Advertisement

MicroRNAs and liver disease

  • Thomas A. Kerr
    Affiliations
    Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Mo
    Search for articles by this author
  • Kevin M. Korenblat
    Affiliations
    Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Mo
    Search for articles by this author
  • Nicholas O. Davidson
    Correspondence
    Reprint requests: Dr. Nicholas O. Davidson, Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8124, St. Louis, MO 63110
    Affiliations
    Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Mo
    Search for articles by this author
Published:February 03, 2011DOI:https://doi.org/10.1016/j.trsl.2011.01.008
      Posttranscriptional regulation of gene expression is now recognized as an important contributor to disease pathogenesis, whose mechanisms include alterations in the function of stability and translational elements within both coding and noncoding regions of messenger RNA. A major component in this regulatory paradigm is the binding both to RNA stability as well as to translational control elements by microRNAs (miRNAs). miRNAs are noncoding endogenously transcribed RNAs that undergo a well-characterized series of processing steps that generate short single-stranded (∼20–22) RNA fragments that bind to complementary regions within a range of targets and in turn lead to mRNA degradation or attenuated translation as a result of trafficking to processing bodies. This article will highlight selected advances in the role of miRNAs in liver disease including nonalcoholic fatty liver disease, viral hepatitis, and hepatocellular carcinoma and will briefly discuss the utility of miRNAs as biomarkers of liver injury and neoplasia.

      Abbreviations:

      ADAM17 (A disintegrin and metalloprotease 17), ALT (alanine aminotransferase), ASO (antisense oligonucleotide), aST (aspartate aminotransferase), FAS (fatty acid synthase), HMG-CoA (3-hydroxy-3-methyl-glutaryl-CoA), HCC (hepatocellular carcinoma), HCV (hepatitis C virus), HO-1 (heme oxygenase-1), IRES (internal ribosomal entry site), LNA (locked nucleic acid), miRNA (microRNA), MRE (miRNA recognition element), mTOR (mammalian target of rapamycin), NAFLD (nonalcoholic fatty liver disease), NASH (non-alcoholic steatohepatitis), NCR (noncoding region), PCR (polymerase chain reaction), RISC (RNA-induced silencing complex), RNAi (RNA interference), RT-PCR (reverse-transcription PCR), SNP (single nucleotide polymorphism), SREBP-1c (sterol regulatory element binding protein 1-c), UTR (untranslated region)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fire A.
        • Xu S.
        • Montgomery M.K.
        • et al.
        Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.
        Nature. 1998; 391: 806-811
        • Bartel D.P.
        MicroRNAs: genomics, biogenesis, mechanism, and function.
        Cell. 2004; 116: 281-297
        • Krutzfeldt J.
        • Stoffel M.
        MicroRNAs: a new class of regulatory genes affecting metabolism.
        Cell Metab. 2006; 4: 9-12
        • Lu L.F.
        • Liston A.
        MicroRNA in the immune system, microRNA as an immune system.
        Immunology. 2009; 127: 291-298
        • Kawamata T.
        • Tomari Y.
        Making RISC.
        Trends Biochem Sci. 2010; 35: 368-376
        • Ding L.
        • Han M.
        GW182 family proteins are crucial for microRNA-mediated gene silencing.
        Trends Cell Biol. 2007; 17: 411-416
        • Lee R.C.
        • Feinbaum R.L.
        • Ambros V.
        • The C.
        elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.
        Cell. 1993; 75: 843-854
        • Griffiths-Jones S.
        The microRNA registry.
        Nucleic Acids Res. 2004; 32: D109-D111
        • Liu C.G.
        • Calin G.A.
        • Volinia S.
        • Croce C.M.
        MicroRNA expression profiling using microarrays.
        Nat Protoc. 2008; 3: 563-578
        • Thomas M.
        • Lieberman J.
        • Lal A.
        Desperately seeking microRNA targets.
        Nat Struct Mol Biol. 2010; 17: 1169-1174
        • Krutzfeldt J.
        • Rajewsky N.
        • Braich R.
        • et al.
        Silencing of microRNAs in vivo with “antagomirs.”.
