Advertisement

Biomarkers in acute lung injury

Published:February 10, 2012DOI:https://doi.org/10.1016/j.trsl.2012.01.007
      Acute respiratory distress syndrome (ARDS) and acute lung injury (ALI) result in high permeability pulmonary edema causing hypoxic respiratory failure with high morbidity and mortality. As the population ages, the incidence of ALI is expected to rise. Over the last decade, several studies have identified biomarkers in plasma and bronchoalveolar lavage fluid providing important insights into the mechanisms involved in the pathophysiology of ALI. Several biomarkers have been validated in subjects from the large, multicenter ARDS clinical trials network. Despite these studies, no single or group of biomarkers has made it into routine clinical practice. New high throughput “omics” techniques promise improved understanding of the biologic processes in the pathogenesis in ALI and possibly new biomarkers that predict disease and outcomes. In this article, we review the current knowledge on biomarkers in ALI.

      Abbreviations:

      ARDS (acute respiratory distress syndrome), ALI (acute lung injury), ROC (receiver-operating characteristic), AUROCC (area under the ROC curve), BALF (bronchoalveolar lavage fluid), IL (interleukin), TNF (tumor necrosis factor), sTNFR-I and II (soluble TNF receptors I and II), HMGB (high mobility group box nuclear protein 1), LBP (lipopolysaccharide binding protein), NO (nitric oxide), SP (surfactant proteins), RAGE (receptor for advanced glycation end products), CCSP (clara cell secretory protein), vWF (vonWillebrand factor), s, sICAM-1 (soluble intercellular adhesion molecule-1), Ang-1 and -2 (angiopoietin-1 and -2), PAI-1 (plasminogen activator inhibitor-1), KGF (keratinocyte growth factor), HGF (hepatocyte growth factor), FGF (fibroblast growth factor), VEGF (vascular endothelial growth factor), N-PCP-III (N-terminal procollagen peptide-III), LIPS (lung injury prediction score), LC-MS/MS (liquid chromatography combined with mass spectrometry), IGFBP- (insulin like growth factor binding protein-3), NMR (nuclear magnetic resonance), NFKB (nuclear factor kappa beta)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ashbaugh D.G.
        • Bigelow D.B.
        • Petty T.L.
        • Levine B.E.
        Acute respiratory distress in adults.
        Lancet. 1967; 2: 319-323
        • Suratt B.T.
        • Parsons P.E.
        Mechanisms of acute lung injury/acute respiratory distress syndrome.
        Clin Chest Med. 2006; 27 (abstract viii): 579-589
        • Rubenfeld G.D.
        • Caldwell E.
        • Peabody E.
        • et al.
        Incidence and outcomes of acute lung injury.
        N Engl J Med. 2005; 353: 1685-1693
        • Brower R.G.
        • Lanken P.N.
        • MacIntyre N.
        • et al.
        Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome.
        N Engl J Med. 2004; 351: 327-336
      1. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The acute respiratory distress syndrome network.
        N Engl J Med. 2000; 342: 1301-1308
        • Steinberg K.P.
        • Hudson L.D.
        • Goodman R.B.
        • et al.
        Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome.
        N Engl J Med. 2006; 354: 1671-1684
        • Wheeler A.P.
        • Bernard G.R.
        • Thompson B.T.
        • et al.
        Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury.
        N Engl J Med. 2006; 354: 2213-2224
        • Wiedemann H.P.
        • Wheeler A.P.
        • Bernard G.R.
        • et al.
        Comparison of two fluid-management strategies in acute lung injury.
        N Engl J Med. 2006; 354: 2564-2575
        • The ARDS Network
        Ketoconazole for early treatment of acute lung injury and acute respiratory distress syndrome: a randomized controlled trial.
        JAMA. 2000; 283: 1995-2002
      2. Randomized, placebo-controlled trial of lisofylline for early treatment of acute lung injury and acute respiratory distress syndrome.
