Advertisement

MicroRNAs in kidney function and disease

Published:February 04, 2011DOI:https://doi.org/10.1016/j.trsl.2011.01.011
      MicroRNAs (miRNA) are short, noncoding RNA sequences that regulate gene expression by blocking protein translation or inducing messenger RNA (mRNA) degradation. miRNA is found in various tissues with variable expression, and changes in expression are related to various disease processes. Evidence suggests that changes in miRNA expression are critical for the normal development of kidney tissue. Alternatively, in diseases such as diabetic nephropathy, polycystic kidney disease, and lupus nephritis, specific miRNAs may enhance disease manifestations in a myriad of ways, ranging from activation of fibrotic pathways to anatomic changes that abet proteinuria. The variable expression of miRNA in kidney tissue, whether in the context of normal development or disease processes, makes miRNAs a valuable new tool for understanding, diagnosing, and discovering therapeutic options for pathologic processes that affect the kidney.

      Abbreviations:

      AT1R (type 1 angiotensin II receptor), DGCR8 (DiGeorge syndrome critical region gene 8), mRNA (messenger RNA), miRNA (microRNA), PBMC (peripheral blood mononuclear cell), PKD (polycystic kidney disease), RISC (RNA-inducing silencing complex), TGF-β (transforming growth factor-beta)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Filipowicz W.
        • Bhattacharyya S.N.
        • Sonenberg N.
        Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?.
        Nat Rev Genet. 2008; 9: 102-114
        • Tian Z.
        • Greene A.S.
        • Pietrusz J.L.
        • Matus I.R.
        • Liang M.
        MicroRNA-target pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis.
        Genome Res. 2008; 18: 404-411
        • Liu C.G.
        • Calin G.A.
        • Meloon B.
        • et al.
        An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues.
        Proc Natl Acad Sci U S A. 2004; 101: 9740-9744
        • Sun Y.
        • Koo S.
        • White N.
        • et al.
        Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs.
        Nucleic Acids Res. 2004; 32: e188
        • Shingara J.
        • Keiger K.
        • Shelton J.
        • et al.
        An optimized isolation and labeling platform for accurate microRNA expression profiling.
        RNA. 2005; 11: 1461-1470
        • Fazi F.
        • Nervi C.
        MicroRNA: basic mechanisms and transcriptional regulatory networks for cell fate determination.
        Cardiovasc Res. 2008; 79: 553-561
        • Liang M.
        • Liu Y.
        • Mladinov D.
        • et al.
        MicroRNA: a new frontier in kidney and blood pressure research.
        Am J Physiol Renal Physiol. 2009; 297: F553-F558
        • Sequeira-Lopez M.L.
        • Weatherford E.T.
        • Borges G.R.
        • et al.
        The microRNA-processing enzyme dicer maintains juxtaglomerular cells.
        J Am Soc Nephrol. 2010; 21: 460-467
        • Cheloufi S.
        • Dos Santos C.O.
        • Chong M.M.
        • Hannon G.J.
        A dicer-independent miRNA biogenesis pathway that requires Ago catalysis.
        Nature. 2010; 465: 584-589
        • Pare J.M.
        • Tahbaz N.
        • Lopez-Orozco J.
        • LaPointe P.
        • Lasko P.
        • Hobman T.C.
        Hsp90 regulates the function of argonaute 2 and its recruitment to stress granules and P-bodies.
        Mol Biol Cell. 2009; 20: 3273-3284
        • Tiemann K.
        • Rossi J.J.
        RNAi-based therapeutics-current status, challenges and prospects.
        EMBO Mol Med. 2009; 1: 142-151
        • Kim V.N.
        • Nam J.W.
        Genomics of microRNA.
        Trends Genet. 2006; 22: 165-173
        • Mourelatos Z.
        • Dostie J.
        • Paushkin S.
        • et al.
        miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs.
        Genes Dev. 2002; 16: 720-728
        • Altuvia Y.
        • Landgraf P.
        • Lithwick G.
        • et al.
        Clustering and conservation patterns of human microRNAs.
        Nucleic Acids Res. 2005; 33: 2697-2706
        • Pastorelli L.M.
        • Wells S.
        • Fray M.
        • et al.
        Genetic analyses reveal a requirement for Dicer1 in the mouse urogenital tract.
        Mamm Genome. 2009; 20: 140-151
        • Shi S.
        • Yu L.
        • Chiu C.
        • et al.
        Podocyte-selective deletion of dicer induces proteinuria and glomerulosclerosis.
        J Am Soc Nephrol. 2008; 19: 2159-2169
        • Harvey S.J.
        • Jarad G.
        • Cunningham J.
        • et al.
        Podocyte-specific deletion of dicer alters cytoskeletal dynamics and causes glomerular disease.
