Advertisement

Biomarkers in inflammatory bowel disease: current practices and recent advances

  • Heba N. Iskandar
    Affiliations
    Division of Gastroenterology, Washington University in Saint Louis School of Medicine, Saint Louis, Mo
    Search for articles by this author
  • Matthew A. Ciorba
    Correspondence
    Reprint requests: Matthew A. Ciorba, MD, Division of Gastroenterology, Washington University in Saint Louis School of Medicine, 660 South Euclid Avenue, Box 8124, Saint Louis, MO 63110.
    Affiliations
    Division of Gastroenterology, Washington University in Saint Louis School of Medicine, Saint Louis, Mo
    Search for articles by this author
Published:February 10, 2012DOI:https://doi.org/10.1016/j.trsl.2012.01.001
      Crohn’s disease and ulcerative colitis represent the two main forms of the idiopathic chronic inflammatory bowel diseases (IBD). Currently available blood and stool based biomarkers provide reproducible, quantitative tools that can complement clinical assessment to aid clinicians in IBD diagnosis and management. C-reactive protein and fecal based leukocyte markers can help the clinician distinguish IBD from noninflammatory diarrhea and assess disease activity. The ability to differentiate between forms of IBD and predict risk for disease complications is specific to serologic tests including antibodies against Saccharomyces cerevisiae and perinuclear antineutrophil cytoplasmic proteins. Advances in genomic, proteomic, and metabolomic array based technologies are facilitating the development of new biomarkers for IBD. The discovery of novel biomarkers, which can correlate with mucosal healing or predict long-term disease course has the potential to significantly improve patient care. This article reviews the uses and limitations of currently available biomarkers and highlights recent advances in IBD biomarker discovery.

      Abbreviations:

      IBD (inflammatory bowel diseases), IBS (irritable bowel syndrome), CRP (C-reactive protein), ESR (erythrocyte sedimentation rate), ASCA (anti-Saccharomyces cerevisiae antibodies), pANCA (perinuclear anti-neutrophil cytoplasmic antibodies), CD (Crohn’s disease), UC (ulcerative colitis), CDAI (Crohn’s disease activity index), TNF-α (tumor necrosis factor-alpha), IL (interleukin), Anti-OmpC (antibody to outer membrane porin), Anti-I2 (Pseudomonas flourescens-associated sequence I-2), ALCA (antilaminaribioside carbohydrate IgG), ACCA (antichitobioside carbohydrate IgA), AΣMA or AMCA (anti-synthetic mannoside antibodies), GI (gastrointestinal), ELISA (enzyme linked immunosorbent assay), IDO1 (indoleamine 2,3 dioxygenase-1), K/T (kynurenine/tryptophan ratio)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Loftus C.G.
        • Loftus Jr., E.V.
        • Harmsen W.S.
        • et al.
        Update on the incidence and prevalence of Crohn's disease and ulcerative colitis in Olmsted County, Minnesota, 1940–2000.
        Inflamm Bowel Dis. 2007; 13: 254-261
        • Longobardi T.
        • Bernstein C.N.
        Utilization of health-care resources by patients with IBD in Manitoba: a profile of time since diagnosis.
        Am J Gastroenterol. 2007; 102: 1683-1691
        • Abraham C.
        • Cho J.H.
        Inflammatory bowel disease.
        N Engl J Med. 2009; 361: 2066-2078
        • Sartor R.B.
        Genetics and environmental interactions shape the intestinal microbiome to promote inflammatory bowel disease vs mucosal homeostasis.
        Gastroenterology. 2010; 139: 1816-1819
        • Xavier R.J.
        • Podolsky D.K.
        Unravelling the pathogenesis of inflammatory bowel disease.
        Nature. 2007; 448: 427-434
        • Best W.R.
        • Becktel J.M.
        • Singleton J.W.
        • Kern Jr., F.
        Development of a Crohn's disease activity index. National Cooperative Crohn's Disease Study.
        Gastroenterology. 1976; 70: 439-444
        • Harvey R.F.
        • Bradshaw J.M.
        A simple index of Crohn's-disease activity.
        Lancet. 1980; 1: 514
        • D'Haens G.
        • Sandborn W.J.
        • Feagan B.G.
        • et al.
        A review of activity indices and efficacy end points for clinical trials of medical therapy in adults with ulcerative colitis.
        Gastroenterology. 2007; 132: 763-786
        • Irvine E.J.
        • Zhou Q.
        • Thompson A.K.
        The Short Inflammatory Bowel Disease Questionnaire: a quality of life instrument for community physicians managing inflammatory bowel disease. CCRPT Investigators. Canadian Crohn's Relapse Prevention Trial.