        Crit Care Med. 2002; 30: 1-6
        • Jain R.
        • DalNogare A.
        Pharmacological therapy for acute respiratory distress syndrome.
        Mayo Clin Proc. 2006; 81: 205-212
        • Stapleton R.D.
        • Wang B.M.
        • Hudson L.D.
        • Rubenfeld G.D.
        • Caldwell E.S.
        • Steinberg K.P.
        Causes and timing of death in patients with ARDS.
        Chest. 2005; 128: 525-532
        • Bernard G.R.
        • Artigas A.
        • Brigham K.L.
        • et al.
        Report of the American-European Consensus conference on acute respiratory distress syndrome: definitions, mechanisms, relevant outcomes, and clinical trial coordination. Consensus Committee.
        J Crit Care. 1994; 9: 72-81
        • Herridge M.S.
        • Angus D.C.
        Acute lung injury–affecting many lives.
        N Engl J Med. 2005; 353: 1736-1738
        • De Gruttola V.G.
        • Clax P.
        • DeMets D.L.
        • et al.
        Considerations in the evaluation of surrogate endpoints in clinical trials. Summary of a National Institutes of Health workshop.
        Control Clin Trials. 2001; 22: 485-502
        • Gerlach H.
        • Toussaint S.
        Sensitive, specific, predictive….statistical basics: how to use biomarkers.
        Crit Care Clin. 2011; 27: 215-227
        • Roca O.
        • Gomez-Olles S.
        • Cruz M.J.
        • Munoz X.
        • Griffiths M.J.
        • Masclans J.R.
        Effects of salbutamol on exhaled breath condensate biomarkers in acute lung injury: prospective analysis.
        Crit Care. 2008; 12: R72
        • Sack U.
        • Scheibe R.
        • Wotzel M.
        • et al.
        Multiplex analysis of cytokines in exhaled breath condensate.
        Cytometry. 2006; 69: 169-172
        • McClintock D.E.
        • Starcher B.
        • Eisner M.D.
        • et al.
        Higher urine desmosine levels are associated with mortality in patients with acute lung injury.
        Am J Physiol Lung Cell Mol Physiol. 2006; 291: L566-L571
        • McClintock D.E.
        • Ware L.B.
        • Eisner M.D.
        • Wickersham N.
        • Thompson B.T.
        • Matthay M.A.
        Higher urine nitric oxide is associated with improved outcomes in patients with acute lung injury.
        Am J Respir Crit Care Med. 2007; 175: 256-262
        • Conner E.R.
        • Ware L.B.
        • Modin G.
        • Matthay M.A.
        Elevated pulmonary edema fluid concentrations of soluble intercellular adhesion molecule-1 in patients with acute lung injury: biological and clinical significance.
        Chest. 1999; 116: 83S-84S
        • Kropski J.A.
        • Fremont R.D.
        • Calfee C.S.
        • Ware L.B.
        Clara cell protein (CC16), a marker of lung epithelial injury, is decreased in plasma and pulmonary edema fluid from patients with acute lung injury.
        Chest. 2009; 135: 1440-1447
        • Prabhakaran P.
        • Ware L.B.
        • White K.E.
        • Cross M.T.
        • Matthay M.A.
        • Olman M.A.
        Elevated levels of plasminogen activator inhibitor-1 in pulmonary edema fluid are associated with mortality in acute lung injury.
        Am J Physiol Lung Cell Mol Physiol. 2003; 285: L20-L28
        • Katzenstein A.-L.A.
        Katzenstein and Askin’s surgical pathology of non-neoplastic lung disease.
        4th ed. Saunders, Chapter 2, Figure 2.1, Philadelphia2006 (18)
        • Ware L.B.
        • Matthay M.A.
        The acute respiratory distress syndrome.
        N Engl J Med. 2000; 342: 1334-1349
        • Cross L.J.
        • Matthay M.A.
        Biomarkers in acute lung injury: insights into the pathogenesis of acute lung injury.