        J Am Soc Nephrol. 2008; 19: 2150-2158
        • Ho J.
        • Ng K.H.
        • Rosen S.
        • Dostal A.
        • Gregory R.I.
        • Kreidberg J.A.
        Podocyte-specific loss of functional microRNAs leads to rapid glomerular and tubular injury.
        J Am Soc Nephrol. 2008; 19: 2069-2075
        • Tian Z.
        • Greene A.S.
        • Usa K.
        • et al.
        Renal regional proteomes in young Dahl salt-sensitive rats.
        Hypertension. 2008; 51: 899-904
        • Martin M.M.
        • Lee E.J.
        • Buckenberger J.A.
        • Schmittgen T.D.
        • Elton T.S.
        MicroRNA-155 regulates human angiotensin II type 1 receptor expression in fibroblasts.
        J Biol Chem. 2006; 281: 18277-18284
        • Sethupathy P.
        • Borel C.
        • Gagnebin M.
        • et al.
        Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3′ untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes.
        Am J Hum Genet. 2007; 81: 405-413
        • Xu C.C.
        • Han W.Q.
        • Xiao B.
        • Li N.N.
        • Zhu D.L.
        • Gao P.J.
        [Differential expression of microRNAs in the aorta of spontaneously hypertensive rats.].
        Sheng Li Xue Bao. 2008; 60: 553-560
        • Yang Z.
        • Venardos K.
        • Jones E.
        • Morris B.J.
        • Chin-Dusting J.
        • Kaye D.M.
        Identification of a novel polymorphism in the 3′UTR of the L-arginine transporter gene SLC7A1: contribution to hypertension and endothelial dysfunction.
        Circulation. 2007; 115: 1269-1274
        • Kato M.
        • Zhang J.
        • Wang M.
        • et al.
        MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors.
        Proc Natl Acad Sci U S A. 2007; 104: 3432-3437
        • Gregory P.A.
        • Bert A.G.
        • Paterson E.L.
        • et al.
        The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1.
        Nat Cell Biol. 2008; 10: 593-601
        • Bracken C.P.
        • Gregory P.A.
        • Kolesnikoff N.
        • et al.
        A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition.
        Cancer Res. 2008; 68: 7846-7854
        • Chung A.C.
        • Huang X.R.
        • Meng X.
        • Lan H.Y.
        miR-192 mediates TGF-beta/Smad3-driven renal fibrosis.
        J Am Soc Nephrol. 2010; 21: 1317-1325
        • Xiao C.
        • Srinivasan L.
        • Calado D.P.
        • et al.
        Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes.
        Nat Immunol. 2008; 9: 405-414
        • Dai Y.
        • Sui W.
        • Lan H.
        • Yan Q.
        • Huang H.
        • Huang Y.
        Comprehensive analysis of microRNA expression patterns in renal biopsies of lupus nephritis patients.
        Rheumatol Int. 2009; 29: 749-754
        • Lee S.O.
        • Masyuk T.
        • Splinter P.
        • et al.
        MicroRNA15a modulates expression of the cell-cycle regulator Cdc25A and affects hepatic cystogenesis in a rat model of polycystic kidney disease.
        J Clin Invest. 2008; 118: 3714-3724
        • Pandey P.
        • Brors B.
        • Srivastava P.K.
        • et al.
        Microarray-based approach identifies microRNAs and their target functional patterns in polycystic kidney disease.
        BMC Genomics. 2008; 9: 624
        • Sun H.
        • Li Q.W.
        • Lv X.Y.
        • et al.
        MicroRNA-17 post-transcriptionally regulates polycystic kidney disease-2 gene and promotes cell proliferation.
        Mol Biol Rep. 2010; 37: 2951-2958
        • Anglicheau D.
        • Sharma V.K.
        • Ding R.
        • et al.
        MicroRNA expression profiles predictive of human renal allograft status.
        Proc Natl Acad Sci U S A. 2009; 106: 5330-5335
        • Mitchell P.S.
        • Parkin R.K.
        • Kroh E.M.
        • et al.
        Circulating microRNAs as stable blood-based markers for cancer detection.
        Proc Natl Acad Sci U S A. 2008; 105: 10513-10518
        • Gilad S.
        • Meiri E.
        • Yogev Y.
        • et al.
        Serum microRNAs are promising novel biomarkers.
        PLoS One. 2008; 3: e3148
        • Hanke M.
        • Hoefig K.
        • Merz H.
        • et al.
        A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer.
        Urol Oncol. 2010; 28: 655-661
        • Krutzfeldt J.
        • Rajewsky N.
        • Braich R.
        • et al.
        Silencing of microRNAs in vivo with ‘antagomirs’.
        Nature. 2005; 438: 685-689
        • Ebert M.S.
        • Neilson J.R.
        • Sharp P.A.
        MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells.
        Nat Methods. 2007; 4: 721-726