Review Article| Volume 159, ISSUE 3, P165-172, March 2012

Canine tumors: a spontaneous animal model of human carcinogenesis

  • Salomé S. Pinho
    Reprint requests: Salomé S. Pinho, DVM, PhD, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr Roberto Frias s/n, 4200-465 Porto, Portugal.
    Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal

    Institute of Biomedical Sciences of Abel Salazar (ICBAS), University of Porto, Porto, Portugal
    Search for articles by this author
  • Sandra Carvalho
    Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
    Search for articles by this author
  • Joana Cabral
    Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
    Search for articles by this author
  • Celso A. Reis
    Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal

    Institute of Biomedical Sciences of Abel Salazar (ICBAS), University of Porto, Porto, Portugal

    Medical Faculty, University of Porto, Porto, Portugal
    Search for articles by this author
  • Fátima Gärtner
    Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal

    Institute of Biomedical Sciences of Abel Salazar (ICBAS), University of Porto, Porto, Portugal
    Search for articles by this author
Published:December 22, 2011DOI:
      The enormous biologic complexity of human cancer has stimulated the development of more appropriate experimental models that could resemble in a natural and spontaneous manner the physiopathologic aspects of cancer biology. Companion animals have many desired characteristics that fill the gap between in vitro and in vivo studies, and these characteristics have proven to be important in understanding many complex molecular aspects of human cancer. Spontaneous tumors in dogs share a wide variety of epidemiologic, biologic, and clinical features with human cancer, which makes this animal model both attractive and underused in oncology research.
      In this review, we summarize the importance of naturally occurring canine tumors as valuable tools for studying numerous aspects of human cancer as well as the potential use of this animal model for the development of new cancer treatments. We address specifically the use of canine mammary tumors as an increasingly powerful model to study human breast cancer.


      AKT1 (akt-murine thymoma viral oncogene homolog 1), ER (estrogen receptor), EGFR (epidermal growth factor receptor), ERA (estrogen receptor-alpha), MAPK (mitogen-activated protein kinase), PI3K (phosphatidylinositol 3-kinase), PIK3CA (phosphoinositide-3-kinase, catalytic, alpha polypeptide), PR (progesterone receptor), PTEN (phosphatase and tensin homolog), RTK (indolinone receptor tyrosine kinase), WHO (World Health Organization)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Gordon I.
        • Khanna C.
        Modeling opportunities in comparative oncology for drug development.
        ILAR J. 2010; 51: 214-220
        • Johnson J.I.
        • Decker S.
        • Zaharevitz D.
        • et al.
        Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials.
        Br J Cancer. 2001; 84: 1424-1431
        • MacLeod R.A.
        • Dirks W.G.
        • Matsuo Y.
        • et al.
        Widespread intraspecies cross-contamination of human tumor cell lines arising at source.
        Int J Cancer. 1999; 83: 555-563
        • Masters J.R.
        HeLa cells 50 years on: the good, the bad and the ugly.
        Nat Rev Cancer. 2002; 2: 315-319
        • Magalhães A.
        • Gomes J.
        • Ismail M.N.
        • et al.
        Fut2-null mice display an altered glycosylation profile and impaired BabA-mediated Helicobacter pylori adhesion to gastric mucosa.
        Glycobiology. 2009; 19: 1525-1536
        • Richmond A.
        • Su Y.
        Mouse xenograft models vs GEM models for human cancer therapeutics.
        Dis Model Mech. 2008; 1: 78-82
        • Hansen K.
        • Khanna C.
        Spontaneous and genetically engineered animal models; use in preclinical cancer drug development.
        Eur J Cancer. 2004; 40: 858-880
        • Simon R.
        Lost in translation: problems and pitfalls in translating laboratory observations to clinical utility.
        Eur J Cancer. 2008; 44: 2707-2713
        • Schuh J.C.
        Trials, tribulations, and trends in tumor modeling in mice.
        Toxicol Pathol. 2004; 32: 53-66
        • Kim N.W.
        • Piatyszek M.A.
        • Prowse K.R.
        • et al.
        Specific association of human telomerase activity with immortal cells and cancer.
        Science. 1994; 266: 2011-2015
        • Prowse K.R.
        • Greider C.W.