        Crit Care Clin. 2011; 27: 355-377
        • Calfee C.S.
        • Eisner M.D.
        • Ware L.B.
        • et al.
        Trauma-associated lung injury differs clinically and biologically from acute lung injury due to other clinical disorders.
        Crit Care Med. 2007; 35: 2243-2250
        • Parsons P.E.
        • Eisner M.D.
        • Thompson B.T.
        • et al.
        Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury.
        Crit Care Med. 2005; 33 (discussion 230–2): 1-6
        • Parsons P.E.
        • Matthay M.A.
        • Ware L.B.
        • Eisner M.D.
        Elevated plasma levels of soluble TNF receptors are associated with morbidity and mortality in patients with acute lung injury.
        Am J Physiol Lung Cell Mol Physiol. 2005; 288: L426-L431
        • Parsons P.E.
        • Moore F.A.
        • Moore E.E.
        • Ikle D.N.
        • Henson P.M.
        • Worthen G.S.
        Studies on the role of tumor necrosis factor in adult respiratory distress syndrome.
        Am Rev Respir Dis. 1992; 146: 694-700
        • Marks J.D.
        • Marks C.B.
        • Luce J.M.
        • et al.
        Plasma tumor necrosis factor in patients with septic shock. Mortality rate, incidence of adult respiratory distress syndrome, and effects of methylprednisolone administration.
        Am Rev Respir Dis. 1990; 141: 94-97
        • Roten R.
        • Markert M.
        • Feihl F.
        • Schaller M.D.
        • Tagan M.C.
        • Perret C.
        Plasma levels of tumor necrosis factor in the adult respiratory distress syndrome.
        Am Rev Respir Dis. 1991; 143: 590-592
        • Hyers T.M.
        • Tricomi S.M.
        • Dettenmeier P.A.
        • Fowler A.A.
        Tumor necrosis factor levels in serum and bronchoalveolar lavage fluid of patients with the adult respiratory distress syndrome.
        Am Rev Respir Dis. 1991; 144: 268-271
        • O’Grady N.P.
        • Preas H.L.
        • Pugin J.
        • et al.
        Local inflammatory responses following bronchial endotoxin instillation in humans.
        Am J Respir Crit Care Med. 2001; 163: 1591-1598
        • Bouros D.
        • Alexandrakis M.G.
        • Antoniou K.M.
        • et al.
        The clinical significance of serum and bronchoalveolar lavage inflammatory cytokines in patients at risk for acute respiratory distress syndrome.
        BMC Pulm Med. 2004; 4: 6
        • Takala A.
        • Jousela I.
        • Takkunen O.
        • et al.
        A prospective study of inflammation markers in patients at risk of indirect acute lung injury.
        Shock. 2002; 17: 252-257
        • Meduri G.U.
        • Headley S.
        • Kohler G.
        • et al.
        Persistent elevation of inflammatory cytokines predicts a poor outcome in ARDS. Plasma IL-1 beta and IL-6 levels are consistent and efficient predictors of outcome over time.
        Chest. 1995; 107: 1062-1073
        • Donnelly S.C.
        • Strieter R.M.
        • Kunkel S.L.
        • et al.
        Interleukin-8 and development of adult respiratory distress syndrome in at-risk patient groups.
        Lancet. 1993; 341: 643-647
        • Jorens P.G.
        • Van Damme J.
        • De Backer W.
        • et al.
        Interleukin 8 (IL-8) in the bronchoalveolar lavage fluid from patients with the adult respiratory distress syndrome (ARDS) and patients at risk for ARDS.
        Cytokine. 1992; 4: 592-597
        • Schutte H.
        • Lohmeyer J.
        • Rosseau S.
        • et al.
        Bronchoalveolar and systemic cytokine profiles in patients with ARDS, severe pneumonia and cardiogenic pulmonary oedema.
        Eur Respir J. 1996; 9: 1858-1867
        • Jacobs R.F.
        • Tabor D.R.
        • Burks A.W.
        • et al.
