquela-Kerscher A.
        • Slack F.J.
        Oncomirs—microRNAs with a role in cancer.
        Nat Rev Cancer. 2006; 6: 259-269
        • Xing L.
        • Todd N.W.
        • Yu L.
        • Fang H.
        • Jiang F.
        Early detection of squamous cell lung cancer in sputum by a panel of microRNA markers.
        Mod Pathol. 2010; 23: 1157-1164
        • Yu L.
        • Todd N.W.
        • Xing L.
        • et al.
        Early detection of lung adenocarcinoma in sputum by a panel of microRNA markers.
        Int J Cancer. 2010; 127: 2870-2878
        • Xie Y.
        • Todd N.W.
        • Liu Z.
        • et al.
        Altered miRNA expression in sputum for diagnosis of non-small cell lung cancer.
        Lung Cancer. 2010; 67: 170-176
        • Yu S.L.
        • Chen H.Y.
        • Chang G.C.
        • et al.
        MicroRNA signature predicts survival and relapse in lung cancer.
        Cancer Cell. 2008; 13: 48-57
        • Landi M.T.
        • Zhao Y.
        • Rotunno M.
        • et al.
        MicroRNA expression differentiates histology and predicts survival of lung cancer.
        Clin Cancer Res. 2010; 16: 430-441
        • Hu Z.
        • Chen X.
        • Zhao Y.
        • et al.
        Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer.
        J Clin Oncol. 2010; 28: 1721-1726
        • Yanaihara N.
        • Caplen N.
        • Bowman E.
        • et al.
        Unique microRNA molecular profiles in lung cancer diagnosis and prognosis.
        Cancer Cell. 2006; 9: 189-198
        • Patnaik S.K.
        • Kannisto E.
        • Knudsen S.
        • Yendamuri S.
        Evaluation of microRNA expression profiles that may predict recurrence of localized stage I non-small cell lung cancer after surgical resection.
        Cancer Res. 2010; 70: 36-45
        • Ranade A.R.
        • Cherba D.
        • Sridhar S.
        • et al.
        MicroRNA 92a-2∗: a biomarker predictive for chemoresistance and prognostic for survival in patients with small cell lung cancer.
        J Thorac Oncol. 2010; 5: 1273-1278
        • Wang X.C.
        • Tian L.L.
        • Wu H.L.
        • et al.
        Expression of miRNA-130a in non-small cell lung cancer.
        Am J Med Sci. 2010; 5: 385-388
      1. Silva J, Garcia V, Zaballos A, et al. Vesicle-related microRNAs in plasma of NSCLC patients and correlation with survival. Eur Respir J. In press.

        • Corsten M.F.
        • Miranda R.
        • Kasmieh R.
        • Krichevsky A.M.
        • Weissleder R.
        • Shah K.
        MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas.
        Cancer Res. 2007; 67: 8994-9000
        • Asangani I.A.
        • Rasheed S.A.
        • Nikolova D.A.
        • et al.
        MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer.
        Oncogene. 2008; 27: 2128-2136
        • Wang P.
        • Zou F.
        • Zhang X.
        • et al.
        MicroRNA-21 negatively regulates Cdc25A and cell cycle progression in colon cancer cells.
        Cancer Res. 2009; 69: 8157-8165
        • Ribas J.
        • Ni X.
        • Haffner M.
        • et al.
        MiR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth.
        Cancer Res. 2009; 69: 7165-7169
        • Seike M.
        • Goto A.
        • Okano T.
        • et al.
        MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers.
        Proc Natl Acad Sci U S A. 2009; 106: 12085-12090
        • Zhu S.
        • Wu H.
        • Wu F.
        • Nie D.
        • Sheng S.
        • Mo Y.Y.
        MicroRNA-21 targets tumor suppressor genes in invasion and metastasis.
        Cell Res. 2008; 18: 350-359
        • Hatley M.E.
        • Patrick D.M.
        • Garcia M.R.
        • et al.
