Advertisement

Biomarkers for systemic lupus erythematosus

  • Joseph M. Ahearn
    Correspondence
    Reprint requests: Joseph M. Ahearn, MD, Allegheny Singer Research Institute, Temple University School of Medicine, 320 East North Ave. Pittsburgh, PA 15212.
    Affiliations
    Lupus Center of Excellence, Department of Medicine, Allegheny Singer Research Institute, West Penn Allegheny Health System and Temple University School of Medicine, Pittsburgh, Pa
    Search for articles by this author
  • Chau-Ching Liu
    Affiliations
    Lupus Center of Excellence, Department of Medicine, Allegheny Singer Research Institute, West Penn Allegheny Health System and Temple University School of Medicine, Pittsburgh, Pa
    Search for articles by this author
  • Amy H. Kao
    Affiliations
    Lupus Center of Excellence, Department of Medicine, Allegheny Singer Research Institute, West Penn Allegheny Health System and Temple University School of Medicine, Pittsburgh, Pa
    Search for articles by this author
  • Susan Manzi
    Affiliations
    Lupus Center of Excellence, Department of Medicine, Allegheny Singer Research Institute, West Penn Allegheny Health System and Temple University School of Medicine, Pittsburgh, Pa
    Search for articles by this author
Published:February 13, 2012DOI:https://doi.org/10.1016/j.trsl.2012.01.021
      The urgent need for lupus biomarkers was demonstrated in September 2011 during a Workshop sponsored by the Food and Drug Administration: Potential Biomarkers Predictive of Disease Flare. After 2 days of discussion and more than 2 dozen presentations from thought leaders in both industry and academia, it became apparent that highly sought biomarkers to predict lupus flare have not yet been identified. Even short of the elusive biomarker of flare, few biomarkers for systemic lupus erythematosus (SLE) diagnosis, monitoring, and stratification have been validated and employed for making clinical decisions. This lack of reliable, specific biomarkers for SLE hampers proper clinical management of patients with SLE and impedes development of new lupus therapeutics. As such, the intensity of investigation to identify lupus biomarkers is climbing a steep trajectory, lending cautious optimism that a validated panel of biomarkers for lupus diagnosis, monitoring, stratification, and prediction of flare may soon be in hand.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sherer Y.
        • Gorstein A.
        • Fritzler M.J.
        • et al.
        Autoantibody explosion in systemic lupus erythematosus: more than 100 different antibodies found in SLE patients.
        Semin Arthritis Rheum. 2004; 34: 501-537
        • Rahman A.
        • Isenberg D.A.
        Systemic lupus erythematosus.
        N Engl J Med. 2008; 358: 929-939
        • Cook H.T.
        • Botto M.
        Mechanisms of disease: the complement system and the pathogenesis of systemic lupus erythematosus.
        Nat Clin Prac Rheumatol. 2006; 2: 330-337
        • Illei G.G.
        • Tackey E.
        • Lapteva L.
        • et al.
        Biomarkers in systemic lupus erythematosus. I. General overview of biomarkers and their applicability.
        Arthritis Rheum. 2004; 50: 1709-1720
        • Illei G.G.
        • Tackey E.
        • Lapteva L.
        • et al.
        Biomarkers in systemic lupus erythematosus. II. Markers of disease activity.
        Arthritis Rheum. 2004; 50: 2048-2065
        • Jonsen A.
        • Gullstrand B.
        • Guner N.
        • et al.
        Genetically determined mannan-binding lectin deficiency is of minor importance in determining susceptibility to severe infections and vascular organ damage in systemic lupus erythematosus.
        Lupus. 2007; 16: 245-253
        • Sestak A.L.
        • Nath S.K.
        • Sawalha A.H.
        • et al.
        Current status of lupus genetics.
        Arthritis Res Ther. 2007; 9: 210
        • Wakeland E.K.
        • Liu K.
        • Graham R.R.
        • et al.
        Delineating the genetic basis of systemic lupus erythematosus.
        Immunity. 2001; 15: 397-408
        • Nath S.K.
        • Kilpatrick J.
        • Harley J.B.
        Genetics of human systemic lupus erythematosus: the emerging picture.
        Curr Opin Immunol. 2004; 16: 794-800
        • Hirose S.
        • Jiang Y.
        • Nishimura H.
        • et al.
        Significance of MHC class II haplotypes and IgG Fc receptors in SLE.
