Advertisement

Marking renal injury: can we move beyond serum creatinine?

Published:February 10, 2012DOI:https://doi.org/10.1016/j.trsl.2012.01.014
      Acute kidney injury (AKI) is a prevalent and devastating condition associated with significant morbidity and mortality. Despite marked improvements in clinical care, the outcomes for subjects with AKI have shown limited improvement in the past 50 years. A major factor inhibiting clinical progress in this field has been the inability to accurately predict and diagnose early kidney dysfunction. The current gold standard clinical and biochemical criteria for diagnosis of AKI, Risk Injury Failure Loss End-stage renal disease, and its modification, Acute Kidney Injury Network criteria, rely on urine output and serum creatinine, which are insensitive, nonspecific, and late markers of disease. The recent development of a variety of analytic mass spectrometry–based platforms have enabled separation, characterization, detection, and quantification of proteins (proteomics) and metabolites (metabolomics). These high-throughput platforms have raised hopes of identifying novel protein and metabolite markers, and recent efforts have led to several promising novel markers of AKI. However, substantial challenges remain, including the need to systematically evaluate incremental performance of these markers over and beyond current clinical and biochemical criteria for AKI. We discuss the basic issues surrounding AKI biomarker development, highlight the most promising markers currently under development, and discuss the barriers toward widespread clinical implementation of these markers.

      Abbreviations:

      AKI (acute kidney injury), AKIN (Acute Kidney Injury Network), ATN (acute tubular necrosis), AUC-ROC (area under the curve of the receiver operating characteristic), BUN (blood urea nitrogen), CIN (contrast-induced nephropathy), CKD (chronic kidney disease), CPB (cardiopulmonary bypass), Cr (creatinine), CysC (cystatin C), DGF (delayed graft function), ELISA (enzyme-linked immunosorbent assays), FABP (fatty acid binding protein), GFR (glomerular filtration rate), ICU (intensive care unit), IL (interleukin), KIM-1 (kidney injury molecule-1), L-FABP (liver-type fatty acid binding protein-1), MS (mass spectrometry), NGAL (neutrophil gelatinase-associated lipocalin), pNGAL (plasma neutrophil gelatinase-associated lipocalin), RIFLE (Risk Injury Failure Loss End-stage renal disease), SCr (serum creatinine), sCysC (serum cystatin C), Tg-hL-FABP (transgenic human L-fatty acid binding protein), uIL (urinary interleukin), uKIM-1 (kidney injury molecule-1), uL-FABP (urinary liver-type fatty acid binding protein), uNGAL (urinary neutrophil gelatinase-associated lipocalin)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Metnitz P.G.
        • Krenn C.G.
        • Steltzer H.
        • et al.
        Effect of acute renal failure requiring renal replacement therapy on outcome in critically ill patients.
        Crit Care Med. 2002; 30: 2051-2058
        • Bellomo R.
        • Ronco C.
        • Kellum J.A.
        • Mehta R.L.
        • Palevsky P.
        Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group.
        Crit Care. 2004; 8: R204-R212
        • Mehta R.L.
        • Kellum J.A.
        • Shah S.V.
        • et al.
        Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury.
        Crit Care. 2007; 11: R31
        • Folin O.D.J.
        On the creatinine and creatinine content of blood.
        Biol Chem. 1914; 17: 487-491
        • Waikar S.S.
        • Bonventre J.V.
        Creatinine kinetics and the definition of acute kidney injury.
        J Am Soc Nephrol. 2009; 20: 672-679
        • Portilla D.
        • Dent C.
        • Sugaya T.
        • et al.
        Liver fatty acid-binding protein as a biomarker of acute kidney injury after cardiac surgery.
        Kidney Int. 2008; 73: 465-472
        • Doi K.
        • Yuen P.S.
        • Eisner C.
        • et al.
        Reduced production of creatinine limits its use as marker of kidney injury in sepsis.
