Developing and assessing cardiovascular biomarkers

Published:January 27, 2012DOI:
      Atherosclerosis is a slow process that over time can lead to fatal events. Early identification and prediction of future risk can allow for preventive strategies to be instituted. There is an increasing interest in utilizing novel biomarkers in cardiovascular disease screening and management. These novel biomarkers may help in cardiovascular disease risk assessment and treatment monitoring, and some may be treatment targets. To be useful for risk prediction, novel biomarkers need to show a significant association with cardiovascular disease events and bring additional value in risk stratification when added to known risk prediction models. Biomarkers used for treatment monitoring need to show that they can serve as good surrogates of cardiovascular disease status. In this article, we present 3 biomarkers that are currently approved by the U.S. Food and Drug Administration for use in cardiovascular disease management and risk assessment: C-reactive protein, lipoprotein-associated phospholipase A2, and myeloperoxidase. Other new biomarkers have also been shown recently to help in cardiovascular disease risk prediction and management. In this article, we will review 2 of these new biomarkers: cardiac troponin T measured by a highly sensitive assay and brain natriuretic peptide.


      ACC (American College of Cardiology), AFCAPS/TexCAPS (Air Force/Texas Coronary Atherosclerosis Prevention Study), AHA (American Heart Association), AUC (area under the curve), BNP (brain natriuretic peptide), cTnI (cardiac troponin I), cTnT (cardiac troponin T), CAPTURE (c7E3 Fab Anti Platelet Therapy in Unstable REfractory angina), CARE (Cholesterol and Recurrent Events trial), CI (confidence interval), CRP (C-reactive protein), CVD (cardiovascular disease), HDL-C (high-density lipoprotein cholesterol), HOPE (Heart Outcomes Prevention Evaluation), HR (hazard ratio), hs-CRP (high-sensitivity C-reactive protein), IDI (integrated discrimination improvement), JUPITER (Justification for the Use of Statins in Primary Prevention: an Intervention Trial Evaluating Rosuvastatin), Lp-PLA2 (lipoprotein-associated phospholipase A2), LDL-C (low-density lipoprotein cholesterol), MONICA (Monitoring of Trends and Determinants in Cardiovascular Disease), MPO (myeloperoxidase), MI (myocardial infarction), NT-proBNP (N-terminal pro–brain natriuretic peptide), NRI (net reclassification index), OR (odds ratio), PEACE (Prevention of Events With Angiotensin-Converting Enzyme Inhibition), RR (relative risk), USPTF (U.S. Preventive Task Force), WOSCOPS (West of Scotland Coronary Prevention Study)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Tardif J.C.
        • Heinonen T.
        • Orloff D.
        Vascular biomarkers and surrogates in cardiovascular disease.
        Circulation. 2006; 113: 2936-2942
        • Nambi V.
        • Ballantyne C.M.
        Role of biomarkers in developing new therapies for vascular disease.
        World J Surg. 2007; 31: 676-681
        • LaBaer J.
        So, you want to look for biomarkers.
        J Proteome Res. 2005; 4: 1053-1059
        • Vasan R.S.
        Biomarkers of cardiovascular disease: molecular basis and practical considerations.
        Circulation. 2006; 113: 2335-2362
        • Hlatky M.A.
        Exercise testing to predict outcome in patients with angina.
        J Gen Intern Med. 1999; 14: 63-65
        • von Elm E.
        • Altman D.G.
        • Egger M.
        • et al.
        • STROBE Initiative
        The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies.
        Ann Intern Med. 2007; 147: 573-577
        • Hlatky M.A.
        • Greenland P.
        • Arnett D.K.
        • et al.
        Criteria for evaluation of novel markers of cardiovascular risk: a scientific statement from the American Heart Association.
        Circulation. 2009; 119: 2408-2416
        • Pencina M.J.
        • D’Agostino RB Sr
        • D’Agostino Jr., R.B.
        • et al.
        Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond.
        Stat Med. 2008; 30: 199-206
        • Cook R.N.
        Statistical evaluation of prognostic vs diagnostic models: beyond the ROC curve.