        Developmental and tissue-specific regulation of mouse telomerase and telomere length.
        Proc Natl Acad Sci U S A. 1995; 92: 4818-4822
        • Rangarajan A.
        • Weinberg R.A.
        Opinion: comparative biology of mouse versus human cells: modelling human cancer in mice.
        Nat Rev Cancer. 2003; 3: 952-959
        • Teicher B.A.
        In vivo/ex vivo and in situ assays used in cancer research: a brief review.
        Toxicol Pathol. 2009; 37: 114-122
        • MacEwen E.G.
        Spontaneous tumors in dogs and cats: models for the study of cancer biology and treatment.
        Cancer Metastasis Rev. 1990; 9: 125-136
        • Vail D.M.
        • MacEwen E.G.
        Spontaneously occurring tumors of companion animals as models for human cancer.
        Cancer Invest. 2000; 18: 781-792
        • Paoloni M.C.
        • Khanna C.
        Comparative oncology today.
        Vet Clin North Am Small Anim Pract. 2007; 37: 1023-1032
        • Khanna C.
        • Lindblad-Toh K.
        • Vail D.
        • et al.
        The dog as a cancer model.
        Nat Biotechnol. 2006; 24: 1065-1066
        • Paoloni M.
        • Khanna C.
        Translation of new cancer treatments from pet dogs to humans.
        Nat Rev Cancer. 2008; 8: 147-156
        • Kirkness E.F.
        • Bafna V.
        • Halpern A.L.
        • et al.
        The dog genome: survey sequencing and comparative analysis.
        Science. 2003; 301: 1898-1903
        • Lindblad-Toh K.
        • Wade C.M.
        • Mikkelsen T.S.
        • et al.
        Genome sequence, comparative analysis and haplotype structure of the domestic dog.
        Nature. 2005; 438: 803-819
        • Uva P.
        • Aurisicchio L.
        • Watters J.
        • et al.
        Comparative expression pathway analysis of human and canine mammary tumors.
        BMC Genomics. 2009; 10: 135
        • Saal L.H.
        • Johansson P.
        • Holm K.
        • et al.
        Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity.
        Proc Natl Acad Sci U S A. 2007; 104: 7564-7569
        • Galanis A.
        • Pappa A.
        • Giannakakis A.
        • et al.
        Reactive oxygen species and HIF-1 signalling in cancer.
        Cancer Lett. 2008; 266: 12-20
        • Castaneda C.A.
        • Cortes-Funes H.
        • Gomez H.L.
        • Ciruelos E.M.
        The phosphatidyl inositol 3- kinase/AKT signaling pathway in breast cancer.
        Cancer Metastasis Rev. 2010; 29: 751-759
        • Dillon R.L.
        • White D.E.
        • Muller W.J.
        The phosphatidyl inositol 3- kinase signaling network: implications for human breast cancer.
        Oncogene. 2007; 26: 1338-1345
        • Sweet-Cordero A.
        • Mukherjee S.
        • Subramanian A.
        • et al.
        An oncogenic KRAS2 expression signature identified by cross-species gene- expression analysis.
        Nat Genet. 2005; 37: 48-55
        • Ressel L.
        • Millanta F.
        • Caleri E.
        • Innocenti V.M.
        • Poli A.
        Reduced PTEN protein expression and its prognostic implications in canine and feline mammary tumors.
        Vet Pathol. 2009; 46: 860-868
        • Cadigan K.M.
        • Nusse R.
        Wnt signaling: a common theme in animal development.
        Genes Dev. 1997; 11: 3286-3305
        • Klaus A.
        • Birchmeier W.
        Wnt signalling and its impact on development and cancer.
        Nat Rev Cancer. 2008; 8: 387-398
        • Suzuki H.
        • Toyota M.
        • Carraway H.
        • et al.
        Frequent epigenetic inactivation of Wnt antagonist genes in breast cancer.
        Br J Cancer. 2008; 98: 1147-1156
        • Rao N.A.
        • van Wolferen M.E.
        • van den Ham R.
        • et al.
        cDNA microarray profiles of canine mammary tumour cell lines reveal deregulated pathways pertaining to their phenotype.
        Animal Genet. 2008; 39: 333-345
        • Sebolt-Leopold J.S.
