Peripheral blood biomarkers in idiopathic pulmonary fibrosis

  • Rekha Vij
    Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Ill
    Search for articles by this author
  • Imre Noth
    Reprint requests: Imre Noth, MD, Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, 5841 S. Maryland Ave, MC 6076 Chicago, IL 60637.
    Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Ill
    Search for articles by this author
Published:February 10, 2012DOI:
      In this article, we review the evidence for peripheral blood biomarkers in idiopathic pulmonary fibrosis (IPF), a life-threatening fibrotic lung disease of unknown etiology. We focus on selected biomarkers present in peripheral blood, as they are easy to obtain, can be measured longitudinally, and have the greatest likelihood of achieving clinical utility. This article concentrates on biomarkers with mechanistic plausibility that may be directly involved in the development of IPF, including KL-6, surfactant proteins A and D, matrix metalloproteases (MMP) 1 and 7, CCL18, VEGF, YKL-40, osteopontin, circulating fibrocytes, and T cells. After reviewing the evidence base for each, we designate the biomarkers that may have utility as: (1) diagnostic biomarkers to distinguish IPF from other interstitial lung diseases, (2) prognostic biomarkers that are correlated with disease progression or mortality, or (3) biomarkers that can be used as tools for serial monitoring of disease severity. Although there are no validated biomarkers that are currently available, the need for surrogates of diagnosis, prognosis, and monitoring of disease course with emerging therapies is great.


      AaDO2 (alveolar-arterial difference of oxygen), BALF (bronchoalveolar lavage fluid), BNP (brain natriuretic peptide), CCL (CC chemokine ligand), CI (confidence interval), CT (computed tomography), DLCO (diffusing capacity for carbon monoxide), FVC (forced vital capacity), HR (hazard ratio), IL (interleukin), IPF (Idiopathic Pulmonary Fibrosis), KL-6 (Krebs von den lungen-6 antigen), MMP (matrix metalloprotease), PARC (pulmonary and activation-regulated chemokine), SP (surfactant protein), TLC (total lung capacity), Tregs (T regulatory cells), UIP (usual interstitial pneumonia), VEGF (vascular endothelial growth factor)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


      1. Bureau USC. 2010 Census Briefs. Available at: Accessed November 23, 2011.

        • Fernandez Perez E.R.
        • Daniels C.E.
        • Schroeder D.R.
        • et al.
        Incidence, prevalence, and clinical course of idiopathic pulmonary fibrosis: a population-based study.
        Chest. 2010; 137: 129-137
        • Kim D.S.
        • Collard H.R.
        • King Jr., T.E.
        Classification and natural history of the idiopathic interstitial pneumonias.
        Proc Am Thorac Soc. 2006; 3: 285-292
        • Raghu G.
        • Collard H.R.
        • Egan J.J.
        • et al.
        An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management.
        Am J Respir Crit Care Med. 2011; 183: 788-824
        • Katzenstein A.L.
        • Myers J.L.
        Idiopathic pulmonary fibrosis: clinical relevance of pathologic classification.
        Am J Respir Crit Care Med. 1998; 157: 1301-1315
        • Kim H.N.
        • Januzzi Jr., J.L.
        Natriuretic peptide testing in heart failure.
        Circulation. 2011; 123: 2015-2019
        • Fonarow G.C.
        • Peacock W.F.
        • Phillips C.O.
        • Givertz M.M.
        • Lopatin M.
        Admission B-type natriuretic peptide levels and in-hospital mortality in acute decompensated heart failure.
        J Am Coll Cardiol. 2007; 49: 1943-1950
        • Leuchte H.H.
        • Holzapfel M.
        • Baumgartner R.A.
        • et al.
        Clinical significance of brain natriuretic peptide in primary pulmonary hypertension.
        J Am Coll Cardiol. 2004; 43: 764-770
        • Song J.W.
        • Song J.K.
        • Kim D.S.