        Clin Chem. 2008; 54: 117-123
        • Temple R.A.
        regulatory authority’s opinion about surrogate endpoints.
        in: Nimmo W.S. Tucker G.T. Clinical measurement in drug evaluation. Wiley, New York, NY1995: 3-22
        • Bassuk S.S.
        • Rifai N.
        • Ridker P.M.
        High-sensitivity C-reactive protein: clinical importance.
        Curr Probl Cardiol. 2004; 29: 439-493
        • Pasceri V.
        • Willerson J.T.
        • Yeh E.T.
        Direct proinflammatory effect of C-reactive protein on human endothelial cells.
        Circulation. 2000; 102: 2165-2168
        • Pasceri V.
        • Cheng J.S.
        • Willerson J.T.
        • et al.
        Modulation of C-reactive protein–mediated monocyte chemoattractant protein-1 induction in human endothelial cells by anti-atherosclerosis drugs.
        Circulation. 2001; 103: 2531-2534
        • Verma S.
        • Li S.H.
        • Badiwala M.V.
        • et al.
        Endothelin antagonism and interleukin-6 inhibition attenuate the proatherogenic effects of C-reactive protein.
        Circulation. 2002; 105: 1890-1896
        • Devaraj S.
        • Xu D.Y.
        • Jialal I.
        C-reactive protein increases plasminogen activator inhibitor-1 expression and activity in human aortic endothelial cells: implications for the metabolic syndrome and atherothrombosis.
        Circulation. 2003; 107: 398-404
        • Venugopal S.K.
        • Devaraj S.
        • Yuhanna I.
        • et al.
        Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells.
        Circulation. 2002; 106: 1439-1441
        • Verma S.
        • Wang C.H.
        • Li S.H.
        • et al.
        A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis.
        Circulation. 2002; 106: 913-919
        • Zwaka T.P.
        • Hombach V.
        • Torzewski J.
        C-reactive protein–mediated low density lipoprotein uptake by macrophages: implications for atherosclerosis.
        Circulation. 2001; 103: 1194-1197
        • Libby P.
        • Ridker P.M.
        • Maseri A.
        Inflammation and atherosclerosis.
        Circulation. 2002; 105: 1135-1143
        • Ridker P.M.
        • Hennekens C.H.
        • Buring J.E.
        • et al.
        C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women.
        N Engl J Med. 2000; 342: 836-843
        • Ridker P.M.
        • Cushman M.
        • Stampfer M.J.
        • et al.
        Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men.
        N Engl J Med. 1997; 336: 973-979
        • Ridker P.M.
        C-reactive protein: eighty years from discovery to emergence as a major risk marker for cardiovascular disease.
        Clin Chem. 2009; 55: 209-215
        • Ridker P.M.
        • Rifai N.
        • Pfeffer M.A.
        • et al.
        • Cholesterol and Recurrent Events (CARE) Investigators
        Inflammation, pravastatin, and the risk of coronary events after myocardial infarction in patients with average cholesterol levels.
        Circulation. 1998; 98: 839-844
        • Ridker P.M.
        • Rifai N.
        • Clearfield M.
        • et al.
        Measurement of C-reactive protein for the targeting of statin therapy in the primary prevention of acute coronary events.
        N Engl J Med. 2001; 344: 1959-1965
        • Ridker P.M.
        • Danielson E.
        • Fonseca F.A.H.
        • et al.
        • JUPITER Study Group
        Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein.
        N Engl J Med. 2008; 359: 2195-2207
        • Yang E.Y.
        • Nambi V.
        • Tang Z.
        • et al.
        Clinical implications of JUPITER (Justification for the Use of statins in Prevention: an Intervention Trial Evaluating Rosuvastatin) in a U.S. population insights from the ARIC (Atherosclerosis Risk in Communities) study.
        J Am Coll Cardiol. 2009; 54: 2388-2395
        • Tohidi M.
        • Hadaegh F.
        • Harati H.
        • et al.
        C-reactive protein in risk prediction of cardiovascular outcomes: Tehran Lipid and Glucose Study.