        Am J Gastroenterol. 1996; 91: 1571-1578
        • Sands B.E.
        The placebo response rate in irritable bowel syndrome and inflammatory bowel disease.
        Dig Dis. 2009; 27: 68-75
        • Feagan B.G.
        • Fedorak R.N.
        • Irvine E.J.
        • et al.
        A comparison of methotrexate with placebo for the maintenance of remission in Crohn's disease. North American Crohn's Study Group Investigators.
        N Engl J Med. 2000; 342: 1627-1632
        • Sandborn W.J.
        • Schreiber S.
        • Feagan B.G.
        • et al.
        Certolizumab pegol for active Crohn's disease: a placebo-controlled, randomized trial.
        Clin Gastroenterol Hepatol. 2011; 9: 670-678.e3
        • Stidham R.W.
        • Higgins P.D.
        Value of mucosal assessment and biomarkers in inflammatory bowel disease.
        Expert Rev Gastroenterol Hepatol. 2010; 4: 285-291
        • Casellas F.
        • Rodrigo L.
        • Nino P.
        • Pantiga C.
        • Riestra S.
        • Malagelada J.R.
        Sustained improvement of health-related quality of life in Crohn's disease patients treated with infliximab and azathioprine for 4 years.
        Inflamm Bowel Dis. 2007; 13: 1395-1400
        • Cosnes J.
        • Cattan S.
        • Blain A.
        • et al.
        Long-term evolution of disease behavior of Crohn's disease.
        Inflamm Bowel Dis. 2002; 8: 244-250
        • Darlington G.J.
        • Wilson D.R.
        • Lachman L.B.
        Monocyte-conditioned medium, interleukin-1, and tumor necrosis factor stimulate the acute phase response in human hepatoma cells in vitro.
        J Cell Biol. 1986; 103: 787-793
        • Pepys M.B.
        • Hirschfield G.M.
        C-reactive protein: a critical update.
        J Clin Invest. 2003; 111: 1805-1812
        • Vigushin D.M.
        • Pepys M.B.
        • Hawkins P.N.
        Metabolic and scintigraphic studies of radioiodinated human C-reactive protein in health and disease.
        J Clin Invest. 1993; 91: 1351-1357
        • Saverymuttu S.H.
        • Hodgson H.J.
        • Chadwick V.S.
        • Pepys M.B.
        Differing acute phase responses in Crohn's disease and ulcerative colitis.
        Gut. 1986; 27: 809-813
        • Gross V.
        • Andus T.
        • Caesar I.
        • Roth M.
        • Scholmerich J.
        Evidence for continuous stimulation of interleukin-6 production in Crohn's disease.
        Gastroenterology. 1992; 102: 514-519
        • Vermeire S.
        • Van Assche G.
        • Rutgeerts P.
        Laboratory markers in IBD: useful, magic, or unnecessary toys?.
        Gut. 2006; 55: 426-431
        • Florin T.H.
        • Paterson E.W.
        • Fowler E.V.
        • Radford-Smith G.L.
        Clinically active Crohn's disease in the presence of a low C-reactive protein.
        Scand J Gastroenterol. 2006; 41: 306-311
        • Henriksen M.
        • Jahnsen J.
        • Lygren I.
        • et al.
        C-reactive protein: a predictive factor and marker of inflammation in inflammatory bowel disease. Results from a prospective population-based study.
        Gut. 2008; 57: 1518-1523
        • Carlson C.S.
        • Aldred S.F.
        • Lee P.K.
        • et al.
        Polymorphisms within the C-reactive protein (CRP) promoter region are associated with plasma CRP levels.
        Am J Hum Genet. 2005; 77: 64-77
        • Mendoza J.L.
        • Abreu M.T.
        Biological markers in inflammatory bowel disease: practical consideration for clinicians.
        Gastroenterol Clin Biol. 2009; 33: S158-S173
        • Ripoche J.
        Blood platelets and inflammation: their relationship with liver and digestive diseases.
        Clin Res Hepatol Gastroenterol. 2011; 35: 353-357
        • Danese S.
        • Motte Cd Cde L.
        • Fiocchi C.
        Platelets in inflammatory bowel disease: clinical, pathogenic, and therapeutic implications.
        Am J Gastroenterol. 2004; 99: 938-945
        • Rutella S.
        • Vetrano S.
        • Correale C.
        • et al.
        Enhanced platelet adhesion induces angiogenesis in intestinal inflammation and inflammatory bowel disease microvasculature.
        J Cell Mol Med. 2011; 15: 625-634
        • Harries A.D.
        • Beeching N.J.
        • Rogerson S.J.
        • Nye F.J.
        The platelet count as a simple measure to distinguish inflammatory bowel disease from infective diarrhea.