        Elevated interleukin-1 release by human alveolar macrophages during the adult respiratory distress syndrome.
        Am Rev Respir Dis. 1989; 140: 1686-1692
        • Pugin J.
        • Verghese G.
        • Widmer M.C.
        • Matthay M.A.
        The alveolar space is the site of intense inflammatory and profibrotic reactions in the early phase of acute respiratory distress syndrome.
        Crit Care Med. 1999; 27: 304-312
        • Pugin J.
        • Ricou B.
        • Steinberg K.P.
        • et al.
        Proinflammatory activity in bronchoalveolar lavage fluids from patients with ARDS, a prominent role for interleukin-1.
        Am J Respir Crit Care Med. 1996; 153: 1850-1856
        • Suter P.M.
        • Suter S.
        • Girardin E.
        • Roux-Lombard P.
        • Grau G.E.
        • Dayer J.M.
        High bronchoalveolar levels of tumor necrosis factor and its inhibitors, interleukin-1, interferon, and elastase in patients with adult respiratory distress syndrome after trauma, shock, or sepsis.
        Am Rev Respir Dis. 1992; 145: 1016-1022
        • Park W.Y.
        • Goodman R.B.
        • Steinberg K.P.
        • et al.
        Cytokine balance in the lungs of patients with acute respiratory distress syndrome.
        Am J Respir Crit Care Med. 2001; 164: 1896-1903
        • Cohen M.J.
        • Brohi K.
        • Calfee C.S.
        • et al.
        Early release of high mobility group box nuclear protein 1 after severe trauma in humans: role of injury severity and tissue hypoperfusion.
        Crit Care. 2009; 13: R174
        • Villar J.
        • Perez-Mendez L.
        • Espinosa E.
        • et al.
        Serum lipopolysaccharide binding protein levels predict severity of lung injury and mortality in patients with severe sepsis.
        PLoS One. 2009; 4: e6818
        • Bajwa E.K.
        • Khan U.A.
        • Januzzi J.L.
        • Gong M.N.
        • Thompson B.T.
        • Christiani D.C.
        Plasma C-reactive protein levels are associated with improved outcome in ARDS.
        Chest. 2009; 136: 471-480
        • Greene K.E.
        • Wright J.R.
        • Steinberg K.P.
        • et al.
        Serial changes in surfactant-associated proteins in lung and serum before and after onset of ARDS.
        Am J Respir Crit Care Med. 1999; 160: 1843-1850
        • Greene K.E.
        • Ye S.
        • Mason R.J.
        • Parsons P.E.
        Serum surfactant protein-A levels predict development of ARDS in at-risk patients.
        Chest. 1999; 116: 90S-91S
        • Bersten A.D.
        • Hunt T.
        • Nicholas T.E.
        • Doyle I.R.
        Elevated plasma surfactant protein-B predicts development of acute respiratory distress syndrome in patients with acute respiratory failure.
        Am J Respir Crit Care Med. 2001; 164: 648-652
        • Eisner M.D.
        • Parsons P.
        • Matthay M.A.
        • Ware L.
        • Greene K.
        Plasma surfactant protein levels and clinical outcomes in patients with acute lung injury.
        Thorax. 2003; 58: 983-988
        • Gong M.N.
        • Wei Z.
        • Xu L.L.
        • Miller D.P.
        • Thompson B.T.
        • Christiani D.C.
        Polymorphism in the surfactant protein-B gene, gender, and the risk of direct pulmonary injury and ARDS.
        Chest. 2004; 125: 203-211
        • Kobayashi J.
        • Kitamura S.
        KL-6: a serum marker for interstitial pneumonia.
        Chest. 1995; 108: 311-315
        • Ishizaka A.
        • Matsuda T.
        • Albertine K.H.
        • et al.
        Elevation of KL-6, a lung epithelial cell marker, in plasma and epithelial lining fluid in acute respiratory distress syndrome.