        Nature. 2005; 438: 685-689
        • Esau C.
        • Davis S.
        • Murray S.F.
        • et al.
        miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting.
        Cell Metab. 2006; 3: 87-98
        • Chang J.
        • Nicolas E.
        • Marks D.
        • et al.
        miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1.
        RNA Biol. 2004; 1: 106-113
        • Girard M.
        • Jacquemin E.
        • Munnich A.
        • Lyonnet S.
        • Henrion-Caude A.
        miR-122, a paradigm for the role of microRNAs in the liver.
        J Hepatol. 2008; 48: 648-656
        • Elmen J.
        • Lindow M.
        • Silahtaroglu A.
        • et al.
        Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver.
        Nucleic Acids Res. 2008; 36: 1153-1162
        • Cheung O.
        • Puri P.
        • Eicken C.
        • et al.
        Nonalcoholic steatohepatitis is associated with altered hepatic microRNA expression.
        Hepatology. 2008; 48: 1810-1820
        • Gatfield D.
        • Le Martelot G.
        • Vejnar C.E.
        • et al.
        Integration of microRNA miR-122 in hepatic circadian gene expression.
        Genes Dev. 2009; 23: 1313-1326
        • Song K.H.
        • Li T.
        • Owsley E.
        • Chiang J.Y.
        A putative role of microRNA in regulation of cholesterol 7alpha-hydroxylase expression in human hepatocytes.
        J Lipid Res. 2010; 51: 2223-2233
        • Baker D.M.
        • Wang S.L.
        • Bell D.J.
        • Drevon C.A.
        • Davis R.A.
        One or more labile proteins regulate the stability of chimeric mRNAs containing the 3′-untranslated region of cholesterol-7alpha-hydroxylase mRNA.
        J Biol Chem. 2000; 275: 19985-19991
        • Nakanishi N.
        • Nakagawa Y.
        • Tokushige N.
        • et al.
        The up-regulation of microRNA-335 is associated with lipid metabolism in liver and white adipose tissue of genetically obese mice.
        Biochem Biophys Res Commun. 2009; 385: 492-496
        • Iliopoulos D.
        • Drosatos K.
        • Hiyama Y.
        • Goldberg I.J.
        • Zannis V.I.
        MicroRNA-370 controls the expression of microRNA-122 and Cpt1alpha and affects lipid metabolism.
        J Lipid Res. 2010; 51: 1513-1523
        • Najafi-Shoushtari S.H.
        • Kristo F.
        • Li Y.
        • et al.
        MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis.
        Science. 2010; 328: 1566-1569
        • Gerin I.
        • Clerbaux L.A.
        • Haumont O.
        • et al.
        Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation.
        J Biol Chem. 2010; 285: 33652-33661
        • Marquart T.J.
        • Allen R.M.
        • Ory D.S.
        • Baldan A.
        miR-33 links SREBP-2 induction to repression of sterol transporters.
        Proc Natl Acad Sci U S A. 2010; 107: 12228-12232
        • Jopling C.L.
        • Yi M.
        • Lancaster A.M.
        • Lemon S.M.
        • Sarnow P.
        Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA.
        Science. 2005; 309: 1577-1581
        • Jopling C.L.
        • Schutz S.
        • Sarnow P.
        Position-dependent function for a tandem microRNA miR-122-binding site located in the hepatitis C virus RNA genome.
        Cell Host Microbe. 2008; 4: 77-85
        • Jangra R.K.
        • Yi M.
        • Lemon S.M.
        Regulation of hepatitis C virus translation and infectious virus production by the microRNA miR-122.
        J Virol. 2010; 84: 6615-6625
        • Marquez R.T.
        • Bandyopadhyay S.
        • Wendlandt E.B.
        • et al.
        Correlation between microRNA expression levels and clinical parameters associated with chronic hepatitis C viral infection in humans.
        Lab Invest. 2010; 90: 1727-1736
        • Lanford R.E.
        • Hildebrandt-Eriksen E.S.
        • Petri A.
        • et al.
        Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection.
        Science. 2010; 327: 198-201
        • Young D.D.
        • Connelly C.M.
        • Grohmann C.