        J Am Soc Nephrol. 2009; 20: 1217-1221
        • Parikh C.R.
        • Devarajan P.
        New biomarkers of acute kidney injury.
        Crit Care Med. 2008; 36: S159-S165
        • Devarajan P.
        Proteomics for biomarker discovery in acute kidney injury.
        Semin Nephrol. 2007; 27: 637-651
        • Wang J.H.
        • Byun J.
        • Pennathur S.
        Analytical approaches to metabolomics and applications to systems biology.
        Semin Nephrol. 2010; 30: 500-511
        • Bennett M.R.
        • Devarajan P.
        Proteomic analysis of acute kidney injury: biomarkers to mechanisms.
        Proteomics Clin Appl. 2011; 5: 67-77
        • Vivekanandan-Giri A.
        • Slocum J.L.
        • Buller C.L.
        • et al.
        Urine glycoprotein profile reveals novel markers for chronic kidney disease.
        Int J Proteomics. 2011; 2011 (Epub 2011 Oct 10): 214715
        • Xu S.Y.
        • Carlson M.
        • Engstrom A.
        • Garcia R.
        • Peterson C.G.
        • Venge P.
        Purification and characterization of a human neutrophil lipocalin (HNL) from the secondary granules of human neutrophils.
        Scand J Clin Lab Invest. 1994; 54: 365-376
        • Goetz D.H.
        • Holmes M.A.
        • Borregaard N.
        • Bluhm M.E.
        • Raymond K.N.
        • Strong R.K.
        The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition.
        Mol Cell. 2002; 10: 1033-1043
        • Flo T.H.
        • Smith K.D.
        • Sato S.
        • et al.
        Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron.
        Nature. 2004; 432: 917-921
        • Mishra J.
        • Ma Q.
        • Prada A.
        • et al.
        Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury.
        J Am Soc Nephrol. 2003; 14: 2534-2543
        • Schmidt-Ott K.M.
        • Mori K.
        • Li J.Y.
        • et al.
        Dual action of neutrophil gelatinase-associated lipocalin.
        J Am Soc Nephrol. 2007; 18: 407-413
        • Supavekin S.
        • Zhang W.
        • Kucherlapati R.
        • Kaskel F.J.
        • Moore L.C.
        • Devarajan P.
        Differential gene expression following early renal ischemia/reperfusion.
        Kidney Int. 2003; 63: 1714-1724
        • Mishra J.
        • Mori K.
        • Ma Q.
        • Kelly C.
        • Barasch J.
        • Devarajan P.
        Neutrophil gelatinase-associated lipocalin: a novel early urinary biomarker for cisplatin nephrotoxicity.
        Am J Nephrol. 2004; 24: 307-315
        • Mori K.
        • Lee H.T.
        • Rapoport D.
        • et al.
        Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury.
        J Clin Invest. 2005; 115: 610-621
        • Yuen P.S.
        • Jo S.K.
        • Holly M.K.
        • Hu X.
        • Star R.A.
        Ischemic and nephrotoxic acute renal failure are distinguished by their broad transcriptomic responses.
        Physiol Genomics. 2006; 25: 375-386
        • Devarajan P.
        Neutrophil gelatinase-associated lipocalin: a promising biomarker for human acute kidney injury.
        Biomark Med. 2010; 4: 265-280
        • Soni S.S.
        • Cruz D.
        • Bobek I.
        • et al.
        NGAL: a biomarker of acute kidney injury and other systemic conditions.
        Int Urol Nephrol. 2010; 42: 141-150
        • Cruz D.N.
        • Ronco C.
        • Katz N.
        Neutrophil gelatinase-associated lipocalin: a promising biomarker for detecting cardiac surgery-associated acute kidney injury.
        J Thorac Cardiovasc Surg. 2010; 139: 1101-1106
        • Mishra J.
        • Dent C.
        • Tarabishi R.
        • et al.
        Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery.
        Lancet. 2005; 365: 1231-1238
        • Wagener G.