        Modulation of K-Ras-dependent lung tumorigenesis by microRNA-21.
        Cancer Cell. 2010; 18: 282-293
        • Lu Z.
        • Liu M.
        • Stribinskis V.
        • et al.
        MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene.
        Oncogene. 2008; 27: 4373-4379
        • Ma Y.
        • Fiering S.
        • Black C.
        • et al.
        Transgenic cyclin E triggers dysplasia and multiple pulmonary adenocarcinomas.
        Proc Natl Acad Sci U S A. 2007; 104: 4089-4094
        • Inamura K.
        • Togashi Y.
        • Nomura K.
        • et al.
        let-7 microRNA expression is reduced in bronchioloalveolar carcinoma, a non-invasive carcinoma, and is not correlated with prognosis.
        Lung Cancer. 2007; 58: 392-396
        • Takamizawa J.
        • Konishi H.
        • Yanagisawa K.
        • et al.
        Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival.
        Cancer Res. 2004; 64: 3753-3756
        • Raponi M.
        • Dossey L.
        • Jatkoe T.
        • et al.
        MicroRNA classifiers for predicting prognosis of squamous cell lung cancer.
        Cancer Res. 2009; 69: 5776-5783
        • Gallardo E.
        • Navarro A.
        • Vinolas N.
        • et al.
        MiR-34a as a prognostic marker of relapse in surgically resected non-small-cell lung cancer.
        Carcinogenesis. 2009; 30: 1903-1909
        • Lodygin D.
        • Tarasov V.
        • Epanchintsev A.
        • et al.
        Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer.
        Cell Cycle. 2008; 7: 2591-2600
        • He L.
        • Thomson J.M.
        • Hemann M.T.
        • et al.
        A microRNA polycistron as a potential human oncogene.
        Nature. 2005; 435: 828-833
        • Chang T.C.
        • Yu D.
        • Lee Y.S.
        • et al.
        Widespread microRNA repression by Myc contributes to tumorigenesis.
        Nat Genet. 2008; 40: 43-50
        • Corney D.C.
        • Flesken-Nikitin A.
        • Godwin A.K.
        • Wang W.
        • Nikitin A.Y.
        MicroRNA-34b and microRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth.
        Cancer Res. 2007; 67: 8433-8438
        • Welch C.
        • Chen Y.
        • Stallings R.L.
        MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells.
        Oncogene. 2007; 26: 5017-5022
        • Tazawa H.
        • Tsuchiya N.
        • Izumiya M.
        • Nakagama H.
        Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells.
        Proc Natl Acad Sci U S A. 2007; 104: 15472-15477
        • Bommer G.T.
        • Gerin I.
        • Feng Y.
        • et al.
        P53-mediated activation of miRNA34 candidate tumor-suppressor genes.
        Curr Biol. 2007; 17: 1298-1307
        • Zenz T.
        • Mohr J.
        • Eldering E.
        • et al.
        MiR-34a as part of the resistance network in chronic lymphocytic leukemia.
        Blood. 2009; 113: 3801-3808
        • Fujita Y.
        • Kojima K.
        • Hamada N.
        • et al.
        Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells.
        Biochem Biophys Res Commun. 2008; 377: 114-119
        • Sun F.
        • Fu H.
        • Liu Q.
        • et al.
        Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest.
        FEBS Lett. 2008; 582: 1564-1568
        • He L.
        • He X.
        • Lim L.P.
        • et al.
        A microRNA component of the p53 tumour suppressor network.
        Nature. 2007; 447: 1130-1134
        • Kong Y.W.
        • Cannell I.G.
        • de Moor C.H.
        • et al.
        The mechanism of micro-RNA-mediated translation repression is determined by the promoter of the target gene.
        Proc Natl Acad Sci U S A. 2008; 105: 8866-8871
        • Leucci E.
        • Cocco M.
        • Onnis A.
        • et al.
        MYC translocation-negative classical Burkitt lymphoma cases: an alternative pathogenetic mechanism involving miRNA deregulation.