        • Deiters A.
        Small molecule modifiers of microRNA miR-122 function for the treatment of hepatitis C virus infection and hepatocellular carcinoma.
        J Am Chem Soc. 2010; 132: 7976-7981
        • Murakami Y.
        • Aly H.H.
        • Tajima A.
        • Inoue I.
        • Shimotohno K.
        Regulation of the hepatitis C virus genome replication by miR-199a.
        J Hepatol. 2009; 50: 453-460
        • Hou W.
        • Tian Q.
        • Zheng J.
        • Bonkovsky H.L.
        MicroRNA-196 represses Bach1 protein and hepatitis C virus gene expression in human hepatoma cells expressing hepatitis C viral proteins.
        Hepatology. 2010; 51: 1494-1504
        • Huang J.
        • Wang Y.
        • Guo Y.
        • Sun S.
        Down-regulated microRNA-152 induces aberrant DNA methylation in hepatitis B virus-related hepatocellular carcinoma by targeting DNA methyltransferase 1.
        Hepatology. 2010; 52: 60-70
        • Murakami Y.
        • Yasuda T.
        • Saigo K.
        • et al.
        Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues.
        Oncogene. 2006; 25: 2537-2545
        • Kutay H.
        • Bai S.
        • Datta J.
        • et al.
        Downregulation of miR-122 in the rodent and human hepatocellular carcinomas.
        J Cell Biochem. 2006; 99: 671-678
        • Gramantieri L.
        • Ferracin M.
        • Fornari F.
        • et al.
        Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma.
        Cancer Res. 2007; 67: 6092-6099
        • Tsai W.C.
        • Hsu P.W.
        • Lai T.C.
        • et al.
        MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma.
        Hepatology. 2009; 49: 1571-1582
        • Pineau P.
        • Volinia S.
        • McJunkin K.
        • et al.
        miR-221 overexpression contributes to liver tumorigenesis.
        Proc Natl Acad Sci U S A. 2010; 107: 264-269
        • Huang Y.S.
        • Dai Y.
        • Yu X.F.
        • et al.
        Microarray analysis of microRNA expression in hepatocellular carcinoma and non-tumorous tissues without viral hepatitis.
        J Gastroenterol Hepatol. 2008; 23: 87-94
        • Ye Q.H.
        • Qin L.X.
        • Forgues M.
        • et al.
        Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning.
        Nat Med. 2003; 9: 416-423
        • Ma S.
        • Tang K.H.
        • Chan Y.P.
        • et al.
        miR-130b promotes CD133(+) liver tumor-initiating cell growth and self-renewal via tumor protein 53-induced nuclear protein 1.
        Cell Stem Cell. 2010; 7: 694-707
        • Li W.
        • Xie L.
        • He X.
        • et al.
        Diagnostic and prognostic implications of microRNAs in human hepatocellular carcinoma.
        Int J Cancer. 2008; 123: 1616-1622
        • Ji J.
        • Shi J.
        • Budhu A.
        • et al.
        MicroRNA expression, survival, and response to interferon in liver cancer.
        N Engl J Med. 2009; 361: 1437-1447
        • Wang K.
        • Zhang S.
        • Marzolf B.
        • et al.
        Circulating microRNAs, potential biomarkers for drug-induced liver injury.
        Proc Natl Acad Sci U S A. 2009; 106: 4402-4407
        • Laterza O.F.
        • Lim L.
        • Garrett-Engele P.W.
        • et al.
        Plasma microRNAs as sensitive and specific biomarkers of tissue injury.
        Clin Chem. 2009; 55: 1977-1983
        • Fan A.C.
        • Goldrick M.M.
        • Ho J.
        • et al.
        A quantitative PCR method to detect blood microRNAs associated with tumorigenesis in transgenic mice.
        Mol Cancer. 2008; 7: 74
        • Xu J.
        • Wu C.
        • Che X.
        • et al.
        Circulating microRNAs, miR-21, miR-122, and miR-223, in patients with hepatocellular carcinoma or chronic hepatitis.
        Mol Carcinog. 2011; 50: 136-142
        • Sekine S.
        • Ogawa R.