        • Jan M.
        • Kim M.
        • et al.
        Association between increases in urinary neutrophil gelatinase-associated lipocalin and acute renal dysfunction after adult cardiac surgery.
        Anesthesiology. 2006; 105: 485-491
        • Koyner J.L.
        • Bennett M.R.
        • Worcester E.M.
        • et al.
        Urinary cystatin C as an early biomarker of acute kidney injury following adult cardiothoracic surgery.
        Kidney Int. 2008; 74: 1059-1069
        • Xin C.
        • Yulong X.
        • Yu C.
        • Changchun C.
        • Feng Z.
        • Xinwei M.
        Urine neutrophil gelatinase-associated lipocalin and interleukin-18 predict acute kidney injury after cardiac surgery.
        Ren Fail. 2008; 30: 904-913
        • Tuladhar S.M.
        • Puntmann V.O.
        • Soni M.
        • Punjabi P.P.
        • Bogle R.G.
        Rapid detection of acute kidney injury by plasma and urinary neutrophil gelatinase-associated lipocalin after cardiopulmonary bypass.
        J Cardiovasc Pharmacol. 2009; 53: 261-266
        • Wagener G.
        • Gubitosa G.
        • Wang S.
        • Borregaard N.
        • Kim M.
        • Lee H.T.
        Urinary neutrophil gelatinase-associated lipocalin and acute kidney injury after cardiac surgery.
        Am J Kidney Dis. 2008; 52: 425-433
        • Parikh C.R.
        • Devarajan P.
        • Zappitelli M.
        • et al.
        Postoperative biomarkers predict acute kidney injury and poor outcomes after pediatric cardiac surgery.
        J Am Soc Nephrol. 2011; 22: 1737-1747
        • Parikh C.R.
        • Coca S.G.
        • Thiessen-Philbrook H.
        • et al.
        Postoperative biomarkers predict acute kidney injury and poor outcomes after adult cardiac surgery.
        J Am Soc Nephrol. 2011; 22: 1748-1757
        • Zappitelli M.
        • Washburn K.K.
        • Arikan A.A.
        • et al.
        Urine neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in critically ill children: a prospective cohort study.
        Crit Care. 2007; 11: R84
        • Wheeler D.S.
        • Devarajan P.
        • Ma Q.
        • et al.
        Serum neutrophil gelatinase-associated lipocalin (NGAL) as a marker of acute kidney injury in critically ill children with septic shock.
        Crit Care Med. 2008; 36: 1297-1303
        • Makris K.
        • Markou N.
        • Evodia E.
        • et al.
        Urinary neutrophil gelatinase-associated lipocalin (NGAL) as an early marker of acute kidney injury in critically ill multiple trauma patients.
        Clin Chem Lab Med. 2009; 47: 79-82
        • Siew E.D.
        • Ware L.B.
        • Gebretsadik T.
        • et al.
        Urine neutrophil gelatinase-associated lipocalin moderately predicts acute kidney injury in critically ill adults.
        J Am Soc Nephrol. 2009; 20: 1823-1832
        • Cruz D.N.
        • de Cal M.
        • Garzotto F.
        • et al.
        Plasma neutrophil gelatinase-associated lipocalin is an early biomarker for acute kidney injury in an adult ICU population.
        Intensive Care Med. 2010; 36: 444-451
        • Constantin J.M.
        • Futier E.
        • Perbet S.
        • et al.
        Plasma neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in adult critically ill patients: a prospective study.
        J Crit Care. 2010; 25: 176.e1-176.e6
        • Bagshaw S.M.
        • Bennett M.
        • Haase M.
        • et al.
        Plasma and urine neutrophil gelatinase-associated lipocalin in septic versus non-septic acute kidney injury in critical illness.
        Intensive Care Med. 2010; 36: 452-461
        • Mishra J.
        • Ma Q.
        • Kelly C.
        • et al.
        Kidney NGAL is a novel early marker of acute injury following transplantation.