        Springer Semin Immunopathol. 2006; 28: 163-174
        • Croker J.A.
        • Kimberly R.P.
        Genetics of susceptibility and severity in systemic lupus erythematosus.
        Curr Opin Rheumatol. 2005; 17 ([see comment]): 529-537
        • Fairhurst A.M.
        • Wandstrat A.E.
        • Wakeland E.K.
        Systemic lupus erythematosus: multiple immunological phenotypes in a complex genetic disease.
        Adv Immunol. 2006; 92: 1-69
        • Rhodes B.
        • Vyse T.J.
        General aspects of the genetics of SLE.
        Autoimmunity. 2007; 40: 550-559
        • Pickering M.C.
        • Botto M.
        • Taylor P.R.
        • et al.
        Systemic lupus erythematosus, complement deficiency, and apoptosis.
        Adv Immunol. 2000; 76: 227-324
        • Yang Y.
        • Chung E.K.
        • Zhou B.
        • et al.
        The intricate role of complement component C4 in human systemic lupus erythematosus.
        Curr Dir Autoimmun. 2004; 7: 98-132
        • Law S.K.A.
        • Dodds A.W.
        • Porter R.R.
        A comparison of the properties of two classes, C4A and C4B, of the human complement component C4.
        EMBO J. 1984; 3: 1819-1823
        • Chung E.K.
        • Yang Y.
        • Rupert K.L.
        • et al.
        Determining the one, two, three, or four long and short loci of human complement C4 in a major histocompatibility complex haplotype encoding C4A or C4B proteins.
        Am J Hum Genet. 2002; 71: 810-822
        • Yang Y.
        • Chung E.K.
        • Wu Y.L.
        • et al.
        Gene copy-number variation and associated polymorphisms of complement component C4 in human systemic lupus erythematosus (SLE): low copy number is a risk factor for and high copy number is a protective factor against SLE susceptibility in European Americans.
        Am J Hum Genet. 2007; 80: 1037-1054
        • Fanciulli M.
        • Norsworthy P.J.
        • Petretto E.
        • et al.
        FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity.
        Nat Genet. 2007; 39: 721-723
        • Kyogoku C.
        • Langefeld C.D.
        • Ortmann W.A.
        • et al.
        Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE.
        Am J Hum Genet. 2004; 75: 504-507
        • Lee Y.H.
        • Rho Y.H.
        • Choi S.J.
        • et al.
        The PTPN22 C1858T functional polymorphism and autoimmune diseases–a meta-analysis.
        Rheumatology. 2007; 46: 49-56
        • Wu H.
        • Cantor R.M.
        • Graham D.S.
        • et al.
        Association analysis of the R620W polymorphism of protein tyrosine phosphatase PTPN22 in systemic lupus erythematosus families: increased T allele frequency in systemic lupus erythematosus patients with autoimmune thyroid disease.
        Arthritis Rheum. 2005; 52: 2396-2402
        • Criswell L.A.
        • Pfeiffer K.A.
        • Lum R.F.
        • et al.
        Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes.
        Am J Hum Genet. 2005; 76: 561-571
        • Chung S.A.
        • Criswell L.A.
        PTPN22: its role in SLE and autoimmunity.
        Autoimmunity. 2007; 40: 582-590
        • Hooks J.J.
        • Moutsopoulos H.M.
        • Geis S.A.
        • et al.
        Immune interferon in the circulation of patients with autoimmune disease.
        N Engl J Med. 1979; 301: 5-8
        • Kozyrev S.V.
        • Alarcon-Riquelme M.E.
        The genetics and biology of Irf5-mediated signaling in lupus.
        Autoimmunity. 2007; 40: 591-601
        • Sigurdsson S.
        • Nordmark G.
        • Goring H.H.
        • et al.
        Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus.
        Am J Hum Genet. 2005; 76: 528-537
        • Graham R.R.
        • Kozyrev S.V.
        • Baechler E.C.
        • et al.
        A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus.
        Nat Genet. 2006; 38: 550-555
        • Kelly J.A.
        • Kelley J.M.
        • Kaufman K.M.
        • et al.
        Interferon regulatory factor-5 is genetically associated with systemic lupus erythematosus in African Americans.
        Genes Immun. 2008; 9: 187-194
        • Kawasaki A.
        • Kyogoku C.
        • Ohashi J.