        Am J Physiol Lung Cell Mol Physiol. 2004; 286: L1088-L1094
        • Bierhaus A.
        • Humpert P.M.
        • Morcos M.
        • et al.
        Understanding RAGE, the receptor for advanced glycation end products.
        J Mol Med (Berl). 2005; 83: 876-886
        • Uchida T.
        • Shirasawa M.
        • Ware L.B.
        • et al.
        Receptor for advanced glycation end-products is a marker of type I cell injury in acute lung injury.
        Am J Respir Crit Care Med. 2006; 173: 1008-1015
        • Calfee C.S.
        • Ware L.B.
        • Eisner M.D.
        • et al.
        Plasma receptor for advanced glycation end products and clinical outcomes in acute lung injury.
        Thorax. 2008; 63: 1083-1089
        • Fremont R.D.
        • Koyama T.
        • Calfee C.S.
        • et al.
        Acute lung injury in patients with traumatic injuries: utility of a panel of biomarkers for diagnosis and pathogenesis.
        J Trauma. 2010; 68: 1121-1127
        • Dierynck I.
        • Bernard A.
        • Roels H.
        • De Ley M.
        The human Clara cell protein: biochemical and biological characterisation of a natural immunosuppressor.
        Mult Scler. 1996; 1: 385-387
        • Lesur O.
        • Langevin S.
        • Berthiaume Y.
        • et al.
        Outcome value of Clara cell protein in serum of patients with acute respiratory distress syndrome.
        Intensive Care Med. 2006; 32: 1167-1174
        • Determann R.M.
        • Millo J.L.
        • Waddy S.
        • Lutter R.
        • Garrard C.S.
        • Schultz M.J.
        Plasma CC16 levels are associated with development of ALI/ARDS in patients with ventilator-associated pneumonia: a retrospective observational study.
        BMC Pulm Med. 2009; 9: 49
        • Katayama M.
        • Ishizaka A.
        • Sakamoto M.
        • et al.
        Laminin gamma2 fragments are increased in the circulation of patients with early phase acute lung injury.
        Intensive Care Med. 2010; 36: 479-486
        • Carvalho A.C.
        • Bellman S.M.
        • Saullo V.J.
        • Quinn D.
        • Zapol W.M.
        Altered factor VIII in acute respiratory failure.
        N Engl J Med. 1982; 307: 1113-1119
        • Rubin D.B.
        • Wiener–Kronish J.P.
        • et al.
        Elevated von Willebrand factor antigen is an early plasma predictor of acute lung injury in nonpulmonary sepsis syndrome.
        J Clin Invest. 1990; 86: 474-480
        • Bajaj M.S.
        • Tricomi S.M.
        Plasma levels of the three endothelial-specific proteins von Willebrand factor, tissue factor pathway inhibitor, and thrombomodulin do not predict the development of acute respiratory distress syndrome.
        Intensive Care Med. 1999; 25: 1259-1266
        • Moss M.
        • Ackerson L.
        • Gillespie M.K.
        • Moore F.A.
        • Moore E.E.
        • Parsons P.E.
        von Willebrand factor antigen levels are not predictive for the adult respiratory distress syndrome.
        Am J Respir Crit Care Med. 1995; 151: 15-20
        • Ware L.B.
        • Eisner M.D.
        • Thompson B.T.
        • Parsons P.E.
        • Matthay M.A.
        Significance of von Willebrand factor in septic and nonseptic patients with acute lung injury.
        Am J Respir Crit Care Med. 2004; 170: 766-772
        • Calfee C.S.
        • Eisner M.D.
        • Parsons P.E.
        • et al.
        Soluble intercellular adhesion molecule-1 and clinical outcomes in patients with acute lung injury.
        Intensive Care Med. 2009; 35: 248-257
        • Agouridakis P.
        • Kyriakou D.
        • Alexandrakis M.G.
        • et al.
        The predictive role of serum and bronchoalveolar lavage cytokines and adhesion molecules for acute respiratory distress syndrome development and outcome.