        Echocardiography and brain natriuretic peptide as prognostic indicators in idiopathic pulmonary fibrosis.
        Respir Med. 2009; 103: 180-186
        • Leuchte H.H.
        • Baumgartner R.A.
        • Nounou M.E.
        • et al.
        Brain natriuretic peptide is a prognostic parameter in chronic lung disease.
        Am J Respir Crit Care Med. 2006; 173: 744-750
        • Corte T.J.
        • Wort S.J.
        • Gatzoulis M.A.
        • et al.
        Elevated brain natriuretic peptide predicts mortality in interstitial lung disease.
        Eur Respir J. 2010; 36: 819-825
        • Boonpipattanapong T.
        • Chewatanakornkul S.
        Preoperative carcinoembryonic antigen and albumin in predicting survival in patients with colon and rectal carcinomas.
        Journal of Clin gastroenterology. 2006; 40: 592-595
        • Gupta D.
        • Lis C.G.
        Pretreatment serum albumin as a predictor of cancer survival: a systematic review of the epidemiological literature.
        Nutrition J. 2010; 9: 69
        • Bologa R.M.
        • Levine D.M.
        • Parker T.S.
        • et al.
        Interleukin-6 predicts hypoalbuminemia, hypocholesterolemia, and mortality in hemodialysis patients.
        Am J Kidney Diseases: the official journal of the National Kidney Foundation. 1998; 32: 107-114
        • Menon V.
        • Greene T.
        • Wang X.
        • et al.
        C-reactive protein and albumin as predictors of all-cause and cardiovascular mortality in chronic kidney disease.
        Kidney international. 2005; 68: 766-772
        • Zisman D.A.
        • Kawut S.M.
        • Lederer D.J.
        • et al.
        Serum albumin concentration and waiting list mortality in idiopathic interstitial pneumonia.
        Chest. 2009; 135: 929-935
        • Bandoh S.
        • Fujita J.
        • Ohtsuki Y.
        • et al.
        Sequential changes of KL-6 in sera of patients with interstitial pneumonia associated with polymyositis/dermatomyositis.
        Ann Rheum Dis. 2000; 59: 257-262
        • Hirasawa Y.
        • Kohno N.
        • Yokoyama A.
        • Inoue Y.
        • Abe M.
        • Hiwada K.
        KL-6, a human MUC1 mucin, is chemotactic for human fibroblasts.
        Am J Respir Cell Mol Biol. 1997; 17: 501-507
        • Ohshimo S.
        • Yokoyama A.
        • Hattori N.
        • Ishikawa N.
        • Hirasawa Y.
        • Kohno N.
        KL-6, a human MUC1 mucin, promotes proliferation and survival of lung fibroblasts.
        Biochem Biophys Res Commun. 2005; 338: 1845-1852
        • Ishii H.
        • Mukae H.
        • Kadota J.
        • et al.
        High serum concentrations of surfactant protein A in usual interstitial pneumonia compared with nonspecific interstitial pneumonia.
        Thorax. 2003; 58: 52-57
        • Ohnishi H.
        • Yokoyama A.
        • Kondo K.
        • et al.
        Comparative study of KL-6, surfactant protein-A, surfactant protein-D, and monocyte chemoattractant protein-1 as serum markers for interstitial lung diseases.
        Am J Respir Crit Care Med. 2002; 165: 378-381
        • Kohno N.
        • Awaya Y.
        • Oyama T.
        • et al.
        KL-6, a mucin-like glycoprotein, in bronchoalveolar lavage fluid from patients with interstitial lung disease.
        Am Rev Respir Dis. 1993; 148: 637-642
        • Satoh H.
        • Kurishima K.
        • Ishikawa H.
        • Ohtsuka M.
        Increased levels of KL-6 and subsequent mortality in patients with interstitial lung diseases.
        J Intern Med. 2006; 260: 429-434
        • Yokoyama A.