        Pediatr Nephrol. 2006; 21: 856-863
        • Parikh C.R.
        • Jani A.
        • Mishra J.
        • et al.
        Urine NGAL and IL-18 are predictive biomarkers for delayed graft function following kidney transplantation.
        Am J Transplant. 2006; 6: 1639-1645
        • Hall I.E.
        • Yarlagadda S.G.
        • Coca S.G.
        • et al.
        IL-18 and urinary NGAL predict dialysis and graft recovery after kidney transplantation.
        J Am Soc Nephrol. 2010; 21: 189-197
        • Hirsch R.
        • Dent C.
        • Pfriem H.
        • et al.
        NGAL is an early predictive biomarker of contrast-induced nephropathy in children.
        Pediatr Nephrol. 2007; 22: 2089-2095
        • Bachorzewska-Gajewska H.
        • Malyszko J.
        • Sitniewska E.
        • Malyszko J.S.
        • Dobrzycki S.
        Neutrophil-gelatinase-associated lipocalin and renal function after percutaneous coronary interventions.
        Am J Nephrol. 2006; 26: 287-292
        • Bachorzewska-Gajewska H.
        • Malyszko J.
        • Sitniewska E.
        • Malyszko J.S.
        • Dobrzycki S.
        Neutrophil gelatinase-associated lipocalin (NGAL) correlations with cystatin C, serum creatinine and eGFR in patients with normal serum creatinine undergoing coronary angiography.
        Nephrol Dial Transplant. 2007; 22: 295-296
        • Ling W.
        • Zhaohui N.
        • Ben H.
        • et al.
        Urinary IL-18 and NGAL as early predictive biomarkers in contrast-induced nephropathy after coronary angiography.
        Nephron Clin Pract. 2008; 108: c176-c181
        • Nickolas T.L.
        • O’Rourke M.J.
        • Yang J.
        • et al.
        Sensitivity and specificity of a single emergency department measurement of urinary neutrophil gelatinase-associated lipocalin for diagnosing acute kidney injury.
        Ann Intern Med. 2008; 148: 810-819
        • Haase M.
        • Bellomo R.
        • Devarajan P.
        • Schlattmann P.
        • Haase-Fielitz A.
        Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis.
        Am J Kidney Dis. 2009; 54: 1012-1024
        • Boldt J.
        • Suttner S.
        • Brosch C.
        • Lehmann A.
        • Rohm K.
        • Mengistu A.
        Cardiopulmonary bypass priming using a high dose of a balanced hydroxyethyl starch versus an albumin-based priming strategy.
        Anesth Analg. 2009; 109: 1752-1762
        • Wagener G.
        • Gubitosa G.
        • Wang S.
        • Borregaard N.
        • Kim M.
        • Lee H.T.
        Increased incidence of acute kidney injury with aprotinin use during cardiac surgery detected with urinary NGAL.
        Am J Nephrol. 2008; 28: 576-582
        • McIlroy D.R.
        • Wagener G.
        • Lee H.T.
        Neutrophil gelatinase-associated lipocalin and acute kidney injury after cardiac surgery: the effect of baseline renal function on diagnostic performance.
        Clin J Am Soc Nephrol. 2010; 5: 211-219
        • Edelstein C.L.
        • Shi Y.
        • Schrier R.W.
        Role of caspases in hypoxia-induced necrosis of rat renal proximal tubules.
        J Am Soc Nephrol. 1999; 10: 1940-1949
        • Li P.
        • Allen H.
        • Banerjee S.
        • et al.
        Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock.
        Cell. 1995; 80: 401-411
        • Melnikov V.Y.
        • Ecder T.
        • Fantuzzi G.
        • et al.
        Impaired IL-18 processing protects caspase-1-deficient mice from ischemic acute renal failure.
        J Clin Invest. 2001; 107: 1145-1152
        • He Z.
        • Lu L.
        • Altmann C.
        • et al.