        Respir Res. 2002; 3: 25
        • Flori H.R.
        • Ware L.B.
        • Glidden D.
        • Matthay M.A.
        Early elevation of plasma soluble intercellular adhesion molecule-1 in pediatric acute lung injury identifies patients at increased risk of death and prolonged mechanical ventilation.
        Pediatr Crit Care Med. 2003; 4: 315-321
        • Gallagher D.C.
        • Parikh S.M.
        • Balonov K.
        • et al.
        Circulating angiopoietin 2 correlates with mortality in a surgical population with acute lung injury/adult respiratory distress syndrome.
        Shock. 2008; 29: 656-661
        • Meyer N.J.
        • Li M.
        • Feng R.
        • et al.
        ANGPT2 genetic variant is associated with trauma-associated acute lung injury and altered plasma angiopoietin-2 isoform ratio.
        Am J Respir Crit Care Med. 2011; 183: 1344-1353
        • Ong T.
        • McClintock D.E.
        • Kallet R.H.
        • Ware L.B.
        • Matthay M.A.
        • Liu K.D.
        Ratio of angiopoietin-2 to angiopoietin-1 as a predictor of mortality in acute lung injury patients.
        Crit Care Med. 2010; 38: 1845-1851
        • Boldt J.
        • Wollbruck M.
        • Kuhn D.
        • Linke L.C.
        • Hempelmann G.
        Do plasma levels of circulating soluble adhesion molecules differ between surviving and nonsurviving critically ill patients?.
        Chest. 1995; 107: 787-792
        • Okajima K.
        • Harada N.
        • Sakurai G.
        • et al.
        Rapid assay for plasma soluble E-selectin predicts the development of acute respiratory distress syndrome in patients with systemic inflammatory response syndrome.
        Transl Res. 2006; 148: 295-300
        • Idell S.
        • James K.K.
        • Levin E.G.
        • et al.
        Local abnormalities in coagulation and fibrinolytic pathways predispose to alveolar fibrin deposition in the adult respiratory distress syndrome.
        J Clin Invest. 1989; 84: 695-705
        • Idell S.
        • Koenig K.B.
        • Fair D.S.
        • Martin T.R.
        • McLarty J.
        • Maunder R.J.
        Serial abnormalities of fibrin turnover in evolving adult respiratory distress syndrome.
        Am J Physiol. 1991; 261: L240-L248
        • Bitterman P.B.
        • Rennard S.I.
        • Adelberg S.
        • Crystal R.G.
        Role of fibronectin as a growth factor for fibroblasts.
        J Cell Biol. 1983; 97: 1925-1932
        • Grinnell F.
        • Feld M.
        • Minter D.
        Fibroblast adhesion to fibrinogen and fibrin substrata: requirement for cold-insoluble globulin (plasma fibronectin).
        Cell. 1980; 19: 517-525
        • Seeger W.
        • Hubel J.
        • Klapettek K.
        • et al.
        Procoagulant activity in bronchoalveolar lavage of severely traumatized patients–relation to the development of acute respiratory distress.
        Thromb Res. 1991; 61: 53-64
        • Bertozzi P.
        • Astedt B.
        • Zenzius L.
        • et al.
        Depressed bronchoalveolar urokinase activity in patients with adult respiratory distress syndrome.
        N Engl J Med. 1990; 322: 890-897
        • Senior R.M.
        • Skogen W.F.
        • Griffin G.L.
        • Wilner G.D.
        Effects of fibrinogen derivatives upon the inflammatory response. Studies with human fibrinopeptide B.
        J Clin Invest. 1986; 77: 1014-1019
        • Leavell K.J.
        • Peterson M.W.
        • Gross T.J.
        The role of fibrin degradation products in neutrophil recruitment to the lung.
        Am J Respir Cell Mol Biol. 1996; 14: 53-60
        • Seeger W.
        • Elssner A.
        • Gunther A.
        • Kramer H.J.
        • Kalinowski H.O.