        • Kohno N.
        • Hamada H.
        • et al.
        Circulating KL-6 predicts the outcome of rapidly progressive idiopathic pulmonary fibrosis.
        Am J Respir Crit Care Med. 1998; 158: 1680-1684
        • Goerke J.
        Pulmonary surfactant: functions and molecular composition.
        Biochimica Biophysica Acta. 1998; 1408: 79-89
        • Kishore U.
        • Greenhough T.J.
        • Waters P.
        • et al.
        Surfactant proteins SP-A and SP-D: structure, function and receptors.
        Mol Immunol. 2006; 43: 1293-1315
        • Greene K.E.
        • King Jr., T.E.
        • Kuroki Y.
        • et al.
        Serum surfactant proteins-A and -D as biomarkers in idiopathic pulmonary fibrosis.
        Eur Respir J. 2002; 19: 439-446
        • Nagata N.
        • Kitasato Y.
        • Wakamatsu K.
        • et al.
        Prognostic value of immunohistochemical surfactant protein A expression in regenerative/hyperplastic alveolar epithelial cells in idiopathic interstitial pneumonias.
        Diagn Pathol. 2011; 6: 25
        • Kinder B.W.
        • Brown K.K.
        • McCormack F.X.
        • et al.
        Serum surfactant protein-A is a strong predictor of early mortality in idiopathic pulmonary fibrosis.
        Chest. 2009; 135: 1557-1563
        • Takahashi H.
        • Fujishima T.
        • Koba H.
        • et al.
        Serum surfactant proteins A and D as prognostic factors in idiopathic pulmonary fibrosis and their relationship to disease extent.
        Am J Respir Crit Care Med. 2000; 162: 1109-1114
        • Nogee L.M.
        • Dunbar III, A.E.
        • Wert S.E.
        • Askin F.
        • Hamvas A.
        • Whitsett J.A.
        A mutation in the surfactant protein C gene associated with familial interstitial lung disease.
        N Engl J Med. 2001; 344: 573-579
        • Amin R.S.
        • Wert S.E.
        • Baughman R.P.
        • et al.
        Surfactant protein deficiency in familial interstitial lung disease.
        J Pediatr. 2001; 139: 85-92
        • Thomas A.Q.
        • Lane K.
        • Phillips III, J.
        • et al.
        Heterozygosity for a surfactant protein C gene mutation associated with usual interstitial pneumonitis and cellular nonspecific interstitial pneumonitis in one kindred.
        Am J Respir Crit Care Med. 2002; 165: 1322-1328
        • Lawson W.E.
        • Grant S.W.
        • Ambrosini V.
        • et al.
        Genetic mutations in surfactant protein C are a rare cause of sporadic cases of IPF.
        Thorax. 2004; 59: 977-980
        • Oikonomidi S.
        • Kostikas K.
        • Tsilioni I.
        • Tanou K.
        • Gourgoulianis K.I.
        • Kiropoulos T.S.
        Matrix metalloproteinases in respiratory diseases: from pathogenesis to potential clinical implications.
        Curr Med Chem. 2009; 16: 1214-1228
        • Sauter W.
        • Rosenberger A.
        • Beckmann L.
        • et al.
        Matrix metalloproteinase 1 (MMP1) is associated with early-onset lung cancer.
        Cancer Epidemiol Biomarkers Prev. 2008; 17: 1127-1135
        • Zuo F.
        • Kaminski N.
        • Eugui E.
        • et al.
        Gene expression analysis reveals matrilysin as a key regulator of pulmonary fibrosis in mice and humans.
        Proc Nat Acad Sci USA. 2002; 99: 6292-6297
        • Fujishima S.
        • Shiomi T.
        • Yamashita S.
        • et al.
        Production and activation of matrix metalloproteinase 7 (matrilysin 1) in the lungs of patients with idiopathic pulmonary fibrosis.