        • et al.
        Association of IRF5 polymorphisms with systemic lupus erythematosus in a Japanese population: support for a crucial role of intron 1 polymorphisms.
        Arthritis Rheum. 2008; 58: 826-834
        • Graham R.R.
        • Kyogoku C.
        • Sigurdsson S.
        • et al.
        Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus.
        Proc Nat Acad Sci USA. 2007; 104: 6758-6763
        • Sigurdsson S.
        • Goring H.H.
        • Kristjansdottir G.
        • et al.
        Comprehensive evaluation of the genetic variants of interferon regulatory factor 5 (IRF5) reveals a novel 5 bp length polymorphism as strong risk factor for systemic lupus erythematosus.
        Hum Mol Genet. 2008; 17: 872-881
        • Dieguez-Gonzalez R.
        • Calaza M.
        • Perez-Pampin E.
        • et al.
        Association of interferon regulatory factor 5 haplotypes, similar to that found in systemic lupus erythematosus, in a large subgroup of patients with rheumatoid arthritis.
        Arthritis Rheum. 2008; 58: 1264-1274
        • Korman B.D.
        • Kastner D.L.
        • Gregersen P.K.
        • et al.
        STAT4: genetics, mechanisms, and implications for autoimmunity.
        Curr Allergy Asthma Reports. 2008; 8: 398-403
        • Remmers E.F.
        • Plenge R.M.
        • Lee A.T.
        • et al.
        STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus.
        N Engl J Med. 2007; 357: 977-986
        • Kobayashi S.
        • Ikari K.
        • Kaneko H.
        • et al.
        Association of STAT4 with susceptibility to rheumatoid arthritis and systemic lupus erythematosus in the Japanese population.
        Arthritis Rheum. 2008; 58: 1940-1946
        • Palomino-Morales R.J.
        • Rojas-Villarraga A.
        • Gonzalez C.I.
        • et al.
        STAT4 but not TRAF1/C5 variants influence the risk of developing rheumatoid arthritis and systemic lupus erythematosus in Colombians.
        Genes Immun. 2008; 9: 379-382
        • Martinez A.
        • Varade J.
        • Marquez A.
        • et al.
        Association of the STAT4 gene with increased susceptibility for some immune-mediated diseases.
        Arthritis Rheum. 2008; 58: 2598-2602
        • Russell A.I.
        • Cunninghame Graham D.S.
        • Shepherd C.
        • et al.
        Polymorphism at the C-reactive protein locus influences gene expression and predisposes to systemic lupus erythematosus.
        Hum Mol Genet. 2004; 13: 137-147
        • Tsao B.P.
        • Cantor R.M.
        • Grossman J.M.
        • et al.
        PARP alleles within the linked chromosomal region are associated with systemic lupus erythematosus.
        J Clin Invest. 1999; 103: 1135-1140
        • Harley J.B.
        • Alarcon-Riquelme M.E.
        • et al.
        • International Consortium for Systemic Lupus Erythematosus Genetics (SLEGEN)
        Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci.
        Nat Genet. 2008; 40: 204-210
        • Hom G.
        • Graham R.R.
        • Modrek B.
        • et al.
        Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX.
        N Engl J Med. 2008; 358: 900-909
        • Sreih A.
        • Ezzeddine R.
        • Leng L.
        • et al.
        Dual effect of the macrophage migration inhibitory factor gene on the development and severity of human systemic lupus erythematosus.
        Arthritis Rheum. 2011; 63: 3942-3951
        • Reveille J.D.
        Predictive value of autoantibodies for activity of systemic lupus erythematosus.
        Lupus. 2004; 13: 290-297
        • Manzi S.
        • Navratil J.S.
        • Ruffing M.J.
        • et al.
        Measurement of erythrocyte C4d and complement receptor 1 in the diagnosis of systemic lupus erythematosus.
        Arthritis Rheum. 2004; 50: 3596-3604
        • Ghiran I.C.
        • Zeidel M.L.
        • Shevkoplyas S.S.
        • Burns J.M.
        • Tsokos G.C.
        • Kyttaris V.C.
        Systemic lupus erythematosus serum deposits C4d on red blood cells, decreases red blood cell membrane deformability, and promotes nitric oxide production.
        Arthritis Rheum. 2001; 63: 503-512
        • Navratil J.S.
        • Manzi S.
        • Kao A.H.
