Advertisement

Review of novel clinical applications of advanced, real-time, 3-dimensional echocardiography

Published:January 09, 2012DOI:https://doi.org/10.1016/j.trsl.2011.12.008
      Advances in computer processing speed and memory along with the advent of the microbeam former that can sample an entire crystal of the ultrasound transducer made possible the performance of 3-dimensional echocardiography in real time (RT3DE). The miniaturization of a 3-dimensional transducer permitting its extension to transesophageal mode rapidly expanded its use in a variety of conditions. Recent development of user-friendly automated/semiautomated cropping and display software may make it rather simple, even for the novice to gather useful information from RT3DE. We discuss the background, technique, and cutting-edge research and novel clinical applications of advanced RT3DE, including left ventricular dyssynchrony assessment, 3-D speckle tracking, myocardial contrast echocardiography, complete 4-dimensional (4-D) shape and motion analysis of the left ventricle, 4-D volumetric analysis of the right ventricle, 3-D volume rendering of the mitral valve, and other percutaneous and surgical procedural applications.

      Abbreviations:

      2-D (2-dimensional), 3-D (3-dimensional), 4-D (4-dimensional), 2DE (2-dimensional echocardiography), CMR (cardiac magnetic resonance imaging), CRT (cardiac resynchronization therapy), DCM (dilated cardiomyopathy), LAA (left atrial appendage), LV (left ventricle), MV (mitral valve), RT3DE (real-time, 3-dimensional echocardiography), RV (right ventricle), RVOT (right ventricle outflow tract), SDI (systolic dyssynchrony index), STE (speckle tracking echocardiography), TEE (transesophageal echocardiogram), VSD (ventricular septal defect)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. Burri MV, Kerber RE. Real time three dimensional echocardiography. In: Chatterjee et al, eds. Cardiology-an illustrated textbook. New Delhi, India: JayPee Brothers Medical Publishers; in press.

        • Hirasaki Y.
        • Seino Y.
        • Tomita Y.
        • Nomura M.
        Cardiac axis-oriented full-volume data acquisition in real-time three-dimensional transesophageal echocardiography to facilitate on-cart analysis.
        Anesth Analg. 2011; 113: 717-721
        • Gordon E.P.
        • Schnittger I.
        • Fitzgerald P.J.
        • Williams P.
        • Popp R.L.
        Reproducibility of left ventricular volumes by two-dimensional echocardiography.
        J Am Coll Cardiol. 1983; 2: 506-513
        • Jenkins C.
        • Bricknell K.
        • Hanekom L.
        • Marwick T.H.
        Reproducibility and accuracy of echocardiographic measurements of left ventricular parameters using real-time three-dimensional echocardiography.
        J Am Coll Cardiol. 2004; 44: 878-886
        • Pouleur A.C.
        • le Polain de Waroux J.B.
        • Pasquet A.
        • et al.
        Assessment of left ventricular mass and volumes by three-dimensional echocardiography in patients with or without wall motion abnormalities: comparison against cine magnetic resonance imaging.
        Heart. 2008; 94: 1050-1057
        • Arai K.
        • Hozumi T.
        • Matsumura Y.
        • et al.
        Accuracy of measurement of left ventricular volume and ejection fraction by new real-time three-dimensional echocardiography in patients with wall motion abnormalities secondary to myocardial infarction.
        Am J Cardiol. 2004; 94: 552-558
        • Mor-Avi V.
        • Jenkins C.
        • Kuhl H.P.
        • et al.
        Real-time 3-dimensional echocardiographic quantification of left ventricular volumes: multicenter study for validation with magnetic resonance imaging and investigation of sources of error.
        J Am Coll Cardiol Img. 2008; 1: 413-423
        • Muraru D.
        • Badano L.P.
        • Piccoli G.
        • et al.
        Validation of a novel automated border-detection algorithm for rapid and accurate quantitation of left ventricular volumes based on three-dimensional echocardiography.
        Eur J Echocardiogr. 2010; 11: 359-368
        • Hansegård J.
        • Urheim S.
        • Lunde K.
        • Malm S.
        • Rabben S.I.
        Semi-automated quantification of left ventricular volumes and ejection fraction by real-time three-dimensional echocardiography.