        Arch Path Laboratory Med. 2010; 134: 1136-1142
        • Vuorinen K.
        • Myllarniemi M.
        • Lammi L.
        • et al.
        Elevated matrilysin levels in bronchoalveolar lavage fluid do not distinguish idiopathic pulmonary fibrosis from other interstitial lung diseases.
        APMIS. 2007; 115: 969-975
        • Huh J.W.
        • Kim D.S.
        • Oh Y.M.
        • et al.
        Is metalloproteinase-7 specific for idiopathic pulmonary fibrosis?.
        Chest. 2008; 133: 1101-1106
        • Rosas I.O.
        • Richards T.J.
        • Konishi K.
        • et al.
        MMP1 and MMP7 as potential peripheral blood biomarkers in idiopathic pulmonary fibrosis.
        PLoS Med. 2008; 5: e93
        • Richards T.J.
        • Kaminski N.
        • Baribaud F.
        • et al.
        Peripheral blood proteins predict mortality in idiopathic pulmonary fibrosis.
        Am J Respir Crit Care Med. 2012; 185: 67-76
        • Luzina I.G.
        • Tsymbalyuk N.
        • Choi J.
        • Hasday J.D.
        • Atamas S.P.
        CCL18-stimulated up-regulation of collagen production in lung fibroblasts requires Sp1 signaling and basal Smad3 activity.
        J Cell Physiol. 2006; 206: 221-228
        • Prasse A.
        • Pechkovsky D.V.
        • Toews G.B.
        • et al.
        A vicious circle of alveolar macrophages and fibroblasts perpetuates pulmonary fibrosis via CCL18.
        Am J Respir Crit Care Med. 2006; 173: 781-792
        • Kodera M.
        • Hasegawa M.
        • Komura K.
        • Yanaba K.
        • Takehara K.
        • Sato S.
        Serum pulmonary and activation-regulated chemokine/CCL18 levels in patients with systemic sclerosis: a sensitive indicator of active pulmonary fibrosis.
        Arthritis Rheumatism. 2005; 52: 2889-2896
        • Prasse A.
        • Pechkovsky D.V.
        • Toews G.B.
        • et al.
        CCL18 as an indicator of pulmonary fibrotic activity in idiopathic interstitial pneumonias and systemic sclerosis.
        Arthritis Rheum. 2007; 56: 1685-1693
        • Prasse A.
        • Probst C.
        • Bargagli E.
        • et al.
        Serum CC-chemokine ligand 18 concentration predicts outcome in idiopathic pulmonary fibrosis.
        Am J Respir Crit Care Med. 2009; 179: 717-723
        • Monacci W.T.
        • Merrill M.J.
        • Oldfield E.H.
        Expression of vascular permeability factor/vascular endothelial growth factor in normal rat tissues.
        Am J Physiol. 1993; 264: C995-1002
        • Ando M.
        • Miyazaki E.
        • Ito T.
        • et al.
        Significance of serum vascular endothelial growth factor level in patients with idiopathic pulmonary fibrosis.
        Lung. 2010; 188: 247-252
        • Tzouvelekis A.
        • Anevlavis S.
        • Bouros D.
        Angiogenesis in interstitial lung diseases: a pathogenetic hallmark or a bystander?.
        Respir Res. 2006; 7: 82
        • Koyama S.
        • Sato E.
        • Haniuda M.
        • Numanami H.
        • Nagai S.
        • Izumi T.
        Decreased level of vascular endothelial growth factor in bronchoalveolar lavage fluid of normal smokers and patients with pulmonary fibrosis.
        Am J Respir Crit Care Med. 2002; 166: 382-385
        • Meyer K.C.
        • Cardoni A.
        • Xiang Z.Z.
        Vascular endothelial growth factor in bronchoalveolar lavage from normal subjects and patients with diffuse parenchymal lung disease.
        J Lab Clin Med. 2000; 135: 332-338
        • Johansen J.S.
        • Christoffersen P.