        • Ito R.
        • et al.
        Disruption of Dicer1 induces dysregulated fetal gene expression and promotes hepatocarcinogenesis.
        Gastroenterology. 2009; 136: 2304-2315
        • Hand N.J.
        • Master Z.R.
        • Le Lay J.
        • Friedman J.R.
        Hepatic function is preserved in the absence of mature microRNAs.
        Hepatology. 2009; 49: 618-626
        • Bernstein E.
        • Kim S.Y.
        • Carmell M.A.
        • et al.
        Dicer is essential for mouse development.
        Nat Genet. 2003; 35: 215-217
        • Whittaker R.
        • Loy P.A.
        • Sisman E.
        • et al.
        Identification of microRNAs that control lipid droplet formation and growth in hepatocytes via high-content screening.
        J Biomol Screen. 2010; 15: 798-805
        • Rayner K.J.
        • Suarez Y.
        • Davalos A.
        • et al.
        miR-33 contributes to the regulation of cholesterol homeostasis.
        Science. 2010; 328: 1570-1573
        • Estep M.
        • Armistead D.
        • Hossain N.
        • et al.
        Differential expression of miRNAs in the visceral adipose tissue of patients with non-alcoholic fatty liver disease.
        Aliment Pharmacol Ther. 2010; 32: 487-497
        • Ghany M.G.
        • Strader D.B.
        • Thomas D.L.
        • Seeff L.B.
        Diagnosis, management, and treatment of hepatitis C: an update.
        Hepatology. 2009; 49: 1335-1374
        • Suzuki T.
        • Aizaki H.
        • Murakami K.
        • Shoji I.
        • Wakita T.
        Molecular biology of hepatitis C virus.
        J Gastroenterol. 2007; 42: 411-423
        • Pestova T.V.
        • Shatsky I.N.
        • Fletcher S.P.
        • Jackson R.J.
        • Hellen C.U.
        A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs.
        Genes Dev. 1998; 12: 67-83
        • Lohmann V.
        • Korner F.
        • Koch J.
        • et al.
        Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line.
        Science. 1999; 285: 110-113
        • Hamilton A.J.
        • Baulcombe D.C.
        A species of small antisense RNA in posttranscriptional gene silencing in plants.
        Science. 1999; 286: 950-952
        • Randall G.
        • Panis M.
        • Cooper J.D.
        • et al.
        Cellular cofactors affecting hepatitis C virus infection and replication.
        Proc Natl Acad Sci U S A. 2007; 104: 12884-12889
        • Henke J.I.
        • Goergen D.
        • Zheng J.
        • et al.
        MicroRNA-122 stimulates translation of hepatitis C virus RNA.
        EMBO J. 2008; 27: 3300-3310
        • Chang J.
        • Guo J.T.
        • Jiang D.
        • et al.
        Liver-specific microRNA miR-122 enhances the replication of hepatitis C virus in nonhepatic cells.
        J Virol. 2008; 82: 8215-8223
        • Lehmann E.
        • El-Tantawy W.H.
        • Ocker M.
        • et al.
        The heme oxygenase 1 product biliverdin interferes with hepatitis C virus replication by increasing antiviral interferon response.
        Hepatology. 2010; 51: 398-404
        • Shan Y.
        • Zheng J.
        • Lambrecht R.W.
        • Bonkovsky H.L.
        Reciprocal effects of microRNA-122 on expression of heme oxygenase-1 and hepatitis C virus genes in human hepatocytes.
        Gastroenterology. 2007; 133: 1166-1174
        • Date T.
        • Kato T.
        • Miyamoto M.
        • et al.
        Genotype 2a hepatitis C virus subgenomic replicon can replicate in HepG2 and IMY-N9 cells.
        J Biol Chem. 2004; 279: 22371-22376
        • Kato T.
        • Date T.
        • Miyamoto M.
        • et al.
        Nonhepatic cell lines HeLa and 293 support efficient replication of the hepatitis C virus genotype 2a subgenomic replicon.
        J Virol. 2005; 79: 592-596
        • Zhu Q.
        • Guo J.T.
        • Seeger C.