        Int J Cardiol. 2009; 132: 369-374
        • Arena R.
        • Arrowood J.A.
        • Fei D.Y.
        • et al.
        The relationship between C-reactive protein and other cardiovascular risk factors in men and women.
        J Cardiopulm Rehabil. 2006; 26: 323-327
        • Raitakari M.
        • Mansikkaniemi K.
        • Marniemi J.
        • et al.
        Distribution and determinants of serum high-sensitive C-reactive protein in a population of young adults: the Cardiovascular Risk in Young Finns Study.
        J Intern Med. 2005; 258: 428-434
        • Williams M.J.
        • Williams S.M.
        • Milne B.J.
        • et al.
        Association between C-reactive protein, metabolic cardiovascular risk factors, obesity and oral contraceptive use in young adults.
        Int J Obes Relat Metab Disord. 2004; 28: 998-1003
        • Kaptoge S.
        • Di Angelantonio E.
        • Lowe G.
        • et al.
        • Emerging Risk Factors Collaboration
        C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis.
        Lancet. 2010; 375: 132-140
        • Ridker P.M.
        • Buring J.E.
        • Rifai N.
        • et al.
        Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score.
        JAMA. 2007; 297: 611-619
        • Wang T.J.
        • Martin G.
        • Larson G.M.
        • et al.
        C-reactive protein is associated with subclinical epicardial coronary calcification in men and women: the Framingham Heart Study.
        Circulation. 2002; 106: 1189-1191
        • Redberg R.F.
        • Rifai N.
        • Gee L.
        • Ridker P.M.
        Lack of association of C-reactive protein and coronary calcium by electron beam computed tomography in postmenopausal women: implications for coronary artery disease screening.
        J Am Coll Cardiol. 2000; 36: 39-43
        • Lorenz M.W.
        • Karbstein P.
        • Markus H.S.
        • Sitzer M.
        High-sensitivity C-reactive protein is not associated with carotid intima-media progression: the Carotid Atherosclerosis Progression Study.
        Stroke. 2007; 38: 1774-1779
        • Makita S.
        • Nakamura M.
        • Hiramori K.
        The association of C-reactive protein levels with carotid intima-media complex thickness and plaque formation in the general population.
        Stroke. 2005; 36: 2138-2142
        • Folsom A.R.
        • Chambless L.E.
        • Ballantyne C.M.
        • et al.
        An assessment of incremental coronary risk prediction using C-reactive protein and other novel risk markers: the Atherosclerosis Risk in Communities study.
        Arch Intern Med. 2006; 166: 1368-1373
        • Ridker P.M.
        • Rifai N.
        • Rose L.
        • et al.
        Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events.
        N Engl J Med. 2002; 347: 1557-1565
        • Koenig W.
        • Löwel H.
        • Baumert J.
        • Meisinger C.
        C-reactive protein modulates risk prediction based on the Framingham score: implications for future risk assessment: results from a large cohort study in southern Germany.
        Circulation. 2004; 109: 1349-1353
        • Greenland P.
        • Alpert J.S.
        • Beller G.A.
        • et al.
        2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines.
        J Am Coll Cardiol. 2010; 56: 2182-2199
        • U.S. Preventive Services Task Force
        Using nontraditional risk factors in coronary heart disease risk assessment: U.S. Preventive Services Task Force recommendation statement.
        Ann Intern Med. 2009; 151: 474-482
        • Dehghan A.
        • Dupuis J.
        • Barbalic M.
        • et al.
        Meta-analysis of genome-wide association studies in >80 000 subjects identifies multiple loci for C-reactive protein levels.
        Circulation. 2011; 123: 731-738
        • Elliott P.
        • Chambers J.C.
        • Zhang W.
        • et al.
        Genetic loci associated with C-reactive protein levels and risk of coronary heart disease.
        JAMA. 2009; 302: 37-48
        • Ridker P.M.
        • Thuren T.
        • Zalewski A.
        • Libby P.
        Interleukin-1β inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS).
        Am Heart J. 2011; 162: 597-605
        • Bhatti S.