        Lung surfactant phospholipids associate with polymerizing fibrin: loss of surface activity.
        Am J Respir Cell Mol Biol. 1993; 9: 213-220
        • Gunther A.
        • Mosavi P.
        • Heinemann S.
        • et al.
        Alveolar fibrin formation caused by enhanced procoagulant and depressed fibrinolytic capacities in severe pneumonia. Comparison with the acute respiratory distress syndrome.
        Am J Respir Crit Care Med. 2000; 161: 454-462
        • Ware L.B.
        • Fang X.
        • Matthay M.A.
        Protein C and thrombomodulin in human acute lung injury.
        Am J Physiol Lung Cell Mol Physiol. 2003; 285: L514-L521
        • McClintock D.
        • Zhuo H.
        • Wickersham N.
        • Matthay M.A.
        • Ware L.B.
        Biomarkers of inflammation, coagulation and fibrinolysis predict mortality in acute lung injury.
        Crit Care. 2008; 12: R41
        • Tomashefski Jr., J.F.
        Pulmonary pathology of acute respiratory distress syndrome.
        Clin Chest Med. 2000; 21: 435-466
        • Chelly N.
        • Mouhieddine-Gueddiche O.B.
        • Barlier-Mur A.M.
        • Chailley-Heu B.
        • Bourbon J.R.
        Keratinocyte growth factor enhances maturation of fetal rat lung type II cells.
        Am J Respir Cell Mol Biol. 1999; 20: 423-432
        • Danilenko D.M.
        Preclinical and early clinical development of keratinocyte growth factor, an epithelial-specific tissue growth factor.
        Toxicol Pathol. 1999; 27: 64-71
        • Deterding R.R.
        • Jacoby C.R.
        • Shannon J.M.
        Acidic fibroblast growth factor and keratinocyte growth factor stimulate fetal rat pulmonary epithelial growth.
        Am J Physiol. 1996; 271: L495-L505
        • Ware L.B.
        • Matthay M.A.
        Keratinocyte and hepatocyte growth factors in the lung: roles in lung development, inflammation, and repair.
        Am J Physiol Lung Cell Mol Physiol. 2002; 282: L924-L940
        • Stern J.B.
        • Fierobe L.
        • Paugam C.
        • et al.
        Keratinocyte growth factor and hepatocyte growth factor in bronchoalveolar lavage fluid in acute respiratory distress syndrome patients.
        Crit Care Med. 2000; 28: 2326-2333
        • Verghese G.M.
        • McCormick-Shannon K.
        • Mason R.J.
        • Matthay M.A.
        Hepatocyte growth factor and keratinocyte growth factor in the pulmonary edema fluid of patients with acute lung injury. Biologic and clinical significance.
        Am J Respir Crit Care Med. 1998; 158: 386-394
        • Thickett D.R.
        • Armstrong L.
        • Christie S.J.
        • Millar A.B.
        Vascular endothelial growth factor may contribute to increased vascular permeability in acute respiratory distress syndrome.
        Am J Respir Crit Care Med. 2001; 164: 1601-1605
        • Thickett D.R.
        • Armstrong L.
        • Millar A.B.
        A role for vascular endothelial growth factor in acute and resolving lung injury.
        Am J Respir Crit Care Med. 2002; 166: 1332-1337
        • Maitre B.
        • Boussat S.
        • Jean D.
        • et al.
        Vascular endothelial growth factor synthesis in the acute phase of experimental and clinical lung injury.
        Eur Respir J. 2001; 18: 100-106
        • Ware L.B.
        • Kaner R.J.
        • Crystal R.G.
        • et al.
        VEGF levels in the alveolar compartment do not distinguish between ARDS and hydrostatic pulmonary oedema.
        Eur Respir J. 2005; 26: 101-105
        • Chesnutt A.N.
        • Matthay M.A.
        • Tibayan F.A.
        • Clark J.G.
        Early detection of type III procollagen peptide in acute lung injury. Pathogenetic and prognostic significance.