        Cardiovasc Ultrasound. 2009; 7: 18-27
        • Corsi C.
        • Coon P.
        • Goonewardena S.
        • et al.
        Quantification of regional left ventricular wall motion from real-time 3-dimensional echocardiography in patients with poor acoustic windows: effects of contrast enhancement tested against cardiac magnetic resonance.
        J Am Soc Echocardiogr. 2006; 19: 886-893
        • Szmigielski C.
        • Rajpoot K.
        • Grau V.
        • et al.
        Real-time 3D fusion echocardiography.
        J Am Coll Cardiol Img. 2010; 3: 682-690
        • Rajpoot K.
        • Grau V.
        • Noble J.A.
        • Szmigielski C.
        • Becher H.
        Multiview fusion 3-D echocardiography: improving the information and quality of real-time 3-D echocardiography.
        Ultrasound Med Biol. 2011; 37: 1056-1072
        • Yap S.C.
        • van Geuns R.M.
        • Nemes A.
        • et al.
        Rapid and accurate measurement of LV mass by biplane real-time 3D echocardiography in patients with concentric LV hypertrophy: comparison to CMR.
        Eur J of Echocardiogr. 2008; 9: 255-260
        • Qin J.X.
        • Jones M.
        • Travaglini A.
        • et al.
        The accuracy of left ventricular mass determined by real-time three-dimensional echocardiography in chronic animal and clinical studies: a comparison with postmortem examination and magnetic resonance imaging.
        J Am Soc Echocardiogr. 2005; 18: 1037-1043
        • Mor-AVI V.
        • Sugeng L.
        • Weinert L.
        • et al.
        Fast measurement of left ventricular mass with real-time three-dimensional echocardiography: comparison with magnetic resonance imaging.
        Circulation. 2004; 110: 1814-1818
        • Qi X.
        • Cogar B.
        • Hsiung M.C.
        • et al.
        Live/real time three-dimensional transthoracic echocardiographic assessment of left ventricular volumes, ejection fraction, and mass compared with magnetic resonance imaging.
        Echocardiography. 2007; 24: 166-173
        • Kapetanakis S.
        • Kearney M.T.
        • Siva A.
        • Gall N.
        • Cooklin M.
        • Monaghan M.J.
        Real-time three-dimensional echocardiography: a novel technique to quantify global left ventricular mechanical dyssynchrony.
        Circulation. 2005; 112: 992-1000
        • Burgess M.I.
        • Jenkins C.
        • Chan J.
        • Marwick T.H.
        Measurement of left ventricular dyssynchrony in patients with ischaemic cardiomyopathy: a comparison of real-time three dimensional and tissue Doppler echocardiography.
        Heart. 2007; 93: 1191-1196
        • Marsan N.A.
        • Bleeker G.B.
        • Ypenburg C.
        • et al.
        Real-time three-dimensional echocardiography as a novel approach to assess left ventricular and left atrium reverse remodeling and to predict response to cardiac resynchronization therapy.
        Heart Rhythm. 2008; 5: 1257-1264
        • Kapetanakis S.
        • Bhan A.
        • Murgatroyd F.
        • et al.
        Real-time 3D echo in patient selection for cardiac resynchronization therapy.
        J Am Coll Cardiol Img. 2011; 4: 16-26
        • Pan C.
        • Wang C.
        • Pan W.
        • Shu X.
        • Chen H.
        Usefulness of real-time three-dimensional echocardiography to quantify global left ventricular function and mechanical dyssynchrony after heart transplantation.
        Acta Cardiol. 2011; 66: 365-370
        • Sonne C.
        • Sugeng L.
        • Takeuchi M.
        • et al.
        Real-time 3-dimensional echocardiographic assessment of left ventricular dyssynchrony: pitfalls in patients with dilated cardiomyopathy.
        J Am Coll Cardiol Img. 2009; 2: 802-812
        • Hu W.
        • Wu M.T.
        • Liu C.P.
        • Shyu L.Y.
        • Hsu T.L.
        Left ventricular 4D echocardiogram motion and shape analysis.
        Ultrasonics. 2002; 40: 949-954
        • Maffessanti F.
        • Lang R.M.
        • Corsi C.
        • Mor-Avi V.
        • Caiani E.G.