        • Hakeem A.
        • Cilingiroglu M.
        Lp-PLA2 as a marker of cardiovascular diseases.
        Curr Atheroscler Rep. 2010; 12: 140-144
        • Iribarren C.
        Lipoprotein-associated phospholipase A2 and cardiovascular risk: state of the evidence and future directions.
        Arterioscler Thromb Vasc Biol. 2006; 26: 5-6
        • Wolfert R.L.
        • Kim N.W.
        • Selby R.G.
        • et al.
        Biological variability and specificity of lipoprotein-associated phospholipase A2 (Lp-PLA2), a novel marker of cardiovascular risk.
        Circulation. 2004; 110 (III–309)
        • McConnell J.P.
        • Hoefner D.M.
        Lipoprotein-associated phospholipase A2.
        Clin Lab Med. 2006; 26: 679-697
        • Packard C.J.
        • O’Reilly D.S.
        • Caslake M.J.
        • et al.
        • West of Scotland Coronary Prevention Study Group
        Lipoprotein-associated phospholipase A2 as an independent predictor of coronary heart disease.
        N Engl J Med. 2000; 343: 1148-1155
        • Ballantyne C.M.
        • Hoogeveen R.C.
        • Bang H.
        • et al.
        Lipoprotein-associated phospholipase A2, high-sensitivity C-reactive protein, and risk for incident coronary heart disease in middle-aged men and women in the Atherosclerosis Risk in Communities (ARIC) study.
        Circulation. 2004; 109: 837-842
        • Garza C.A.
        • Montori V.M.
        • McConnel J.P.
        • et al.
        Association between lipoprotein-associated phospholipase A2 and cardiovascular disease: a systematic review.
        Mayo Clin Proc. 2007; 82: 159-165
        • Koenig W.
        • Khuseyinova N.
        • Lowel H.
        • et al.
        Lipoprotein-associated phospholipase A2 adds to risk prediction of incident coronary events by C-reactive protein in apparently healthy middle-aged men from the general population: results from the 14-year follow-up of a large cohort from southern Germany.
        Circulation. 2004; 110: 1903-1908
        • Oei H.H.
        • van der Meer I.M.
        • Hofman A.
        • et al.
        Lipoprotein-associated phospholipase A2 activity is associated with risk of coronary heart disease and ischemic stroke: the Rotterdam Study.
        Circulation. 2005; 111: 570-575
        • Rana J.S.
        • Cote M.
        • Despres J.P.
        Inflammatory biomarkers and the prediction of coronary events among people at intermediate risk: the EPIC-Norfolk Prospective Population Study.
        Heart. 2009; 95: 1682-1687
        • Nambi V.
        • Hoogeveen R.C.
        • Chambless L.
        • Hu Y.
        • et al.
        Lipoprotein-associated phospholipase A2 and high-sensitivity C-reactive protein improve the stratification of ischemic stroke risk in the Atherosclerosis Risk in Communities (ARIC) study.
        Stroke. 2009; 40: 376-381
        • Persson M.
        • Hedblad B.
        • Nelson J.J.
        • et al.
        Elevated Lp-PLA2 levels add prognostic information to the metabolic syndrome on incidence of cardiovascular events among middle-aged nondiabetic subjects.
        Arterioscler Thromb Vasc Biol. 2007; 27: 1411-1416
        • Winkler K.
        • Hoffmann M.M.
        • Winkelmann B.R.
        • et al.
        Lipoprotein-associated phospholipase A2 predicts 5-year mortality independently of established risk factors and adds prognostic information in patients with low and medium high-sensitivity C-reactive protein (the Ludwigshafen Risk and Cardiovascular Health Study).
        Clin Chem. 2007; 53: 1440-1447
        • Gerber Y.
        • McConnell J.P.
        • Jaffe A.S.
        • Weston S.A.
        • Killian J.M.
        • Roger V.L.
        Lipoprotein-associated phospholipase A2 and prognosis after myocardial infarction in the community.
        Arterioscler Thromb Vasc Biol. 2006; 26: 2517-2522
        • Mockel M.