        • Moller S.
        • et al.
        Serum YKL-40 is increased in patients with hepatic fibrosis.
        J Hepatol. 2000; 32: 911-920
        • Kruit A.
        • Grutters J.C.
        • Ruven H.J.
        • van Moorsel C.C.
        • van den Bosch J.M.
        A CHI3L1 gene polymorphism is associated with serum levels of YKL-40, a novel sarcoidosis marker.
        Respir Med. 2007; 101: 1563-1571
        • Letuve S.
        • Kozhich A.
        • Arouche N.
        • et al.
        YKL-40 is elevated in patients with chronic obstructive pulmonary disease and activates alveolar macrophages.
        J Immunol. 2008; 181: 5167-5173
        • Chupp G.L.
        • Lee C.G.
        • Jarjour N.
        • et al.
        A chitinase-like protein in the lung and circulation of patients with severe asthma.
        N Engl J Med. 2007; 357: 2016-2027
        • Ober C.
        • Chupp G.L.
        The chitinase and chitinase-like proteins: a review of genetic and functional studies in asthma and immune-mediated diseases.
        Curr Opin Allergy Clin Immunol. 2009; 9: 401-408
        • Furuhashi K.
        • Suda T.
        • Nakamura Y.
        • et al.
        Increased expression of YKL-40, a chitinase-like protein, in serum and lung of patients with idiopathic pulmonary fibrosis.
        Respir Med. 2010; 104: 1204-1210
        • Korthagen N.M.
        • van Moorsel C.H.
        • Barlo N.P.
        • et al.
        Serum and BALF YKL-40 levels are predictors of survival in idiopathic pulmonary fibrosis.
        Respir Med. 2011; 105: 106-113
        • Denhardt D.T.
        • Noda M.
        • O'Regan A.W.
        • Pavlin D.
        • Berman J.S.
        Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival.
        J Clin Invest. 2001; 107: 1055-1061
        • O'Regan A.
        • Berman J.S.
        Osteopontin: a key cytokine in cell-mediated and granulomatous inflammation.
        Int J Exp Pathol. 2000; 81: 373-390
        • Takahashi F.
        • Takahashi K.
        • Okazaki T.
        • et al.
        Role of osteopontin in the pathogenesis of bleomycin-induced pulmonary fibrosis.
        Am J Respir Cell Mol Biol. 2001; 24: 264-271
        • Pardo A.
        • Gibson K.
        • Cisneros J.
        • et al.
        Up-regulation and profibrotic role of osteopontin in human idiopathic pulmonary fibrosis.
        PLoS Med. 2005; 2: e251
        • Kadota J.
        • Mizunoe S.
        • Mito K.
        • et al.
        High plasma concentrations of osteopontin in patients with interstitial pneumonia.
        Respir Med. 2005; 99: 111-117
        • Okamoto M.
        • Hoshino T.
        • Kitasato Y.
        • et al.
        Periostin, a matrix protein, is a novel biomarker for idiopathic interstitial pneumonias.
        Eur Respir J. 2011; 37: 1119-1127
        • Sidhu S.S.
        • Yuan S.
        • Innes A.L.
        • et al.
        Roles of epithelial cell-derived periostin in TGF-beta activation, collagen production, and collagen gel elasticity in asthma.
        Proc Nat Acad Sci. 2010; 107: 14170-14175
        • Saito A.
        • Okazaki H.
        • Sugawara I.
        • Yamamoto K.
        • Takizawa H.
        Potential action of IL-4 and IL-13 as fibrogenic factors on lung fibroblasts in vitro.
        Int Arch Allergy Immunol. 2003; 132: 168-176
        • Ingram J.L.
        • Rice A.B.
        • Geisenhoffer K.
        • Madtes D.K.
        • Bonner J.C.
        IL-13 and IL-1beta promote lung fibroblast growth through coordinated up-regulation of PDGF-AA and PDGF-Ralpha.