        Interleukin-18 binding protein transgenic mice are protected against ischemic acute kidney injury.
        Am J Physiol Renal Physiol. 2008; 295: F1414-F1421
        • Wu H.
        • Craft M.L.
        • Wang P.
        • et al.
        IL-18 contributes to renal damage after ischemia-reperfusion.
        J Am Soc Nephrol. 2008; 19: 2331-2341
        • Fantuzzi G.
        • Reed D.A.
        • Dinarello C.A.
        IL-12-induced IFN-gamma is dependent on caspase-1 processing of the IL-18 precursor.
        J Clin Invest. 1999; 104: 761-767
        • Parikh C.R.
        • Jani A.
        • Melnikov V.Y.
        • Faubel S.
        • Edelstein C.L.
        Urinary interleukin-18 is a marker of human acute tubular necrosis.
        Am J Kidney Dis. 2004; 43: 405-414
        • Parikh C.R.
        • Abraham E.
        • Ancukiewicz M.
        • Edelstein C.L.
        Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the intensive care unit.
        J Am Soc Nephrol. 2005; 16: 3046-3052
        • Parikh C.R.
        • Mishra J.
        • Thiessen-Philbrook H.
        • et al.
        Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery.
        Kidney Int. 2006; 70: 199-203
        • Washburn K.K.
        • Zappitelli M.
        • Arikan A.A.
        • et al.
        Urinary interleukin-18 is an acute kidney injury biomarker in critically ill children.
        Nephrol Dial Transplant. 2008; 23: 566-572
        • Siew E.D.
        • Ikizler T.A.
        • Gebretsadik T.
        • et al.
        Elevated urinary IL-18 levels at the time of ICU admission predict adverse clinical outcomes.
        Clin J Am Soc Nephrol. 2010; 5: 1497-1505
        • Gracie J.A.
        • Robertson S.E.
        • McInnes I.B.
        Interleukin-18.
        J Leukoc Biol. 2003; 73: 213-224
        • Ichimura T.
        • Bonventre J.V.
        • Bailly V.
        • et al.
        Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury.
        J Biol Chem. 1998; 273: 4135-4142
        • Ichimura T.
        • Asseldonk E.J.
        • Humphreys B.D.
        • Gunaratnam L.
        • Duffield J.S.
        • Bonventre J.V.
        Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells.
        J Clin Invest. 2008; 118: 1657-1668
        • Bonventre J.V.
        Kidney injury molecule-1 (KIM-1): a urinary biomarker and much more.
        Nephrol Dial Transplant. 2009; 24: 3265-3268
        • Bailly V.
        • Zhang Z.
        • Meier W.
        • Cate R.
        • Sanicola M.
        • Bonventre J.V.
        Shedding of kidney injury molecule-1, a putative adhesion protein involved in renal regeneration.
        J Biol Chem. 2002; 277: 39739-39748
        • Ichimura T.
        • Hung C.C.
        • Yang S.A.
        • Stevens J.L.
        • Bonventre J.V.
        Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury.
        Am J Physiol Renal Physiol. 2004; 286: F552-F563
        • Vaidya V.S.
        • Ramirez V.
        • Ichimura T.
        • Bobadilla N.A.
        • Bonventre J.V.
        Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury.
        Am J Physiol Renal Physiol. 2006; 290: F517-F529
        • Prozialeck W.C.
        • Vaidya V.S.
        • Liu J.
        • et al.
        Kidney injury molecule-1 is an early biomarker of cadmium nephrotoxicity.
        Kidney Int. 2007; 72: 985-993
        • Zhou Y.
        • Vaidya V.S.
        • Brown R.P.
        • et al.
        Comparison of kidney injury molecule-1 and other nephrotoxicity biomarkers in urine and kidney following acute exposure to gentamicin, mercury, and chromium.
        Toxicol Sci. 2008; 101: 159-170
        • Vaidya V.S.
        • Ford G.M.