        J Infect. 1991; 22: 247-250
        • Andre C.
        • Descos L.
        • Landais P.
        • Fermanian J.
        Assessment of appropriate laboratory measurements to supplement the Crohn's disease activity index.
        Gut. 1981; 22: 571-574
        • Poullis A.P.
        • Zar S.
        • Sundaram K.K.
        • et al.
        A new, highly sensitive assay for C-reactive protein can aid the differentiation of inflammatory bowel disorders from constipation- and diarrhea-predominant functional bowel disorders.
        Eur J Gastroenterol Hepatol. 2002; 14: 409-412
        • Lewis J.D.
        The utility of biomarkers in the diagnosis and therapy of inflammatory bowel disease.
        Gastroenterology. 2011; 140: 1817-1826.e2
        • Solem C.A.
        • Loftus Jr., E.V.
        • Tremaine W.J.
        • Harmsen W.S.
        • Zinsmeister A.R.
        • Sandborn W.J.
        Correlation of C-reactive protein with clinical, endoscopic, histologic, and radiographic activity in inflammatory bowel disease.
        Inflamm Bowel Dis. 2005; 11: 707-712
        • Colombel J.F.
        • Solem C.A.
        • Sandborn W.J.
        • et al.
        Quantitative measurement and visual assessment of ileal Crohn's disease activity by computed tomography enterography: correlation with endoscopic severity and C reactive protein.
        Gut. 2006; 55: 1561-1567
        • Oussalah A.
        • Chevaux J.B.
        • Fay R.
        • Sandborn W.J.
        • Bigard M.A.
        • Peyrin-Biroulet L.
        Predictors of infliximab failure after azathioprine withdrawal in Crohn's disease treated with combination therapy.
        Am J Gastroenterol. 2010; 105: 1142-1149
        • Papi C.
        • Festa V.
        • Leandro G.
        • et al.
        Long-term outcome of Crohn's disease following corticosteroid-induced remission.
        Am J Gastroenterol. 2007; 102: 814-819
        • Bitton A.
        • Dobkin P.L.
        • Edwardes M.D.
        • et al.
        Predicting relapse in Crohn's disease: a biopsychosocial model.
        Gut. 2008; 57: 1386-1392
        • Boirivant M.
        • Leoni M.
        • Tariciotti D.
        • Fais S.
        • Squarcia O.
        • Pallone F.
        The clinical significance of serum C reactive protein levels in Crohn's disease. Results of a prospective longitudinal study.
        J Clin Gastroenterol. 1988; 10: 401-405
        • Jurgens M.
        • Mahachie John J.M.
        • Cleynen I.
        • et al.
        Levels of C-reactive protein are associated with response to infliximab therapy in patients with Crohn's disease.
        Clin Gastroenterol Hepatol. 2011; 9: 421-427.e1
        • Brignola C.
        • Campieri M.
        • Bazzocchi G.
        • Farruggia P.
        • Tragnone A.
        • Lanfranchi G.A.
        A laboratory index for predicting relapse in asymptomatic patients with Crohn's disease.
        Gastroenterology. 1986; 91: 1490-1494
        • Peyrin-Biroulet L.
        • Standaert-Vitse A.
        • Branche J.
        • Chamaillard M.
        IBD serological panels: facts and perspectives.
        Inflamm Bowel Dis. 2007; 13: 1561-1566
        • McKenzie H.
        • Main J.
        • Pennington C.R.
        • Parratt D.
        Antibody to selected strains of Saccharomyces cerevisiae (baker's and brewer's yeast) and Candida albicans in Crohn's disease.
        Gut. 1990; 31: 536-538
        • Reumaux D.
        • Sendid B.
        • Poulain D.
        • Duthilleul P.
        • Dewit O.
        • Colombel J.F.
        Serological markers in inflammatory bowel diseases.
        Best Pract Res Clin Gastroenterol. 2003; 17: 19-35
        • Vernier G.
        • Sendid B.
        • Poulain D.
        • Colombel J.F.
        Relevance of serologic studies in inflammatory bowel disease.
        Curr Gastroenterol Rep. 2004; 6: 482-487
        • Barnich N.
        • Darfeuille-Michaud A.
        Adherent-invasive Escherichia coli and Crohn's disease.
        Curr Opin Gastroenterol. 2007; 23: 16-20
        • Barnich N.
        • Carvalho F.A.
        • Glasser A.L.
        • et al.
        CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease.
        J Clin Invest. 2007; 117: 1566-1574
        • Lodes M.J.
        • Cong Y.
        • Elson C.O.
        • et al.
        Bacterial flagellin is a dominant antigen in Crohn disease.