        FASEB J. 2004; 18: 1132-1134
        • Oriente A.
        • Fedarko N.S.
        • Pacocha S.E.
        • Huang S.K.
        • Lichtenstein L.M.
        • Essayan D.M.
        Interleukin-13 modulates collagen homeostasis in human skin and keloid fibroblasts.
        J Pharmacol Exp Ther. 2000; 292: 988-994
        • Murray L.A.
        • Argentieri R.L.
        • Farrell F.X.
        • et al.
        Hyper-responsiveness of IPF/UIP fibroblasts: interplay between TGFbeta1, IL-13, and CCL2.
        Int J Biochem Cell Biol. 2008; 40: 2174-2182
        • Corren J.
        • Lemanske R.F.
        • Hanania N.A.
        • et al.
        Lebrikizumab treatment in adults with asthma.
        N Engl J Med. 2011; 365: 1088-1098
        • Bellini A.
        • Mattoli S.
        The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses.
        Lab Invest. 2007; 87: 858-870
        • Moore B.B.
        • Kolodsick J.E.
        • Thannickal V.J.
        • et al.
        CCR2-mediated recruitment of fibrocytes to the alveolar space after fibrotic injury.
        Am J Pathol. 2005; 166: 675-684
        • Andersson-Sjöland A.
        • de Alba C.G.
        • Nihlberg K.
        • et al.
        Fibrocytes are a potential source of lung fibroblasts in idiopathic pulmonary fibrosis.
        Int J Biochem Cell Biol. 2008; 40: 2129-2140
        • Moeller A.
        • Gilpin S.E.
        • Ask K.
        • et al.
        Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis.
        Am J Respir Crit Care Med. 2009; 179: 588-594
        • Christie J.D.
        • Edwards L.B.
        • Kucheryavaya A.Y.
        • et al.
        The Registry of the International Society for Heart and Lung Transplantation: twenty-seventh official adult lung and heart-lung transplant report–2010.
        J Heart Lung Transplantation. 2010; 29: 1104-1118
        • Orens J.B.
        • Shearon T.H.
        • Freudenberger R.S.
        • Conte J.V.
        • Bhorade S.M.
        • Ardehali A.
        Thoracic organ transplantation in the United States, 1995–2004.
        Am J Transplantation. 2006; 6: 1188-1197
        • Borchers A.T.
        • Chang C.
        • Keen C.L.
        • Gershwin M.E.
        Idiopathic pulmonary fibrosis-an epidemiological and pathological review.
        Clin Rev Allergy Immunol. 2011; 40: 117-134
        • Parra E.R.
        • Kairalla R.A.
        • Ribeiro de Carvalho C.R.
        • Eher E.
        • Capelozzi V.L.
        Inflammatory cell phenotyping of the pulmonary interstitium in idiopathic interstitial pneumonia.
        Respiration. 2007; 74: 159-169
        • Daniil Z.
        • Kitsanta P.
        • Kapotsis G.
        • et al.
        CD8+ T lymphocytes in lung tissue from patients with idiopathic pulmonary fibrosis.
        Respir Res. 2005; 6: 81
        • Rosas I.O.
        • Ren P.
        • Avila N.A.
        • et al.
        Early interstitial lung disease in familial pulmonary fibrosis.
        Am J Respir Crit Care Med. 2007; 176: 698-705
        • Gilani S.R.
        • Vuga L.J.
        • Lindell K.O.
        • et al.
        CD28 down-regulation on circulating CD4 T-cells is associated with poor prognoses of patients with idiopathic pulmonary fibrosis.
        PLoS One. 2010; 5: e8959
        • Kotsianidis I.
        • Nakou E.
        • Bouchliou I.
        • et al.
        Global impairment of CD4+CD25+FOXP3+ regulatory T cells in idiopathic pulmonary fibrosis.
        Am J Respir Crit Care Med. 2009; 179: 1121