        • Muller R.
        • Vollert J.O.
        • et al.
        Lipoprotein-associated phospholipase A2 for early risk stratification in patients with suspected acute coronary syndrome: a multi-marker approach. The North Wuerttemberg and Berlin Infarction Study-II (NOBIS-II).
        Clin Res Cardiol. 2007; 96: 604-612
        • Corson M.A.
        • Jones P.H.
        • Davidson M.
        Review of the evidence for the clinical utility of lipoprotein-associated phospholipase A2 as a cardiovascular risk marker.
        Am J Cardiol. 2008; 101: 41F-50F
        • Suchindran S.
        • Rivedal D.
        • Guyton J.R.
        • et al.
        Genome-wide association study of Lp-PLA2 activity and mass in the Framingham Heart Study.
        PLoS Genet. 2010; 4 (e1000928)
        • Grallert H.
        • Dupuis J.
        • Bis J.C.
        • et al.
        Eight genetic loci associated with variation in lipoprotein-associated phospholipase A2 mass and activity and coronary heart disease: meta-analysis of genome-wide association studies from five community-based studies.
        Eur Heart J. 2012; 33: 238-251
        • MacPhee C.H.
        Lipoprotein-associated phospholipase A2: a potential new risk factor for coronary artery disease and a therapeutic target.
        Curr Opin Pharmacol. 2001; 1: 121-125
        • Boyd H.F.
        • Fell S.C.
        • Hickey D.M.
        • et al.
        Potent, orally active inhibitors of lipoprotein-associated phospholipase A2: 1-(biphenylmethylamidoalkyl)-pyrimidones.
        Bioorg Med Chem Lett. 2002; 12: 51-55
        • Serruys P.W.
        • Garcia-Garcia H.M.
        • Buszman P.
        • et al.
        Effects of the direct lipoprotein-associated phospholipase A2 inhibitor darapladib on human coronary atherosclerotic plaque.
        Circulation. 2008; 118: 1172-1182
        • Schwartz G.G.
        • Olsson A.G.
        • Ballantyne C.M.
        • et al.
        Rationale and design of the dal-OUTCOMES trial: efficacy and safety of dalcetrapib in patients with recent acute coronary syndrome.
        Am Heart J. 2009; 158: 896-901.e3
        • Hochholzer W.
        • Morrow D.A.
        • Giugliano R.P.
        Novel biomarkers in cardiovascular disease: update 2010.
        Am Heart J. 2010; 160: 583-594
        • Podrez E.A.
        • Schmitt D.
        • Hoff H.F.
        • et al.
        Myeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic form in vitro.
        J Clin Invest. 1999; 103: 1547-1560
        • Naruko T.
        • Ueda M.
        • Haze K.
        • et al.
        Neutrophil infiltration of culprit lesions in acute coronary syndromes.
        Circulation. 2002; 106: 2894-2900
        • Buffon A.
        • Biasucci L.M.
        • Liuzzo G.
        • et al.
        Widespread coronary inflammation in unstable angina.
        N Engl J Med. 2002; 347: 5-12
        • Sugiyama S.
        • Okada Y.
        • Sukhova J.K.
        • et al.
        Macrophage myeloperoxidase regulation by granulocyte macrophage colony-stimulating factor in human atherosclerosis and implications in acute coronary syndromes.
        Am J Pathol. 2001; 158: 879-891
        • Zhang R.
        • Brennan M.L.
        • Fu X.
        • et al.
        Association between myeloperoxidase levels and risk of coronary artery disease.
        JAMA. 2001; 286: 2136-2142
        • Meuwese M.C.
        • Stroes E.S.
        • Hazen S.L.
        • et al.
        Serum myeloperoxidase levels are associated with the future risk of coronary artery disease in apparently healthy individuals: the EPIC-Norfolk Prospective Population Study.
        J Am Coll Cardiol. 2007; 50: 159-165
        • Baldus S.
        • Heeschen C.
        • Meinertz T.
        • et al.
        Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes.