        Feasibility of left ventricular shape analysis from transthoracic real-time 3-D echocardiographic images.
        Ultrasound Med Biol. 2009; 35: 1953-1962
        • Gupta D.
        • Zhang H.
        • Abiose A.K.
        • Martins J.B.
        • Sonka M.
        • Wahle A.
        Novel four-dimensional indices derived from real-time three- dimensional echocardiography predict response to cardiac resynchronization therapy.
        J Am Soc Echocardiogr. 2011; 24: B36
        • Seo Y.
        • Ishizu T.
        • Enomoto Y.
        • et al.
        Validation of 3-dimensional speckle tracking imaging to quantify regional myocardial deformation.
        Circ Cardiovasc Img. 2009; 2: 451-459
        • Andrade J.
        • Cortez L.D.
        • Campos O.
        Left ventricular twist: comparison between two- and three-dimensional speckle-tracking echocardiography in healthy volunteers.
        Eur J Echocardiogr. 2011; 12: 76-79
        • Ashraf M.
        • Myronenko A.
        • Nguyen T.
        • et al.
        Defining left ventricular apex-to-base twist mechanics computed from high-resolution 3D echocardiography: validation against sonomicrometry.
        J Am Coll Cardiol Img. 2010; 3: 227-234
        • Saito K.
        • Okura H.
        • Watanabe N.
        • et al.
        Comprehensive evaluation of left ventricular strain using speckle tracking echocardiography in normal adults: comparison of three-dimensional and two-dimensional approaches.
        J Am Soc Echocardiogr. 2009; 22: 1025-1030
        • Kleijn S.A.
        • Aly M.F.
        • Terwee C.B.
        • van Rossum A.C.
        • Kamp O.
        Three-dimensional speckle tracking echocardiography for automatic assessment of global and regional left ventricular function based on area strain.
        J Am Soc Echocardiogr. 2011; 24: 314-321
        • Li C.H.
        • Carreras F.
        • Leta R.
        • Carballeira L.
        • Pujadas S.
        • Pons-Liado G.
        Mechanical left ventricular dyssynchrony detection by endocardium displacement analysis with 3D speckle tracking technology.
        Int J Cardiovasc Img. 2010; 26: 867-870
        • Tanaka H.
        • Hara H.
        • Adelstein E.C.
        • Schwartzman D.
        • Saba S.
        • Gorcsan 3rd, J.
        Comparative mechanical activation mapping of RV pacing to LBBB by 2D and 3D speckle tracking and association with response to resynchronization therapy.
        J Am Coll Cardiol Img. 2010; 3: 461-471
        • Ahmad M.
        • Xie T.
        • McCulloch M.
        • Abreo G.
        • Runge M.
        Real-time three-dimensional dobutamine stress echocardiography in assessment of ischemia: comparison with two-dimensional dobutamine stress echocardiography.
        J Am Coll Cardiol. 2001; 37: 1303-1309
        • Matsumura Y.
        • Hozumi T.
        • Arai K.
        • et al.
        Non-invasive assessment of myocardial ischaemia using new real-time three-dimensional dobutamine stress echocardiography: comparison with conventional two-dimensional methods.
        Eur Heart J. 2005; 26: 1625-1632
        • Badano L.P.
        • Muraru D.
        • Rigo F.
        • et al.
        High volume-rate three-dimensional stress echocardiography to assess inducible myocardial ischemia: a feasibility study.
        J Am Soc Echocardiogr. 2010; 23: 628-635
        • Aggeli C.
        • Felekos I.
        • Roussakis G.
        • et al.
        Value of real-time three-dimensional adenosine stress contrast echocardiography in patients with known or suspected coronary artery disease.
        Eur J Echocardiogr. 2011; 12: 648-655
        • Camarano G.
        • Jones M.
        • Freidlin R.Z.
        • Panza J.A.
        Quantitative assessment of left ventricular perfusion defects using real-time three-dimensional myocardial contrast echocardiography.
        J Am Soc Echocardiogr. 2002; 15: 206-213
        • Wei K.
        • Jayaweera A.R.
        • Firoozan S.
        • Linka A.
        • Skyba D.M.
        • Kaul S.
        Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion.
        Circulation. 1998; 97: 473-483
        • Le D.E.
        • Bin J.P.