        • Herrera R.
        Targeting the mitogen-activated protein kinase cascade to treat cancer.
        Nat Rev Cancer. 2004; 4: 937-947
        • Chang J.
        • Elledge R.M.
        Clinical management of women with genomic BRCA1 and BRCA2 mutations.
        Breast Cancer Res Treat. 2001; 69: 101-113
        • Bièche I.
        • Noguès C.
        • Lidereau R.
        Overexpression of BRCA2 gene in sporadic breast tumours.
        Oncogene. 1999; 18: 5232-5238
        • Maacke H.
        • Opitz S.
        • Jost K.
        • et al.
        Over-expression of wild-type Rad51 correlates with histological grading of invasive ductal breast cancer.
        Int J Cancer. 2000; 88: 907-913
        • Thompson M.E.
        • Jensen R.A.
        • Obermiller P.S.
        • Page D.L.
        • Holt J.T.
        Decreased expression of BRCA1 accelerates growth and is often present during sporadic breast cancer progression.
        Nat Genet. 1995; 9: 444-450
        • Klopfleisch R.
        • Gruber A.D.
        Increased expression of BRCA2 and RAD51 in lymph node metastases of canine mammary Aden carcinomas.
        Vet Pathol. 2009; 46: 416-422
        • Nieto A.
        • Pérez-Alenza M.D.
        • Del Castillo N.
        • et al.
        BRCA1 expression in canine mammary dysplasias and tumours: relationship with prognostic variables.
        J Comp Pathol. 2003; 128: 260-268
        • Jerry D.J.
        • Dunphy K.A.
        • Hagen M.J.
        Estrogens, regulation of p53 and breast cancer risk: a balancing act.
        Cell Mol Life Sci. 2010; 67: 1017-1023
        • Klopfleisch R.
        • Gruber A.D.
        Differential expression of cell cycle regulators p21, p27 and p53 in metastasizing canine mammary adenocarcinomas versus normal mammary glands.
        Res Vet Sci. 2009; 87: 91-96
        • Lee C.H.
        • Kim W.H.
        • Lim J.H.
        • et al.
        Mutation and overexpression of p53 as a prognostic factor in canine mammary tumors.
        J Vet Sci. 2004; 5: 63-69
        • Setoguchi A.
        • Sakai T.
        • Okuda M.
        • et al.
        Aberrations of the p53 tumor suppressor gene in various tumors in dogs.
        Am J Vet Res. 2001; 62: 433-439
        • Ariazi E.A.
        • Ariazi J.L.
        • Cordera F.
        • Jordan V.C.
        Estrogen receptors as therapeutic targets in breast cancer.
        Curr Top Med Chem. 2006; 6: 181-202
        • Cordera F.
        • Jordan V.C.
        Steroid receptors and their role in the biology and control of breast cancer growth.
        Semin Oncol. 2006; 33: 631-641
        • Howell S.J.
        • Johnston S.R.
        • Howell A.
        The use of selective estrogen receptor modulators and selective estrogen receptor down regulators in breast cancer.
        Best Pract Res Clin Endocrinol Metab. 2004; 18: 47-66
        • de Las Mulas J.M.
        • Millán Y.
        • Dios R.
        A prospective analysis of immunohistochemically determined estrogen receptor alpha and progesterone receptor expression and host and tumor factors as predictors of disease-free period in mammary tumors of the dog.
        Vet Pathol. 2005; 42: 200-212
        • Geraldes M.
        • Gärtner F.
        • Schmitt F.
        Immunohistochemical study of hormonal receptors and cell proliferation in normal canine mammary glands and spontaneous mammary tumors.
        Vet Rec. 2000; 146: 403-406
        • Nieto A.
        • Peña L.
        • Pérez-Alenza M.D.
        • et al.
        Immunohistologic detection of estrogen receptor alpha in canine mammary tumors: clinical and pathologic associations and prognostic significance.
        Vet Pathol. 2000; 37: 239-247
        • Pinho S.S.
        • Reis C.A.
        • Gärtner F.
        • Alpaugh M.L.
        Molecular plasticity of E-cadherin and sialyl lewis x expression, in two comparative models of mammary tumorigenesis.