        Circulation. 2003; 208: 1440-1445
        • Brennan M.L.
        • Penn M.S.
        • Lente F.V.
        • et al.
        Prognostic value of myeloperoxidase in patients with chest pain.
        N Engl J Med. 2003; 209: 1595-1604
        • Heslop C.L.
        • Frohlich J.L.
        • Hill J.S.
        Myeloperoxidase and C-reactive protein have combined utility for long-term prediction of cardiovascular mortality after coronary angiography.
        J Am Coll Cardiol. 2010; 55: 1102-1109
        • Roberts C.K.
        • Won D.
        • Pruthi S.
        • et al.
        Effect of a short-term diet and exercise intervention on oxidative stress, inflammation, MMP-9, and monocyte chemotactic activity in men with metabolic syndrome factors.
        J Appl Physiol. 2006; 100: 1657-1665
        • Katus H.A.
        • Remppis A.
        • Scheffold T.
        • et al.
        Intracellular compartmentation of cardiac troponin T and its release kinetics in patients with reperfused and nonreperfused myocardial infarction.
        Am J Cardiol. 1991; 67: 1360-1367
        • Ricchiuti V.
        • Voss E.M.
        • Ney A.
        • et al.
        Cardiac troponin T isoforms expressed in renal diseased skeletal muscle will not cause false-positive results by the second generation cardiac troponin T assay by Boehringer Mannheim.
        Clin Chem. 1998; 44: 1919-1924
        • Thygesen K.
        • Alpert J.S.
        • White H.D.
        Universal definition of myocardial infarction.
        Circulation. 2007; 116: 2634-2653
        • Wallace T.W.
        • Abdullah S.M.
        • Drazner M.H.
        • et al.
        Prevalence and determinants of troponin T elevation in the general population.
        Circulation. 2006; 113: 1958-1965
        • Lindahl B.
        • Venge P.
        • Wallentin L.
        Relation between troponin T and the risk of subsequent cardiac events in unstable coronary artery disease.
        Circulation. 1996; 93: 1651-1657
        • Daniels L.B.
        • Laughlin G.A.
        • Clopton P.
        • et al.
        Minimally elevated cardiac troponin T and elevated N-terminal pro-B-type natriuretic peptide predict mortality in older adults: results from the Rancho Bernardo Study.
        J Am Coll Cardiol. 2008; 52: 450-459
        • Eggers K.M.
        • Lagerqvist B.
        • Venge P.
        • et al.
        Persistent cardiac troponin I elevation in stabilized patients after an episode of acute coronary syndrome predicts long-term mortality.
        Circulation. 2007; 116: 1907-1914
        • Latini R.
        • Masson S.
        • Anand I.S.
        • et al.
        Prognostic value of very low plasma concentrations of troponin T in patients with stable chronic heart failure.
        Circulation. 2007; 116: 1242-1249
        • Omland T.
        • de Lemos J.A.
        • Sabatine M.S.
        • et al.
        A sensitive cardiac troponin T assay in stable coronary artery disease.
        N Engl J Med. 2009; 361: 2538-2547
        • de Lemos J.A.
        • Drazner M.H.
        • Omland T.
        • et al.
        Association of troponin T detected with a highly sensitive assay and cardiac structure and mortality risk in the general population.
        JAMA. 2010; 304: 2503-2512
        • deFilippi C.R.
        • de Lemos J.A.
        • Christenson R.H.
        • et al.
        Association of serial measures of cardiac troponin T using a sensitive assay with incident heart failure and cardiovascular mortality in older adults.
        JAMA. 2010; 304: 2494-2502
        • Saunders J.T.
        • Nambi V.
        • de Lemos J.A.
        • et al.
        Cardiac troponin T measured by a highly sensitive assay predicts coronary heart disease, heart failure, and mortality in the Atherosclerosis Risk in Communities Study.
        Circulation. 2011; 123: 1367-1376
        • Yasue H.
        • Yoshimura M.
        • Sumida H.
        • et al.
        Localization and mechanism of secretion of B-type natriuretic peptide in comparison with those of A-type natriuretic peptide in normal subjects and patients with heart failure.