        • Coggins M.
        • Linder J.
        • Wei K.
        • Kaul S.
        Relation between myocardial oxygen consumption and myocardial blood volume: a study using myocardial contrast echocardiography.
        J Am Soc Echocardiogr. 2002; 15: 857-863
        • Bhan A.
        • Kapetanakis S.
        • Rana B.S.
        • et al.
        Real-time three-dimensional myocardial contrast echocardiography: is it clinically feasible?.
        Eur J Echocardiogr. 2008; 9: 761-765
        • Chen L.X.
        • Wang X.F.
        • Nanda N.C.
        • et al.
        Real-time three-dimensional myocardial contrast echocardiography in assessment of myocardial perfusion defects.
        Chin Med J. 2004; 117: 337-341
        • Pemberton J.
        • Li X.
        • Hickey E.
        • et al.
        Live real-time three-dimensional echocardiography for the visualization of myocardial perfusion–a pilot study in open-chest pigs.
        J Am Soc Echocardiogr. 2005; 18: 956-958
        • Christiansen J.P.
        • Leong-Poi H.
        • Klibanov A.L.
        • Kaul S.
        • Lindner J.R.
        Noninvasive imaging of myocardial reperfusion injury using leukocyte-targeted contrast echocardiography.
        Circulation. 2002; 105: 1764-1767
        • Fujii H.
        • Sun Z.
        • Li S.H.
        • et al.
        Ultrasound-targeted gene delivery induces angiogenesis after a myocardial infarction in mice.
        J Am Coll Cardiol Img. 2009; 2: 869-879
        • Petersen J.W.
        • Forder J.R.
        • Thomas J.D.
        • et al.
        Quantification of myocardial segmental function in acute and chronic ischemic heart disease and implications for cardiovascular cell therapy trials a review from the NHLBI-Cardiovascular Cell Therapy Research Network.
        J Am Coll Cardiol Img. 2011; 4: 671-679
        • Voelkel N.F.
        • Quaife R.A.
        • Leinwand L.A.
        • et al.
        Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure.
        Circulation. 2006; 114: 1883-1891
        • Calcutteea A.
        • Chung R.
        • Lindqvist P.
        • Hodson M.
        • Henein M.Y.
        Differential right ventricular regional function and the effect of pulmonary hypertension: three-dimensional echo study.
        Heart. 2011; 97: 1004-1011
        • Sheehan F.H.
        • Ge S.
        • Vick III, G.W.
        • et al.
        Three-dimensional shape analysis of right ventricular remodeling in repaired tetralogy of fallot.
        Am J Cardiol. 2008; 101: 107-113
        • Simon M.A.
        Right ventricular adaptation to pressure overload.
        Curr Opin Crit Care. 2010; 16: 237-243
        • Gopal A.S.
        • Chukwu E.O.
        • Iwuchukwu C.J.
        • et al.
        Normal values of right ventricular size and function by real-time 3- dimensional echocardiography: comparison with cardiac magnetic resonance imaging.
        J Am Soc Echocardiogr. 2007; 20: 445-455
        • Hoch M.
        • Vasilyev N.V.
        • Soriano B.
        • Gauvreau K.
        • Marx G.R.
        Variables influencing the accuracy of right ventricular volume assessment by real-time 3-dimensional echocardiography: an in vitro validation study.
        J Am Soc Echocardiogr. 2007; 20: 456-461
        • Schindera S.T.
        • Mehwald P.S.
        • Sahn D.J.
        • et al.
        Accuracy of real-time three-dimensional echocardiography for quantifying right ventricular volume: static and pulsatile flow studies in an anatomic in vitro model.
        J Ultrasound Med. 2002; 21: 1069-1075
        • Niemann P.S.
        • Pinho L.
        • Balbach T.
        • et al.
        Anatomically oriented right ventricular volume measurements with dynamic three-dimensional echocardiography validated by 3-Tesla magnetic resonance imaging.
        J Am Coll Cardiol. 2007; 50: 1668-1676
        • Joachim N.H.
        • Wolfgang T.
        • Ayan P.
        • et al.
        Quantitation of right ventricular volumes and ejection fraction by three-dimensional echocardiography in patients: comparison with magnetic resonance imaging and radionuclide ventriculography.