        J Clin Invest. 2004; 113: 1296-1306
        • Sutton C.L.
        • Kim J.
        • Yamane A.
        • et al.
        Identification of a novel bacterial sequence associated with Crohn's disease.
        Gastroenterology. 2000; 119: 23-31
        • Wei B.
        • Huang T.
        • Dalwadi H.
        • Sutton C.L.
        • Bruckner D.
        • Braun J.
        Pseudomonas fluorescens encodes the Crohn's disease-associated I2 sequence and T-cell superantigen.
        Infect Immun. 2002; 70: 6567-6575
        • Landers C.J.
        • Cohavy O.
        • Misra R.
        • et al.
        Selected loss of tolerance evidenced by Crohn's disease-associated immune responses to auto- and microbial antigens.
        Gastroenterology. 2002; 123: 689-699
        • Papp M.
        • Norman G.L.
        • Altorjay I.
        • Lakatos P.L.
        Utility of serological markers in inflammatory bowel diseases: gadget or magic?.
        World J Gastroenterol. 2007; 13: 2028-2036
        • Schoepfer A.M.
        • Schaffer T.
        • Mueller S.
        • et al.
        Phenotypic associations of Crohn's disease with antibodies to flagellins A4-Fla2 and Fla-X, ASCA, p-ANCA, PAB, and NOD2 mutations in a Swiss Cohort.
        Inflamm Bowel Dis. 2009; 15: 1358-1367
        • Schoepfer A.M.
        • Schaffer T.
        • Seibold-Schmid B.
        • Muller S.
        • Seibold F.
        Antibodies to flagellin indicate reactivity to bacterial antigens in IBS patients.
        Neurogastroenterol Motil. 2008; 20: 1110-1118
        • Dotan I.
        • Fishman S.
        • Dgani Y.
        • et al.
        Antibodies against laminaribioside and chitobioside are novel serologic markers in Crohn's disease.
        Gastroenterology. 2006; 131: 366-378
        • Simondi D.
        • Mengozzi G.
        • Betteto S.
        • et al.
        Antiglycan antibodies as serological markers in the differential diagnosis of inflammatory bowel disease.
        Inflamm Bowel Dis. 2008; 14: 645-651
        • Vandewalle-El Khoury P.
        • Colombel J.F.
        • Joossens S.
        • et al.
        Detection of antisynthetic mannoside antibodies (ASigmaMA) reveals heterogeneity in the ASCA response of Crohn's disease patients and contributes to differential diagnosis, stratification, and prediction.
        Am J Gastroenterol. 2008; 103: 949-957
        • Rieder F.
        • Schleder S.
        • Wolf A.
        • et al.
        Association of the novel serologic anti-glycan antibodies anti-laminarin and anti-chitin with complicated Crohn's disease behavior.
        Inflamm Bowel Dis. 2010; 16: 263-274
        • Lakatos P.L.
        • Papp M.
        • Rieder F.
        Serologic antiglycan antibodies in inflammatory bowel disease.
        Am J Gastroenterol. 2011; 106: 406-412
        • Reese G.E.
        • Constantinides V.A.
        • Simillis C.
        • et al.
        Diagnostic precision of anti-Saccharomyces cerevisiae antibodies and perinuclear antineutrophil cytoplasmic antibodies in inflammatory bowel disease.
        Am J Gastroenterol. 2006; 101: 2410-2422
        • Ruemmele F.M.
        • Targan S.R.
        • Levy G.
        • Dubinsky M.
        • Braun J.
        • Seidman E.G.
        Diagnostic accuracy of serological assays in pediatric inflammatory bowel disease.
        Gastroenterology. 1998; 115: 822-829
        • Benor S.
        • Russell G.H.
        • Silver M.
        • Israel E.J.
        • Yuan Q.
        • Winter H.S.
        Shortcomings of the inflammatory bowel disease Serology 7 panel.
        Pediatrics. 2010; 125: 1230-1236
        • Abreu M.T.
        Serologies in Crohn's disease: can we change the gray zone to black and white?.
        Gastroenterology. 2006; 131: 664-667
      1. sgiDiagnostic. Available at: www.prometheuslabs.com. Accessed November 16, 2011.

        • Ferrante M.
        • Henckaerts L.
        • Joossens M.
        • et al.
        New serological markers in inflammatory bowel disease are associated with complicated disease behaviour.
        Gut. 2007; 56: 1394-1403
        • Joossens S.
        • Reinisch W.
        • Vermeire S.
        • et al.
        The value of serologic markers in indeterminate colitis: a prospective follow-up study.
        Gastroenterology. 2002; 122: 1242-1247
        • Joossens S.
        • Colombel J.F.
        • Landers C.
        • et al.