        Am J Respir Crit Care Med. 1997; 156: 840-845
        • Clark J.G.
        • Milberg J.A.
        • Steinberg K.P.
        • Hudson L.D.
        Type III procollagen peptide in the adult respiratory distress syndrome. Association of increased peptide levels in bronchoalveolar lavage fluid with increased risk for death.
        Ann Intern Med. 1995; 122: 17-23
        • Meduri G.U.
        • Tolley E.A.
        • Chinn A.
        • Stentz F.
        • Postlethwaite A.
        Procollagen types I and III aminoterminal propeptide levels during acute respiratory distress syndrome and in response to methylprednisolone treatment.
        Am J Respir Crit Care Med. 1998; 158: 1432-1441
        • Marshall R.P.
        • Bellingan G.
        • Webb S.
        • et al.
        Fibroproliferation occurs early in the acute respiratory distress syndrome and impacts on outcome.
        Am J Respir Crit Care Med. 2000; 162: 1783-1788
        • Gajic O.
        • Afessa B.
        • Thompson B.T.
        • et al.
        Prediction of death and prolonged mechanical ventilation in acute lung injury.
        Crit Care. 2007; 11: R53
        • Gajic O.
        • Dabbagh O.
        • Park P.K.
        • et al.
        Early identification of patients at risk of acute lung injury: evaluation of lung injury prediction score in a multicenter cohort study.
        Am J Respir Crit Care Med. 2011; 183: 462-470
        • Trillo-Alvarez C.
        • Cartin-Ceba R.
        • Kor D.J.
        • et al.
        Acute lung injury prediction score: derivation and validation in a population-based sample.
        Eur Respir J. 2011; 37: 604-609
        • Ware L.B.
        • Koyama T.
        • Billheimer D.D.
        • et al.
        Prognostic and pathogenetic value of combining clinical and biochemical indices in patients with acute lung injury.
        Chest. 2010; 137: 288-296
        • Wang Z.
        • Beach D.
        • Su L.
        • Zhai R.
        • Christiani D.C.
        A genome-wide expression analysis in blood identifies pre-elafin as a biomarker in ARDS.
        Am J Respir Cell Mol Biol. 2008; 38: 724-732
        • Gong M.N.
        • Zhou W.
        • Williams P.L.
        • Thompson B.T.
        • Pothier L.
        • Boyce P.
        • et al.
        -308GA and TNFB polymorphisms in acute respiratory distress syndrome.
        Eur Respir J. 2005; 26: 382-389
        • Sutherland A.M.
        • Walley K.R.
        • Manocha S.
        • Russell J.A.
        The association of interleukin 6 haplotype clades with mortality in critically ill adults.
        Arch Intern Med. 2005; 165: 75-82
        • Gong M.N.
        • Thompson B.T.
        • Williams P.L.
        • et al.
        Interleukin-10 polymorphism in position -1082 and acute respiratory distress syndrome.
        Eur Respir J. 2006; 27: 674-681
        • Chang D.W.
        • Hayashi S.
        • Gharib S.A.
        • et al.
        Proteomic and computational analysis of bronchoalveolar proteins during the course of the acute respiratory distress syndrome.
        Am J Respir Crit Care Med. 2008; 178: 701-709
        • Schnapp L.M.
        • Donohoe S.
        • Chen J.
        • et al.
        Mining the acute respiratory distress syndrome proteome: identification of the insulin-like growth factor (IGF)/IGF-binding protein-3 pathway in acute lung injury.
        Am J Pathol. 2006; 169: 86-95
        • Stringer K.A.
        • Serkova N.J.
        • Karnovsky A.
        • Guire K.
        • Paine III, R.
        • Standiford T.J.
        Metabolic consequences of sepsis-induced acute lung injury revealed by plasma (1)H-nuclear magnetic resonance quantitative metabolomics and computational analysis.
        Am J Physiol Lung Cell Mol Physiol. 2011; 300: L4-L11