        Echocardiography. 2006; 23: 666-680
        • Jenkins C.
        • Chan J.
        • Bricknell K.
        • Strudwick M.
        • Marwick T.H.
        Reproducibility of right ventricular volumes and ejection fraction using real-time three-dimensional echocardiography comparison with cardiac MRI.
        Chest. 2007; 131: 1844-1851
        • Leibundgut G.
        • Rohner A.
        • Grize L.
        • et al.
        Dynamic assessment of right ventricular volumes and function by real-time three-dimensional echocardiography: a comparison study with magnetic resonance imaging in 100 adult patients.
        J Am Soc Echocardiogr. 2010; 23: 116-126
        • Fusini L.
        • Tamborini G.
        • Gripari P.
        • et al.
        Feasibility of intraoperative three-dimensional transesophageal echocardiography in the evaluation of right ventricular volumes and function in patients undergoing cardiac surgery.
        J Am Soc Echocardiogr. 2011; 24: 868-877
        • Marcus F.I.
        • McKenna W.J.
        • Sherrill D.
        • et al.
        Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria.
        Circulation. 2010; 121: 1533-1541
        • Badano L.P.
        • Ginghina C.
        • Easaw J.
        • et al.
        Right ventricle in pulmonary arterial hypertension: haemodynamics, structural changes, imaging, and proposal of a study protocol aimed to assess remodelling and treatment effects.
        Eur J Echocardiogr. 2010; 11: 27-37
        • Rossi A.
        • Cicoira M.
        • Zanolla L.
        • et al.
        Determinants and prognostic value of left atrial volume in patients with dilated cardiomyopathy.
        J Am Coll Cardiol. 2002; 40: 1425-1430
        • Hage F.G.
        • Karakus G.
        • Luke Jr., W.D.
        • et al.
        Effect of alcohol-induced septal ablation on left atrial volume and ejection fraction assessed by real time three-dimensional transthoracic echocardiography in patients with hypertrophic cardiomyopathy.
        Echocardiography. 2008; 25: 784-789
        • Abhayaratna W.P.
        • Seward J.B.
        • Appleton C.P.
        • et al.
        Left atrial size: physiologic determinants and clinical applications.
        J Am Coll Cardiol. 2006; 47: 2357-2363
        • Rodevan O.
        • Bjornerheim R.
        • Ljosland M.
        • Maehle J.
        • Smith H.J.
        • Ihlen H.
        Left atrial volumes assessed by three- and two-dimensional echocardiography compared to MRI estimates.
        Int J Card Imaging. 1999; 15: 397-410
        • Anwar A.M.
        • Soliman O.I.
        • Geleijnse M.L.
        • Nemes A.
        • Vletter W.B.
        • ten Cate F.J.
        Assessment of left atrial volume and function by real-time three-dimensional echocardiography.
        Int J Cardiol. 2008; 123: 155-161
        • Shah S.J.
        • Bardo D.M.
        • Sugeng L.
        • et al.
        Real-time three-dimensional transesophageal echocardiography of the left atrial appendage: initial experience in the clinical setting.
        J Am Soc Echocardiogr. 2008; 21: 1362-1368
        • Faletra F.F.
        • Ho S.Y.
        • Auricchio A.
        Anatomy of right atrial structures by real-time 3D transesophageal echocardiography.
        J Am Coll Cardiol Img. 2010; 3: 966-975
        • Maffessanti F.
        • Marsan N.A.
        • Tamborini G.
        • et al.
        Quantitative analysis of mitral valve apparatus in mitral valve prolapse before and after annuloplasty: a three-dimensional intraoperative transesophageal study.
        J Am Soc Echocardiogr. 2011; 24: 405-413
        • Pepi M.
        • Tamborini G.
        • Maltagliati A.
        • et al.
        Head-to-head comparison of two- and three-dimensional transthoracic and transesophageal echocardiography in the localization of mitral valve prolapse.
        J Am Coll Cardiol. 2006; 48: 2524-2530
        • Lang R.M.
        • Tsang W.
        • Weinert L.
        • Mor-Avi V.
        • Chandra S.
        Valvular heart disease. The value of 3-dimensional echocardiography.
        J Am Coll Cardiol. 2011; 58: 1933-1944
        • Chandra S.