        PLoS One. 2009; 4: e6636
        • Baranwal S.
        • Alahari S.K.
        Molecular mechanisms controlling E-cadherin expression in breast cancer.
        Biochem Biophys Res Commun. 2009; 384: 6-11
        • Chang S.C.
        • Chang C.C.
        • Chang T.J.
        • Wong M.L.
        Prognostic factors associated with survival two years after surgery in dogs with malignant mammary tumors: 79 cases (1998-2002).
        J Am Vet Med Assoc. 2005; 227: 1625-1629
        • Hellmén E.
        • Bergström R.
        • Holmberg L.
        • et al.
        Prognostic factors in canine mammary tumors: a multivariate study of 202 consecutive cases.
        Vet Pathol. 1993; 30: 20-27
        • De Matos A.J.
        • Lopes C.C.
        • Faustino A.M.
        • et al.
        E-cadherin, beta-catenin, invasion and lymph node metastases in canine malignant mammary tumours.
        APMIS. 2007; 115: 327-334
        • Gama A.
        • Paredes J.
        • Gärtner F.
        • Alves A.
        • Schmitt F.
        Expression of E-cadherin, P-cadherin and beta-catenin in canine malignant mammary tumours in relation to clinicopathological parameters, proliferation and survival.
        Vet J. 2008; 117: 45-53
        • Matos A.J.
        • Lopes C.
        • Carvalheira J.
        • et al.
        E-cadherin expression in canine malignant mammary tumours: relationship to other clinico-pathological variables.
        J Comp Pathol. 2006; 134: 182-189
        • Paredes J.
        • Correia A.L.
        • Ribeiro A.S.
        • et al.
        P-cadherin expression in breast cancer: a review.
        Breast Cancer Res. 2007; 9: 214
        • Paredes J.
        • Albergaria A.
        • Oliveira J.T.
        • et al.
        P-cadherin overexpression is an indicator of clinical outcome in invasive breast carcinomas and is associated with CDH3 promoter hypomethylation.
        Clin Cancer Res. 2005; 11: 5869-5877
        • Gama A.
        • Paredes J.
        • Albergaria A.
        • Gartner F.
        • Schmitt F.
        P-cadherin expression in canine mammary tissues.
        J Comp Pathol. 2004; 130: 13-20
        • Burness M.L.
        • Grushko T.A.
        • Olopade O.I.
        Epidermal growth factor receptor in triple-negative and basal-like breast cancer: promising clinical target or only a marker?.
        Cancer J. 2010; 16: 23-32
        • Foley J.
        • Nickerson N.K.
        • Nam S.
        • et al.
        EGFR signaling in breast cancer: bad to the bone.
        Semin Cell Dev Biol. 2010; 21: 951-960
        • Gama A.
        • Gärtner F.
        • Alves A.
        • Schmitt F.
        Immunohistochemical expression of Epidermal Growth Factor Receptor (EGFR) in canine mammary tissues.
        Res Vet Sci. 2009; 87: 432-437
        • Rutteman G.R.
        • Foekens J.A.
        • Portengen H.
        • et al.
        Expression of epidermal growth factor receptor (EGFR) in non-affected and tumorous mammary tissue of female dogs.
        Breast Cancer Res Treat. 1994; 30: 139-146
        • Sorenmo K.
        Canine mammary gland tumors.
        Vet Clin North Am Small Anim Pract. 2003; 33: 573-596
        • Jemal A.
        • Siegel R.
        • Ward E.
        • et al.
        Cancer statistics, 2007.
        CA Cancer J Clin. 2007; 57: 43-66
        • Owen L.N.
        A comparative study of canine and human breast cancer.
        Invest Cell Pathol. 1979; 2: 257-275
      1. Misdorp W. Else R.W. Hellmén E. Lipscomb T.P. Histological classification of mammary tumors of the dog and the cat. Armed Forces Institute of Pathology, Washington, DC1999
        • Khanna C.
        • HK
        Modeling metastasis in vivo.
        Carcinogenesis. 2005; 26: 513-523
        • Venkitaraman A.R.
        Cancer susceptibility and the functions of BRCA1 and BRCA2.
        Cell. 2002; 108: 171-182
        • Millau J.F.