        J Pathol. 2008; 216: 440-450
        • Pigazzi M.
        • Manara E.
        • Baron E.
        • Basso G.
        MiR-34b targets cyclic AMP-responsive element binding protein in acute myeloid leukemia.
        Cancer Res. 2009; 69: 2471-2478
        • Yamakuchi M.
        • Ferlito M.
        • Lowenstein C.J.
        MiR-34a repression of SIRT1 regulates apoptosis.
        Proc Natl Acad Sci U S A. 2008; 105: 13421-13426
        • Liu X.
        • Sempere L.F.
        • Galimberti F.
        • et al.
        Uncovering growth-suppressive MicroRNAs in lung cancer.
        Clin Cancer Res. 2009; 15: 1177-1183
        • Calin G.A.
        • Sevignani C.
        • Dumitru C.D.
        • et al.
        Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers.
        Proc Natl Acad Sci U S A. 2004; 101: 2999-3004
        • Lee Y.S.
        • Dutta A.
        The tumor suppressor microRNA let-7 represses the HMGA2 oncogene.
        Genes Dev. 2007; 21: 1025-1030
        • Johnson S.M.
        • Grosshans H.
        • Shingara J.
        • et al.
        RAS is regulated by the let-7 microRNA family.
        Cell. 2005; 120: 635-647
        • Hebert C.
        • Norris K.
        • Scheper M.A.
        • Nikitakis N.
        • Sauk J.J.
        High mobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma.
        Mol Cancer. 2007; 6: 5
        • Koscianska E.
        • Baev V.
        • Skreka K.
        • et al.
        Prediction and preliminary validation of oncogene regulation by miRNAs.
        BMC Mol Biol. 2007; 8: 79
        • Johnson C.D.
        • Esquela-Kerscher A.
        • Stefani G.
        • et al.
        The let-7 microRNA represses cell proliferation pathways in human cells.
        Cancer Res. 2007; 67: 7713-7722
        • Elmen J.
        • Lindow M.
        • Silahtaroglu A.
        • et al.
        Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver.
        Nucleic Acids Res. 2008; 36: 1153-1162
        • Elmen J.
        • Lindow M.
        • Schutz S.
        • et al.
        LNA-mediated microRNA silencing in non-human primates.
        Nature. 2008; 452: 896-899
        • Krutzfeldt J.
        • Rajewsky N.
        • Braich R.
        • et al.
        Silencing of microRNAs in vivo with ‘antagomirs’.
        Nature. 2005; 438: 685-689
        • Ma L.
        • Reinhardt F.
        • Pan E.
        • et al.
        Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model.
        Nat Biotechnol. 2010; 28: 341-347
        • Wiggins J.F.
        • Ruffino L.
        • Kelnar K.
        • et al.
        Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34.
        Cancer Res. 2010; 70: 5923-5930
        • Trang P.
        • Medina P.P.
        • Wiggins J.F.
        • et al.
        Regression of murine lung tumors by the let-7 microRNA.
        Oncogene. 2010; 29: 1580-1587
        • Lewis B.P.
        • Shih I.H.
        • Jones-Rhoades M.W.
        • Bartel D.P.
        • Burge C.B.
        Prediction of mammalian microRNA targets.
        Cell. 2003; 115: 787-798
        • Lewis B.P.
        • Burge C.B.
        • Bartel D.P.
        Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets.
        Cell. 2005; 120: 15-20
        • Sempere L.F.
        • Preis M.
        • Yezefski T.
        • et al.
        Fluorescence-based codetection with protein markers reveals distinct cellular compartments for altered microRNA expression in solid tumors.
        Clin Cancer Res. 2010; 16: 4246-4255
        • Sempere L.F.
        • Kauppinen S.
        Translational implications of microRNAs in clinical diagnostics and therapeutics.
        in: Bradshaw R.A. Dennis E.A. Handbook of cell signaling. 2nd ed. Academic Press, Oxford, UK2009: 2965-2981