        Anti-outer membrane of porin C and anti-I2 antibodies in indeterminate colitis.
        Gut. 2006; 55: 1667-1669
        • Thia K.T.
        • Sandborn W.J.
        • Harmsen W.S.
        • Zinsmeister A.R.
        • Loftus Jr., E.V.
        Risk factors associated with progression to intestinal complications of Crohn's disease in a population-based cohort.
        Gastroenterology. 2010; 139: 1147-1155
        • Mow W.S.
        • Vasiliauskas E.A.
        • Lin Y.C.
        • et al.
        Association of antibody responses to microbial antigens and complications of small bowel Crohn's disease.
        Gastroenterology. 2004; 126: 414-424
        • Targan S.R.
        • Landers C.J.
        • Yang H.
        • et al.
        Antibodies to CBir1 flagellin define a unique response that is associated independently with complicated Crohn's disease.
        Gastroenterology. 2005; 128: 2020-2028
        • Dubinsky M.C.
        • Lin Y.C.
        • Dutridge D.
        • et al.
        Serum immune responses predict rapid disease progression among children with Crohn's disease: immune responses predict disease progression.
        Am J Gastroenterol. 2006; 101: 360-367
        • Dubinsky M.C.
        • Kugathasan S.
        • Mei L.
        • et al.
        Increased immune reactivity predicts aggressive complicating Crohn's disease in children.
        Clin Gastroenterol Hepatol. 2008; 6: 1105-1111
        • Saverymuttu S.H.
        • Peters A.M.
        • Crofton M.E.
        • et al.
        111Indium autologous granulocytes in the detection of inflammatory bowel disease.
        Gut. 1985; 26: 955-960
        • Kaiser T.
        • Langhorst J.
        • Wittkowski H.
        • et al.
        Faecal S100A12 as a noninvasive marker distinguishing inflammatory bowel disease from irritable bowel syndrome.
        Gut. 2007; 56: 1706-1713
        • Desai D.
        • Faubion W.A.
        • Sandborn W.J.
        Review article: biological activity markers in inflammatory bowel disease.
        Aliment Pharmacol Ther. 2007; 25: 247-255
        • Roseth A.G.
        • Fagerhol M.K.
        • Aadland E.
        • Schjonsby H.
        Assessment of the neutrophil dominating protein calprotectin in feces. A methodologic study.
        Scand J Gastroenterol. 1992; 27: 793-798
        • Konikoff M.R.
        • Denson L.A.
        Role of fecal calprotectin as a biomarker of intestinal inflammation in inflammatory bowel disease.
        Inflamm Bowel Dis. 2006; 12: 524-534
        • Baveye S.
        • Elass E.
        • Mazurier J.
        • Spik G.
        • Legrand D.
        Lactoferrin: a multifunctional glycoprotein involved in the modulation of the inflammatory process.
        Clin Chem Lab Med. 1999; 37: 281-286
        • Kane S.V.
        • Sandborn W.J.
        • Rufo P.A.
        • et al.
        Fecal lactoferrin is a sensitive and specific marker in identifying intestinal inflammation.
        Am J Gastroenterol. 2003; 98: 1309-1314
        • Manolakis A.C.
        • Kapsoritakis A.N.
        • Georgoulias P.
        • et al.
        Moderate performance of serum S100A12, in distinguishing inflammatory bowel disease from irritable bowel syndrome.
        BMC Gastroenterol. 2010; 10: 118
        • van der Sluys Veer A.
        • Biemond I.
        • Verspaget H.W.
        • Lamers C.B.
        Faecal parameters in the assessment of activity in inflammatory bowel disease.
        Scand J Gastroenterol Suppl. 1999; 230: 106-110
        • Judd T.A.
        • Day A.S.
        • Lemberg D.A.
        • Turner D.
        • Leach S.T.
        Update of fecal markers of inflammation in inflammatory bowel disease.
        J Gastroenterol Hepatol. 2011; 26: 1493-1499
        • von Roon A.C.
        • Karamountzos L.
        • Purkayastha S.
        • et al.
        Diagnostic precision of fecal calprotectin for inflammatory bowel disease and colorectal malignancy.
        Am J Gastroenterol. 2007; 102: 803-813
        • van Rheenen P.F.
        • Van de Vijver E.
        • Fidler V.
        Faecal calprotectin for screening of patients with suspected inflammatory bowel disease: diagnostic meta-analysis.
        BMJ. 2010; 341: c3369
        • Gisbert J.P.
        • McNicholl A.G.
        • Gomollon F.
        Questions and answers on the role of fecal lactoferrin as a biological marker in inflammatory bowel disease.
        Inflamm Bowel Dis. 2009; 15: 1746-1754
        • Langhorst J.