        Circulation. 1994; 90: 195-203
        • Stein B.C.
        • Levin R.I.
        Natriuretic peptides: physiology, therapeutic potential, and risk stratification in ischemic heart disease.
        Am Heart J. 1998; 135: 914-923
        • Omland T.
        • Aakvaag A.
        • Vik-Mo H.
        Plasma cardiac natriuretic peptide determination as a screening test for the detection of patients with mild left ventricular impairment.
        Heart. 1996; 76: 232-237
        • Levin E.R.
        • Gardner D.G.
        • Samson W.K.
        Natriuretic peptides.
        N Engl J Med. 1998; 339: 321-328
        • Daniels L.B.
        • Maisel A.S.
        Natriuretic peptides.
        J Am Coll Cardiol. 2007; 50: 2357-2368
        • Morrow D.A.
        • Cannon C.P.
        • Jesse R.L.
        • et al.
        • NACB Writing Group
        National Academy of Clinical Biochemistry laboratory medicine practice guidelines: clinical characteristics and utilization of biochemical markers in acute coronary syndromes.
        Circulation. 2007; 115: e356-e375
        • Ribeiro A.L.
        Natriuretic peptides in elderly people with acute myocardial infarction.
        BMJ. 2009; 338 (b787)
        • Omland T.
        • Sabatine M.S.
        • Jablonski K.A.
        • et al.
        Prognostic value of B-type natriuretic peptides in patients with stable coronary artery disease: the PEACE Trial.
        J Am Coll Cardiol. 2007; 50: 205-214
        • Wang T.J.
        • Larson M.G.
        • Levy D.
        • et al.
        Plasma natriuretic peptide levels and the risk of cardiovascular events and death.
        N Engl J Med. 2004; 350: 655-663
        • de Lemos J.A.
        • Morrow D.A.
        • Bentley J.H.
        • et al.
        The prognostic value of B-type natriuretic peptide in patients with acute coronary syndromes.
        N Engl J Med. 2001; 345: 1014-1021
        • Angelantonio E.D.
        • Chowdhury R.
        • Sarwar N.
        • et al.
        B-type natriuretic peptides and cardiovascular risk: systematic review and meta-analysis of 40 prospective studies.
        Circulation. 2009; 120: 2177-2187
        • McKie P.M.
        • Rodeheffer R.J.
        • Cataliotti A.
        • et al.
        Amino-terminal pro-B-type natriuretic peptide and B-type natriuretic peptide: biomarkers for mortality in a large community-based cohort free of heart failure.
        Hypertension. 2006; 47: 874-880
        • Olsen M.H.
        • Hansen T.W.
        • Christensen M.K.
        • et al.
        Cardiovascular risk prediction by N-terminal pro brain natriuretic peptide and high sensitivity C-reactive protein is affected by age and sex.
        J Hypertens. 2008; 26: 26-34
        • Kistorp C.
        • Raymond I.
        • Pedersen F.
        • et al.
        N-terminal pro-brain natriuretic peptide, C-reactive protein, and urinary albumin levels as predictors of mortality and cardiovascular events in older adults.
        JAMA. 2005; 293: 1609-1616
        • McDonagh T.A.
        • Cunningham A.D.
        • Morrison C.E.
        • et al.
        Left ventricular dysfunction, natriuretic peptides, and mortality in an urban population.
        Heart. 2001; 86: 21-26
        • Laukkanen J.A.
        • Kurl S.
        • Ala-Kopsala M.
        • et al.
        Plasma N-terminal fragments of natriuretic propeptides predict the risk of cardiovascular events and mortality in middle-aged men.
        Eur Heart J. 2006; 27: 1230-1237
        • Blankenberg S.
        • McQueen M.J.
        • Smieja M.
        • et al.
        Comparative impact of multiple biomarkers and N-terminal pro-brain natriuretic peptide in the context of conventional risk factors for the prediction of recurrent cardiovascular events in the Heart Outcomes Prevention Evaluation (HOPE) Study.
        Circulation. 2006; 114: 201-208