        • Salgo I.S.
        • Sugeng L.
        • et al.
        Characterization of degenerative mitral valve disease using morphologic analysis of real-time three-dimensional echocardiographic images: objective insight into complexity and planning of mitral valve repair.
        Circ Cardiovasc Img. 2011; 4: 24-32
        • Sugeng L.
        • Shernan S.K.
        • Weinert L.
        • et al.
        Real-time three-dimensional transesophageal echocardiography in valve disease: comparison with surgical findings and evaluation of prosthetic valves.
        J Am Soc Echocardiogr. 2008; 21: 1347-1354
        • Kahlert P.
        • Plicht B.
        • Schenk I.M.
        • Janosi R.A.
        • Erbel A.
        • Buck T.
        Direct assessment of size and shape of noncircular vena contracta area in functional versus organic mitral regurgitation using real-time three dimensional echocardiography.
        J Am Soc Echocardiogr. 2008; 21: 912-921
        • Marsan N.A.
        • Westenberg J.J.
        • Ypenburg C.
        • et al.
        Quantification of functional mitral regurgitation by real-time 3D echocardiography: comparison with 3D velocity-encoded cardiac magnetic resonance.
        J Am Coll Cardiol Img. 2009; 2: 1245-1252
        • Grewal J.
        • Mankad S.
        • Freeman W.K.
        • et al.
        Real-time three-dimensional transesophageal echocardiography in the intraoperative assessment of mitral valve disease.
        J Am Soc Echocardiogr. 2009; 22: 34-41
        • Perk G.
        • Lang R.M.
        • Garcia-Fernandez M.A.
        • et al.
        Use of real time three-dimensional transesophageal echocardiography in intracardiac catheter based interventions.
        J Am Soc Echocardiogr. 2009; 22: 865-882
        • Ahmad R.M.
        • Gillinov A.M.
        • McCarthy P.M.
        • et al.
        Annular geometry and motion in human ischemic mitral regurgitation: novel assessment with three-dimensional echocardiography and computer reconstruction.
        Ann Thorac Surg. 2004; 78: 2063-2068
        • Kwan J.
        • Shiota T.
        • Agler D.A.
        • et al.
        Geometric differences of the mitral apparatus between ischemic and dilated cardiomyopathy with significant mitral regurgitation: real-time three-dimensional echocardiography study.
        Circulation. 2003; 107: 1135-1140
        • Otsuji Y.
        • Handschumacher M.D.
        • Liel-Cohen N.
        • et al.
        Mechanism of ischemic mitral regurgitation with segmental left ventricular dysfunction: three-dimensional echocardiographic studies in models of acute and chronic progressive regurgitation.
        J Am Coll Cardiol. 2001; 37: 641-648
        • Hung J.
        • Guerrero J.L.
        • Handschumacher M.D.
        • Supple G.
        • Sullivan S.
        • Levine R.A.
        Reverse ventricular remodeling reduces ischemic mitral regurgitation: echo-guided device application in the beating heart.
        Circulation. 2002; 106: 2594-2600
        • Langer F.
        • Rodriguez F.
        • Ortiz S.
        • et al.
        Subvalvular repair: the key to repairing ischemic mitral regurgitation?.
        Circulation. 2005; 112: I383-I389
        • Tsukiji M.
        • Watanabe N.
        • Yamaura Y.
        • et al.
        Three-dimensional quantitation of mitral valve coaptation by a novel software system with transthoracic real-time three-dimensional echocardiography.
        J Am Soc Echocardiogr. 2008; 21: 43-46
        • Hung J.
        • Lang R.
        • Flaschskamp F.
        • et al.
        3D echocardiography: a review of the current status and future directions.
        J Am Soc Echocardiogr. 2007; 20: 213-233
        • Zamorano J.
        • Cordeiro P.
        • Sugeng L.
        • et al.
        Real-time three-dimensional echocardiography for rheumatic mitral valve stenosis evaluation: an accurate and novel approach.
        J Am Coll Cardiol. 2004; 43: 2091-2096
        • Chu J.W.
        • Levine R.A.
        • Chua S.
        • et al.
        Assessing mitral valve area and orifice geometry in calcific mitral stenosis: a new solution by real-time three-dimensional echocardiography.