        • Waikar S.S.
        • et al.
        A rapid urine test for early detection of kidney injury.
        Kidney Int. 2009; 76: 108-114
        • Vaidya V.S.
        • Ozer J.S.
        • Dieterle F.
        • et al.
        Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies.
        Nat Biotechnol. 2010; 28: 478-485
        • Han W.K.
        • Bailly V.
        • Abichandani R.
        • Thadhani R.
        • Bonventre J.V.
        Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury.
        Kidney Int. 2002; 62: 237-244
        • Han W.K.
        • Waikar S.S.
        • Johnson A.
        • et al.
        Urinary biomarkers in the early diagnosis of acute kidney injury.
        Kidney Int. 2008; 73: 863-869
        • Liangos O.
        • Tighiouart H.
        • Perianayagam M.C.
        • et al.
        Comparative analysis of urinary biomarkers for early detection of acute kidney injury following cardiopulmonary bypass.
        Biomarkers. 2009; 14: 423-431
        • Han W.K.
        • Wagener G.
        • Zhu Y.
        • Wang S.
        • Lee H.T.
        Urinary biomarkers in the early detection of acute kidney injury after cardiac surgery.
        Clin J Am Soc Nephrol. 2009; 4: 873-882
        • Liangos O.
        • Perianayagam M.C.
        • Vaidya V.S.
        • et al.
        Urinary N-acetyl-beta-(D)-glucosaminidase activity and kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure.
        J Am Soc Nephrol. 2007; 18: 904-912
        • Huang Y.
        • Don-Wauchope A.C.
        The clinical utility of kidney injury molecule 1 in the prediction, diagnosis and prognosis of acute kidney injury: a systematic review.
        Inflamm Allergy Drug Targets. 2011; 10: 260-271
        • Chmurzynska A.
        The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism.
        J Appl Genet. 2006; 47: 39-48
        • Ek-Von Mentzer B.A.
        • Zhang F.
        • Hamilton J.A.
        Binding of 13-HODE and 15-HETE to phospholipid bilayers, albumin, and intracellular fatty acid binding proteins. implications for transmembrane and intracellular transport and for protection from lipid peroxidation.
        J Biol Chem. 2001; 276: 15575-15580
        • Wang G.
        • Gong Y.
        • Anderson J.
        • et al.
        Antioxidative function of L-FABP in L-FABP stably transfected Chang liver cells.
        Hepatology. 2005; 42: 871-879
        • Kamijo A.
        • Sugaya T.
        • Hikawa A.
        • et al.
        Urinary excretion of fatty acid-binding protein reflects stress overload on the proximal tubules.
        Am J Pathol. 2004; 165: 1243-1255
        • Kamijo-Ikemori A.
        • Sugaya T.
        • Obama A.
        • et al.
        Liver-type fatty acid-binding protein attenuates renal injury induced by unilateral ureteral obstruction.
        Am J Pathol. 2006; 169: 1107-1117
        • Yamamoto T.
        • Noiri E.
        • Ono Y.
        • et al.
        Renal L-type fatty acid-binding protein in acute ischemic injury.
        J Am Soc Nephrol. 2007; 18: 2894-2902
        • Negishi K.
        • Noiri E.
        • Sugaya T.
        • et al.
        A role of liver fatty acid-binding protein in cisplatin-induced acute renal failure.
        Kidney Int. 2007; 72: 348-358
        • Negishi K.
        • Noiri E.
        • Maeda R.
        • Portilla D.
        • Sugaya T.
        • Fujita T.
        Renal L-type fatty acid-binding protein mediates the bezafibrate reduction of cisplatin-induced acute kidney injury.
        Kidney Int. 2008; 73: 1374-1384
        • Negishi K.
        • Noiri E.
        • Doi K.
        • et al.
        Monitoring of urinary L-type fatty acid-binding protein predicts histological severity of acute kidney injury.
        Am J Pathol. 2009; 174: 1154-1159
        • Yokoyama T.