        • Bastien N.
        • Drouin R.
        P53 transcriptional activities: a general overview and some thoughts.
        Mutat Res. 2009; 681: 118-133
        • Olson P.N.
        Using the canine genome to cure cancer and other diseases.
        Theriogenology. 2007; 68: 378-381
        • Chang C.C.
        • Tsai M.H.
        • Liao J.W.
        • et al.
        Evaluation of hormone receptor expression for use in predicting survival of female dogs with malignant mammary gland tumors.
        J Am Vet Med Assoc. 2009; 235: 391-396
        • Shyamala G.
        • Chou Y.C.
        • Louie S.G.
        • et al.
        Cellular expression of estrogen and progesterone receptors in mammary glands: regulation by hormones, development and aging.
        J Steroid Biochem Mol Biol. 2002; 80: 137-148
        • Pinho S.S.
        • Matos A.J.
        • Lopes C.
        • et al.
        Sialyl Lewis x expression in canine malignant mammary tumours: correlation with clinicopathological features and E-Cadherin expression.
        BMC Cancer. 2007; 7: 124
        • de Oliveira J.T.
        • de Matos A.J.
        • Gomes J.
        • et al.
        Coordinated expression of galectin-3 and galectin-3-binding sites in malignant mammary tumors: implications for tumor metastasis.
        Glycobiology. 2010; 20: 1341-1352
        • Pinho S.S.
        • Osório H.
        • Nita-Lazar M.
        • et al.
        Role of E-cadherin N-glycosylation profile in a mammary tumor model.
        Biochem Biophys Res Commun. 2009; 379: 1091-1096
        • Rowell J.L.
        • McCarthy D.O.
        • Alvarez C.E.
        Dog models of naturally occurring cancer.
        Trends Mol Med. 2011; 17: 380-388
        • Khanna C.
        • London C.
        • Vail D.
        • Mazcko C.
        • Hirschfeld S.
        Guiding the optimal translation of new cancer treatments from canine to human cancer patients.
        Clin Cancer Res. 2009; 15: 5671-5677
        • Paoloni M.
        • Khanna C.
        Translation of new cancer treatments from pet dogs to humans.
        Nat Rev Cancer. 2008; 8: 147-156
        • Mack G.S.
        Clinical trials going to the dogs: canine program to study tumor treatment, biology.
        J Natl Cancer Inst. 2006; 98: 161-162
        • Thamm D.H.
        • Kurzman I.D.
        • Clark M.A.
        • et al.
        Preclinical investigation of PEGylated tumor necrosis factor alpha in dogs with spontaneous tumors: phase I evaluation.
        Clin Cancer Res. 2010; 16: 1498-1508
        • London C.A.
        • Hannah A.L.
        • Zadovoskaya R.
        • et al.
        Phase I dose-escalating study of SU11654, a small molecule receptor tyrosine kinase inhibitor, in dogs with spontaneous malignancies.
        Clin Cancer Res. 2003; 9: 2755-2768
        • Ullrich A.
        • Schlessinger J.
        Signal transduction by receptors with tyrosine kinase activity.
        Cell. 1990; 61: 203-212
        • Griffin J.
        The biology of signal transduction inhibition: basic science to novel therapies.
        Semin Oncol. 2001; 28: 3-8
        • De Vico G.
        • Maiolino P.
        • Restucci B.
        • Passantino A.
        Spontaneous tumours of pet dog as models for human cancers: searching for adequate guidelines.
        Riv Biol. 2005; 98: 279-296
        • Hahn K.A.
        • Bravo L.
        • Adams W.H.
        • Frazier D.L.
        Naturally occurring tumors in dogs as comparative models for cancer therapy research.
        In Vivo. 1994; 8: 133-143
        • Porrello A.
        • Cardelli P.
        • Spugnini E.P.
        Oncology of companion animals as a model for humans. an overview of tumor histotypes.
        J Exp Clin Cancer Res. 2006; 25: 97-105
        • Gordon I.
        • Paoloni M.
        • Mazcko C.
        • Khanna C.
        The Comparative Oncology Trials Consortium: using spontaneously occurring cancers in dogs to inform the cancer drug development pathway.
        PLoS Med. 2009; 6: e1000161