        J Am Soc Echocardiogr. 2008; 21: 1006-1009
        • Zamorano J.
        • Perez de Isla L.
        • Sugeng L.
        • et al.
        Non-invasive assessment of mitral valve area during percutaneous balloon mitral valvuloplasty: role of real-time 3D echocardiography.
        Eur Heart J. 2004; 25: 2086-2091
        • Nakai H.
        • Takeuchi M.
        • Yoshitani H.
        • Kaku K.
        • Haruki N.
        • Otsuji Y.
        Pitfalls of anatomical aortic valve area measurements using two-dimensional transoesophageal echocardiography and the potential of three-dimensional transoesophageal echocardiography.
        Eur J Echocardiogr. 2010; 11: 369-376
        • Pothineni K.R.
        • Duncan K.
        • Yelamanchili P.
        • et al.
        Live/real time three-dimensional transthoracic echocardiographic assessment of tricuspid valve pathology: incremental value over the two-dimensional technique.
        Echocardiography. 2007; 24: 541-552
        • Singh P.
        • Inamdar V.
        • Hage F.G.
        • et al.
        Usefulness of live/real time three dimensional transthoracic echocardiography in evaluation of prosthetic valve function.
        Echocardiography. 2009; 26: 1236-1249
        • Kronzon I.
        • Sugeng L.
        • Perk G.
        • et al.
        Real-time 3-dimensional transesophageal echocardiography in the evaluation of post-operative mitral annuloplasty ring and prosthetic valve dehiscence.
        J Am Coll Cardiol. 2009; 53: 1543-1547
        • Paul B.
        • Minocha A.
        Thrombosis of a bileaflet prosthetic mitral valve: a real-time three-dimensional transesophageal echocardiography perspective.
        Int J Cardiovasc Imaging. 2010; 26: 367-368
        • Burri M.V.
        • Mahan 3rd, E.F.
        • Nanda N.C.
        • et al.
        Superior vena cava, right pulmonary artery or both: real time two- and three-dimensional transthoracic contrast echocardiographic identification of the echo-free space posterior to the ascending aorta.
        Echocardiography. 2007; 24: 875-882
        • Saric M.
        • Perk G.
        • Purgess J.R.
        • Kronzon I.
        Imaging atrial septal defects by real-time three-dimensional transesophageal echocardiography: step-by-step approach.
        J Am Soc Echocardiogr. 2010; 23: 1128-1135
        • Halpern D.G.
        • Perk G.
        • Ruiz C.
        • Marino N.
        • Kronzon I.
        Percutaneous closure of a post-myocardial infarction ventricular septal defect guided by real-time three-dimensional echocardiography.
        Eur J Echocardiogr. 2009; 10: 569-571
        • Simpson J.M.
        • Miller O.
        Three-dimensional echocardiography in congenital heart disease.
        Arch Cardiovasc Dis. 2011; 104: 45-56
        • Hage F.G.
        • Raslan S.
        • Dean P.
        • Nanda N.C.
        Real time three-dimensional transthoracic echocardiography in congenital heart disease.
        Echocardiography. 2011; ([Epub ahead of print])
        • Pedrazzini G.B.
        • Klimusina J.
        • Pasotti E.
        • Moccetti
        • Faletra F.F.
        Complications of percutaneous edge-to-edge mitral valve repair: the role of real-time three-dimensional transesophageal echocardiography.
        J Am Soc Echocardiogr. 2010; 24: 706-708
        • Silvestry F.E.
        • Kerber R.E.
        • Brook M.M.
        • et al.
        Echocardiography-guided interventions.
        J Am Soc Echocardiogr. 2009; 22 (Erratum in: J Am Soc Echocardiogr 2009;22:336): 213-231
        • Becker M.
        • Hoffmann R.
        • Schmitz F.
        • et al.
        Relation of optimal lead positioning as defined by three-dimensional echocardiography to long-term benefit of cardiac resynchronization.
        Am J Cardiol. 2007; 100: 1671-1676
        • St Jude Medical
        Real time 3-dimensional echocardiography for left ventricular lead site selection to reduce cardiac resynchronization therapy non-responder rates (ENVISION).
        National Library of Medicine, Bethesda, Md2000 (Available at:) (NLM Identifier: NCT01278030)