        • Kamijo-Ikemori A.
        • Sugaya T.
        • Hoshino S.
        • Yasuda T.
        • Kimura K.
        Urinary excretion of liver type fatty acid binding protein accurately reflects the degree of tubulointerstitial damage.
        Am J Pathol. 2009; 174: 2096-2106
        • Nakamura T.
        • Sugaya T.
        • Node K.
        • Ueda Y.
        • Koide H.
        Urinary excretion of liver-type fatty acid-binding protein in contrast medium-induced nephropathy.
        Am J Kidney Dis. 2006; 47: 439-444
        • Fukuda Y.
        • Miura S.
        • Zhang B.
        • et al.
        Significance of urinary liver-fatty acid-binding protein in cardiac catheterization in patients with coronary artery disease.
        Intern Med. 2009; 48: 1731-1737
        • Nakamura T.
        • Sugaya T.
        • Koide H.
        Urinary liver-type fatty acid-binding protein in septic shock: effect of polymyxin B-immobilized fiber hemoperfusion.
        Shock. 2009; 31: 454-459
        • Ferguson M.A.
        • Vaidya V.S.
        • Waikar S.S.
        • et al.
        Urinary liver-type fatty acid-binding protein predicts adverse outcomes in acute kidney injury.
        Kidney Int. 2010; 77: 708-714
        • Brzin J.
        • Popovic T.
        • Turk V.
        • Borchart U.
        • Machleidt W.
        Human cystatin, a new protein inhibitor of cysteine proteinases.
        Biochem Biophys Res Commun. 1984; 118: 103-109
        • Grubb A.O.
        Cystatin C—properties and use as diagnostic marker.
        Adv Clin Chem. 2000; 35: 63-99
        • Coll E.
        • Botey A.
        • Alvarez L.
        • et al.
        Serum cystatin C as a new marker for noninvasive estimation of glomerular filtration rate and as a marker for early renal impairment.
        Am J Kidney Dis. 2000; 36: 29-34
        • Dharnidharka V.R.
        • Kwon C.
        • Stevens G.
        Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis.
        Am J Kidney Dis. 2002; 40: 221-226
        • Roos J.F.
        • Doust J.
        • Tett S.E.
        • Kirkpatrick C.M.
        Diagnostic accuracy of cystatin C compared to serum creatinine for the estimation of renal dysfunction in adults and children—a meta-analysis.
        Clin Biochem. 2007; 40: 383-391
        • Kaseda R.
        • Iino N.
        • Hosojima M.
        • et al.
        Megalin-mediated endocytosis of cystatin C in proximal tubule cells.
        Biochem Biophys Res Commun. 2007; 357: 1130-1134
        • Herget-Rosenthal S.
        • Marggraf G.
        • Husing J.
        • et al.
        Early detection of acute renal failure by serum cystatin C.
        Kidney Int. 2004; 66: 1115-1122
        • Royakkers A.A.
        • Korevaar J.C.
        • van Suijlen J.D.
        • et al.
        Serum and urine cystatin C are poor biomarkers for acute kidney injury and renal replacement therapy.
        Intensive Care Med. 2011; 37: 493-501
        • Rickli H.
        • Benou K.
        • Ammann P.
        • et al.
        Time course of serial cystatin C levels in comparison with serum creatinine after application of radiocontrast media.
        Clin Nephrol. 2004; 61: 98-102
        • Ahlstrom A.
        • Tallgren M.
        • Peltonen S.
        • Pettila V.
        Evolution and predictive power of serum cystatin C in acute renal failure.
        Clin Nephrol. 2004; 62: 344-350
        • Soto K.
        • Coelho S.
        • Rodrigues B.
        • et al.
        Cystatin C as a marker of acute kidney injury in the emergency department.
        Clin J Am Soc Nephrol. 2010; 5: 1745-1754
        • Cruz D.N.
        • de Geus H.R.
        • Bagshaw S.M.