        • Elsenbruch S.
        • Koelzer J.
        • Rueffer A.
        • Michalsen A.
        • Dobos G.J.
        Noninvasive markers in the assessment of intestinal inflammation in inflammatory bowel diseases: performance of fecal lactoferrin, calprotectin, and PMN-elastase, CRP, and clinical indices.
        Am J Gastroenterol. 2008; 103: 162-169
        • Sipponen T.
        • Karkkainen P.
        • Savilahti E.
        • et al.
        Correlation of faecal calprotectin and lactoferrin with an endoscopic score for Crohn's disease and histological findings.
        Aliment Pharmacol Ther. 2008; 28: 1221-1229
        • Roseth A.G.
        • Aadland E.
        • Jahnsen J.
        • Raknerud N.
        Assessment of disease activity in ulcerative colitis by faecal calprotectin, a novel granulocyte marker protein.
        Digestion. 1997; 58: 176-180
        • Roseth A.G.
        • Aadland E.
        • Grzyb K.
        Normalization of faecal calprotectin: a predictor of mucosal healing in patammatory bowel diseases usinflammatory bowel disease.
        Scand J Gastroenterol. 2004; 39: 1017-1020
        • Buderus S.
        • Boone J.
        • Lyerly D.
        • Lentze M.J.
        Fecal lactoferrin: a new parameter to monitor infliximab therapy.
        Dig Dis Sci. 2004; 49: 1036-1039
        • Sipponen T.
        • Savilahti E.
        • Kolho K.L.
        • Nuutinen H.
        • Turunen U.
        • Farkkila M.
        Crohn's disease activity assessed by fecal calprotectin and lactoferrin: correlation with Crohn's disease activity index and endoscopic findings.
        Inflamm Bowel Dis. 2008; 14: 40-46
        • Sipponen T.
        • Bjorkesten C.G.
        • Farkkila M.
        • Nuutinen H.
        • Savilahti E.
        • Kolho K.L.
        Faecal calprotectin and lactoferrin are reliable surrogate markers of endoscopic response during Crohn's disease treatment.
        Scand J Gastroenterol. 2010; 45: 325-331
        • Scarpa M.
        • D'Inca R.
        • Basso D.
        • et al.
        Fecal lactoferrin and calprotectin after ileocolonic resection for Crohn's disease.
        Dis Colon Rectum. 2007; 50: 861-869
        • Lamb C.A.
        • Mohiuddin M.K.
        • Gicquel J.
        • et al.
        Faecal calprotectin or lactoferrin can identify postoperative recurrence in Crohn's disease.
        Br J Surg. 2009; 96: 663-674
        • Costa F.
        • Mumolo M.G.
        • Ceccarelli L.
        • et al.
        Calprotectin is a stronger predictive marker of relapse in ulcerative colitis than in Crohn's disease.
        Gut. 2005; 54: 364-368
        • Tibble J.A.
        • Sigthorsson G.
        • Bridger S.
        • Fagerhol M.K.
        • Bjarnason I.
        Surrogate markers of intestinal inflammation are predictive of relapse in patammatory bowel diseases usinflammatory bowel disease.
        Gastroenterology. 2000; 119: 15-22
        • D'Inca R.
        • Dal Pont E.
        • Di Leo V.
        • et al.
        Can calprotectin predict relapse risk in inflammatory bowel disease?.
        Am J Gastroenterol. 2008; 103: 2007-2014
        • Sipponen T.
        • Kolho K.L.
        Faecal calprotectin in children with clinically quiescent inflammatory bowel disease.
        Scand J Gastroenterol. 2010; 45: 872-877
        • Pepe M.S.
        • Etzioni R.
        • Feng Z.
        • et al.
        Phases of biomarker development for early detection of cancer.
        J Natl Cancer Inst. 2001; 93: 1054-1061
        • Pineton de Chambrun G.
        • Peyrin-Biroulet L.
        • Lemann M.
        • Colombel J.F.
        Clinical implications of mucosal healing for the management of IBD.
        Nat Rev Gastroenterol Hepatol. 2010; 7: 15-29
        • Froslie K.F.
        • Jahnsen J.
        • Moum B.A.
        • Vatn M.H.
        Mucosal healing in inflammatory bowel disease: results from a Norwegian population-based cohort.
        Gastroenterology. 2007; 133: 412-422
        • Lin H.M.
        • Helsby N.A.
        • Rowan D.D.
        • Ferguson L.R.
        Using metabolomic analysis to understand inflammatory bowel diseases.
        Inflamm Bowel Dis. 2011; 17: 1021-1029
        • Gupta N.K.
        • Thaker A.I.
        • Kanuri N.