        Replication of hepatitis C virus subgenomes in nonhepatic epithelial and mouse hepatoma cells.
        J Virol. 2003; 77: 9204-9210
        • Sarasin-Filipowicz M.
        • Krol J.
        • Markiewicz I.
        • Heim M.H.
        • Filipowicz W.
        Decreased levels of microRNA miR-122 in individuals with hepatitis C responding poorly to interferon therapy.
        Nat Med. 2009; 15: 31-33
        • Pedersen I.M.
        • Cheng G.
        • Wieland S.
        • et al.
        Interferon modulation of cellular microRNAs as an antiviral mechanism.
        Nature. 2007; 449: 919-922
        • Qiu L.
        • Fan H.
        • Jin W.
        • et al.
        miR-122-induced down-regulation of HO-1 negatively affects miR-122-mediated suppression of HBV.
        Biochem Biophys Res Commun. 2010; 398: 771-777
        • Garzon R.
        • Marcucci G.
        • Croce C.M.
        Targeting microRNAs in cancer: rationale, strategies and challenges.
        Nat Rev Drug Discov. 2010; 9: 775-789
        • Calin G.A.
        • Sevignani C.
        • Dumitru C.D.
        • et al.
        Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers.
        Proc Natl Acad Sci U S A. 2004; 101: 2999-3004
        • Calin G.A.
        • Dumitru C.D.
        • Shimizu M.
        • et al.
        Frequent deletions and down-regulation of microRNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia.
        Proc Natl Acad Sci U S A. 2002; 99: 15524-15529
        • van den Berg A.
        • Kroesen B.J.
        • Kooistra K.
        • et al.
        High expression of B-cell receptor inducible gene BIC in all subtypes of Hodgkin lymphoma.
        Genes Chromosomes Cancer. 2003; 37: 20-28
        • Michael M.Z.
        • O’Connor S.M.
        • van Holst Pellekaan N.G.
        • Young G.P.
        • James R.J.
        Reduced accumulation of specific microRNAs in colorectal neoplasia.
        Mol Cancer Res. 2003; 1: 882-891
        • Xu T.
        • Zhu Y.
        • Wei Q.K.
        • et al.
        A functional polymorphism in the miR-146a gene is associated with the risk for hepatocellular carcinoma.
        Carcinogenesis. 2008; 29: 2126-2131
        • Budhu A.
        • Jia H.L.
        • Forgues M.
        • et al.
        Identification of metastasis-related microRNAs in hepatocellular carcinoma.
        Hepatology. 2008; 47: 897-907
        • Ma S.
        • Chan K.W.
        • Hu L.
        • et al.
        Identification and characterization of tumorigenic liver cancer stem/progenitor cells.
        Gastroenterology. 2007; 132: 2542-2556
        • Ma S.
        • Lee T.K.
        • Zheng B.J.
        • Chan K.W.
        • Guan X.Y.
        CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway.
        Oncogene. 2008; 27: 1749-1758
        • Shimizu S.
        • Takehara T.
        • Hikita H.
        • et al.
        The let-7 family of microRNAs inhibits Bcl-xL expression and potentiates sorafenib-induced apoptosis in human hepatocellular carcinoma.
        J Hepatol. 2010; 52: 698-704
        • Kota J.
        • Chivukula R.R.
        • O’Donnell K.A.
        • et al.
        Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model.
        Cell. 2009; 137: 1005-1017
        • Ozer J.
        • Ratner M.
        • Shaw M.
        • Bailey W.
        • Schomaker S.
        The current state of serum biomarkers of hepatotoxicity.
        Toxicology. 2008; 245: 194-205
        • Miyamoto M.
        • Yanai M.
        • Ookubo S.
        • et al.
        Detection of cell-free, liver-specific mRNAs in peripheral blood from rats with hepatotoxicity: a potential toxicological biomarker for safety evaluation.
        Toxicol Sci. 2008; 106: 538-545
        • Wetmore B.A.
        • Brees D.J.
        • Singh R.
        • et al.
        Quantitative analyses and transcriptomic profiling of circulating messenger RNAs as biomarkers of rat liver injury.
        Hepatology. 2010; 51: 2127-2139