        Biomarker strategies to predict need for renal replacement therapy in acute kidney injury.
        Semin Dial. 2011; 24: 124-131
        • Zhang Z.
        • Lu B.
        • Sheng X.
        • Jin N.
        Cystatin C in prediction of acute kidney injury: a systemic review and meta-analysis.
        Am J Kidney Dis. 2011; 58: 356-365
        • Nguyen M.T.
        • Ross G.F.
        • Dent C.L.
        • Devarajan P.
        Early prediction of acute renal injury using urinary proteomics.
        Am J Nephrol. 2005; 25: 318-326
        • Nguyen M.T.
        • Dent C.L.
        • Ross G.F.
        • et al.
        Urinary aprotinin as a predictor of acute kidney injury after cardiac surgery in children receiving aprotinin therapy.
        Pediatr Nephrol. 2008; 23: 1317-1326
        • Devarajan P.
        • Krawczeski C.D.
        • Nguyen M.T.
        • Kathman T.
        • Wang Z.
        • Parikh C.R.
        Proteomic identification of early biomarkers of acute kidney injury after cardiac surgery in children.
        Am J Kidney Dis. 2010; 56: 632-642
        • Ho J.
        • Lucy M.
        • Krokhin O.
        • et al.
        Mass spectrometry-based proteomic analysis of urine in acute kidney injury following cardiopulmonary bypass: a nested case-control study.
        Am J Kidney Dis. 2009; 53: 584-595
        • Ho J.
        • Reslerova M.
        • Gali B.
        • et al.
        Urinary hepcidin-25 and risk of acute kidney injury following cardiopulmonary bypass.
        Clin J Am Soc Nephrol. 2011; 6: 2340-2346
        • Aregger F.
        • Pilop C.
        • Uehlinger D.E.
        • et al.
        Urinary proteomics before and after extracorporeal circulation in patients with and without acute kidney injury.
        J Thorac Cardiovasc Surg. 2010; 139: 692-700
        • Heller F.
        • Frischmann S.
        • Grunbaum M.
        • Zidek W.
        • Westhoff T.H.
        Urinary calprotectin and the distinction between prerenal and intrinsic acute kidney injury.
        Clin J Am Soc Nephrol. 2011; 6: 2347-2355
        • Beger R.D.
        • Holland R.D.
        • Sun J.
        • et al.
        Metabonomics of acute kidney injury in children after cardiac surgery.
        Pediatr Nephrol. 2008; 23: 977-984
        • Foxall P.J.
        • Mellotte G.J.
        • Bending M.R.
        • Lindon J.C.
        • Nicholson J.K.
        NMR spectroscopy as a novel approach to the monitoring of renal transplant function.
        Kidney Int. 1993; 43: 234-245
        • Wishart D.S.
        Metabolomics: the principles and potential applications to transplantation.
        Am J Transplant. 2005; 5: 2814-2820
        • Boudonck K.J.
        • Rose D.J.
        • Karoly E.D.
        • Lee D.P.
        • Lawton K.A.
        • Lapinskas P.J.
        Metabolomics for early detection of drug-induced kidney injury: review of the current status.
        Bioanalysis. 2009; 1: 1645-1663
        • Vaidya V.S.
        • Waikar S.S.
        • Ferguson M.A.
        • et al.
        Urinary biomarkers for sensitive and specific detection of acute kidney injury in humans.
        Clin Transl Sci. 2008; 1: 200-208
        • Metzger J.
        • Kirsch T.
        • Schiffer E.
        • et al.
        Urinary excretion of twenty peptides forms an early and accurate diagnostic pattern of acute kidney injury.
        Kidney Int. 2010; 78: 1252-1262
        • Hall I.E.
        • Coca S.G.
        • Perazella M.A.
        • et al.
        Risk of poor outcomes with novel and traditional biomarkers at clinical AKI diagnosis.
        Clin J Am Soc Nephrol. 2011; 6: 2740-2749