        • et al.
        Serum analysis of tryptophan catabolism pathway: Correlation with Crohn's disease activity.
        Inflamm Bowel Dis. 2011; ([Epub ahead of print].)
        • Mellor A.L.
        • Munn D.H.
        IDO expression by dendritic cells: tolerance and tryptophan catabolism.
        Nat Rev Immunol. 2004; 4: 762-774
        • Ferdinande L.
        • Demetter P.
        • Perez-Novo C.
        • et al.
        Inflamed intestinal mucosa features a specific epithelial expression pattern of indoleamine 2,3-dioxygenase.
        Int J Immunopathol Pharmacol. 2008; 21: 289-295
        • Dieckgraefe B.K.
        • Stenson W.F.
        • Korzenik J.R.
        • Swanson P.E.
        • Harrington C.A.
        Analysis of mucosal gene expression in inflammatory bowel disease by parallel oligonucleotide arrays.
        Physiol Genomics. 2000; 4: 1-11
        • Barcelo-Batllori S.
        • Andre M.
        • Servis C.
        • et al.
        Proteomic analysis of cytokine induced proteins in human intestinal epithelial cells: implications for inflammatory bowel diseases.
        Proteomics. 2002; 2: 551-560
        • Hansen J.J.
        • Holt L.
        • Sartor R.B.
        Gene expression patterns in experimental colitis in IL-10-deficient mice.
        Inflamm Bowel Dis. 2009; 15: 890-899
        • Brown S.L.
        • Riehl T.E.
        • Walker M.R.
        • et al.
        Myd88-dependent positioning of Ptgs2-expressing stromal cells maintains colonic epithelial proliferation during injury.
        J Clin Invest. 2007; 117: 258-269
        • Ciorba M.A.
        • Bettonville E.E.
        • McDonald K.G.
        • et al.
        Induction of IDO-1 by immunostimulatory DNA limits severity of experimental colitis.
        J Immunol. 2010; 184: 3907-3916
        • Gurtner G.J.
        • Newberry R.D.
        • Schloemann S.R.
        • McDonald K.G.
        • Stenson W.F.
        Inhibition of indoleamine 2,3-dioxygenase augments trinitrobenzene sulfonic acid colitis in mice.
        Gastroenterology. 2003; 125: 1762-1773
        • Matteoli G.
        • Mazzini E.
        • Iliev I.D.
        • et al.
        Gut CD103+ dendritic cells express indoleamine 2,3-dioxygenase which influences T regulatory/T effector cell balance and oral tolerance induction.
        Gut. 2010; 59: 595-604
        • Beeken W.L.
        Serum tryptophan in Crohn's disease.
        Scand J Gastroenterol. 1976; 11: 735-740
        • Forrest C.M.
        • Gould S.R.
        • Darlington L.G.
        • Stone T.W.
        Levels of purine, kynurenine and lipid peroxidation products in patammatory bowel diseases usinflammatory bowel disease.
        Adv Exp Med Biol. 2003; 527: 395-400
        • Forrest C.M.
        • Youd P.
        • Kennedy A.
        • Gould S.R.
        • Darlington L.G.
        • Stone T.W.
        Purine, kynurenine, neopterin and lipid peroxidation levels in inflammatory bowel disease.
        J Biomed Sci. 2002; 9: 436-442
        • Lin H.M.
        • Barnett M.P.
        • Roy N.C.
        • et al.
        Metabolomic analysis identifies inflammatory and noninflammatory metabolic effects of genetic modification in a mouse model of Crohn's disease.
        J Proteome Res. 2010; 9: 1965-1975
        • Lin H.M.
        • Edmunds S.I.
        • Helsby N.A.
        • Ferguson L.R.
        • Rowan D.D.
        Nontargeted urinary metabolite profiling of a mouse model of Crohn's disease.
        J Proteome Res. 2009; 8: 2045-2057
        • Otter D.
        • Cao M.
        • Lin H.M.
        • et al.
        Identification of urinary biomarkers of colon inflammation in IL10-/- mice using short-column LCMS metabolomics.
        J Biomed Biotechnol. 2011; 2011: 974701
        • Shiomi Y.
        • Nishiumi S.
        • Ooi M.
        • et al.
        GCMS-based metabolomic study in mice with colitis induced by dextran sulfate sodium.
        Inflamm Bowel Dis. 2011; 17: 2261-2274
        • Schrocksnadel K.
        • Wirleitner B.
        • Winkler C.
        • Fuchs D.
        Monitoring tryptophan metabolism in chronic immune activation.
        Clin Chim Acta. 2006; 364: 82-90
        • Schroecksnadel K.
        • Winkler C.
        • Duftner C.
        • Wirleitner B.
        • Schirmer M.
        • Fuchs D.
        Tryptophan degradation increases with stage in patients with rheumatoid arthritis.
        Clin Rheumatol. 2006; 25: 334-337
        • Widner B.
        • Sepp N.
        • Kowald E.
        • et al.
        Enhanced tryptophan degradation in systemic lupus erythematosus.
        Immunobiology. 2000; 201: 621-630
        • Wolf A.M.
        • Wolf D.
        • Rumpold H.
        • et al.
        Overexpression of indoleamine 2,3-dioxygenase in human inflammatory bowel disease.
        Clin Immunol. 2004; 113: 47-55
        • Williams H.R.
        • Cox I.J.
        • Walker D.G.
        • et al.
        Characterization of inflammatory bowel disease with urinary metabolic profiling.
        Am J Gastroenterol. 2009; 104: 1435-1444
        • Hong S.K.
        • Maltz B.E.
        • Coburn L.A.
        • et al.
        Increased serum levels of L-arginine in ulcerative colitis and correlation with disease severity.
        Inflamm Bowel Dis. 2010; 16: 105-111
        • Balasubramanian K.
        • Kumar S.
        • Singh R.R.
        • et al.
        Metabolism of the colonic mucosa in patammatory bowel diseases usinflammatory bowel diseases: an in vitro proton magnetic resonance spectroscopy study.
        Magn Reson Imaging. 2009; 27: 79-86
        • Martin F.P.
        • Rezzi S.
        • Philippe D.
        • et al.
        Metabolic assessment of gradual development of moderate experimental colitis in IL-10 deficient mice.
        J Proteome Res. 2009; 8: 2376-2387
        • Gobert A.P.
        • Cheng Y.
        • Akhtar M.
        • et al.
        Protective role of arginase in a mouse model of colitis.
        J Immunol. 2004; 173: 2109-2117
      2. IBDChip. Available at http://www.progenika.com. Accessed November 16, 2011.

        • Arijs I.
        • Li K.
        • Toedter G.
        • et al.
        Mucosal gene signatures to predict response to infliximab in patients with ulcerative colitis.
        Gut. 2009; 58: 1612-1619
        • Arijs I.
        • Quintens R.
        • Van Lommel L.
        • et al.
        Predictive value of epithelial gene expression profiles for response to infliximab in Crohn's disease.
        Inflamm Bowel Dis. 2010; 16: 2090-2098
        • Burakoff R.
        • Chao S.
        • Perencevich M.
        • et al.
        Blood-based biomarkers can differentiate ulcerative colitis from Crohn's disease and noninflammatory diarrhea.
        Inflamm Bowel Dis. 2011; 17: 1719-1725
        • McKinney E.F.
        • Lyons P.A.
        • Carr E.J.
        • et al.
        A CD8+ T-cell transcription signature predicts prognosis in autoimmune disease.
        Nat Med. 2010; 16: 586-591
        • Lee J.C.
        • Lyons P.A.
        • McKinney E.F.
        • et al.
        Gene expression profiling of CD8+ T-cells predicts prognosis in patients with Crohn disease and ulcerative colitis.
        J Clin Invest. 2011; 121: 4170-4179
        • Nanni P.
        • Parisi D.
        • Roda G.
        • et al.
        Serum protein profiling in patammatory bowel diseases usinflammatory bowel diseases using selective solid-phase bulk extraction, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and chemometric data analysis.
        Rapid Commun Mass Spectrom. 2007; 21: 4142-4148
        • M'Koma A.E.
        • Seeley E.H.
        • Washington M.K.
        • et al.
        Proteomic profiling of mucosal and submucosal colonic tissues yields protein signatures that differentiate the inflammatory colitides.
        Inflamm Bowel Dis. 2011; 17: 875-883
        • Meuwis M.A.
        • Fillet M.
        • Lutteri L.
        • et al.
        Proteomics for prediction and characterization of response to infliximab in Crohn's disease: a pilot study.
        Clin Biochem. 2008; 41: 960-967
        • Meuwis M.A.
        • Fillet M.
        • Geurts P.
        • et al.
        Biomarker discovery for inflammatory bowel disease, using proteomic serum profiling.
        Biochem Pharmacol. 2007; 73: 1422-1433
        • Roda G.
        • Caponi A.
        • Benevento M.
        • et al.
        New proteomic approaches for biomarker discovery in inflammatory bowel disease.
        Inflamm Bowel Dis. 2010; 16: 1239-1246
        • Alex P.
        • Gucek M.
        • Li X.
        Applications of proteomics in the study of inflammatory bowel diseases: current status and future directions with available technologies.
        Inflamm Bowel Dis. 2009; 15: 616-629