        • et al.
        Platelet C4d is highly specific for systemic lupus erythematosus.
        Arthritis Rheum. 2006; 54: 670-674
        • Liu C.C.
        • Kao A.H.
        • Hawkins D.M.
        • et al.
        Lymphocyte-bound complement activation products as biomarkers for diagnosis of systemic lupus erythematosus.
        Clin Transl Sci. 2009; 2: 300-308
        • Liang M.H.
        • Socher S.A.
        • Larson M.G.
        • et al.
        Reliability and validity of six systems for the clinical assessment of disease activity in systemic lupus erythematosus.
        Arthritis Rheum. 1989; 32: 1107-1118
        • Bombardier C.
        • Gladman D.D.
        • et al.
        Derivation of the SLEDAI. A disease activity index for lupus patients. The Committee on Prognosis Studies in SLE.
        Arthritis Rheum. 1992; 35: 630-640
        • Hay E.M.
        • Bacon P.A.
        • Gordon C.
        • et al.
        The BILAG index: a reliable and valid instrument for measuring clinical disease activity in systemic lupus erythematosus.
        Q J Med. 1993; 86: 447-458
        • Liu C.-C.
        • Ahearn J.M.
        • Manzi S.
        Complement as a source of biomarkers in systemic lupus erythematosus: past, present, and future.
        Curr Rheumatol Reports. 2004; 6: 85-88
        • Isenberg D.A.
        • Manson J.J.
        • Ehrenstein M.R.
        • et al.
        Fifty years of anti-ds DNA antibodies: are we approaching journey's end?.
        Rheumatology. 2007; 46: 1052-1056
        • Lipsky P.E.
        Systemic lupus erythematosus: an autoimmune disease of B cell hyperactivity.
        Nat Immunol. 2001; 2: 764-766
        • Odendahl M.
        • Jocobi A.
        • Hansen A.
        • et al.
        Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus.
        J Immunol. 2000; 165: 5970-5979
        • Arce E.
        • Jackson D.G.
        • Gill M.A.
        • et al.
        Increased frequency of pre-germinal center B cells and plasma cell precursors in the blood of children with systemic lupus erythematosus.
        J Immunol. 2001; 167: 2361-2369
        • Jacobi A.M.
        • Odendahl M.
        • Reiter K.
        • et al.
        Correlation between circulating CD27high plasma cells and disease activity in patients with systemic lupus erythematosus.
        Arthritis Rheum. 2003; 48: 1332-1342
        • Jacobi A.M.
        • Reiter K.
        • Mackay M.
        • et al.
        Activated memory B cell subsets correlate with disease activity in systemic lupus erythematosus: delineation by expression of CD27, IgD and CD95.
        Arthritis Rheum. 2008; 58: 1762-1773
        • Yang D.H.
        • Chang D.M.
        • Lai J.H.
        • et al.
        Significantly higher percentage of circulating CD27high plasma cells in systemic lupus erythematosus patients with infection than with disease flare-up.
        Yonsei Med J. 2010; 51: 924-931
        • Liu C.C.
        • Manzi S.
        • Kao A.H.
        • et al.
        Reticulocytes bearing C4d as biomarkers of disease activity for systemic lupus eryhematosus.
        Arthritis Rheum. 2005; 52: 3087-3099
        • Kao A.H.
        • Navratil J.S.
        • Ruffing M.J.
        • et al.
        Erythrocyte C3d and C4d for monitoring disease activity in systemic lupus erythematosus.
        Arthritis Rheum. 2010; 62: 837-844
        • Yang D.H.
        • Chang D.M.
        • Lai J.H.
        • et al.
        Usefulness of erythrocyte-bound C4d as a biomarker to predict disease activity in patients with systemic lupus erythematosus.
        Rheumatology. 2009; 48: 1083-1087
        • Baechler E.C.
        • Batliwalla F.M.
        • Karypis G.
        • et al.
        Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus.
        Proc Natl Acad Sci USA. 2003; 100: 2610-2615
        • Crow M.K.
        • Kirou K.A.
        Interferon-α in systemic lupus erythematosus.
        Curr Opin Rheumatol. 2004; 16: 541-547
        • Ronnblom L.
        • Eloranta M.L.
        • Alm G.V.
        The type I interferon system in systemic lupus erythematosus.
        Arthritis Rheum. 2006; 54: 408-420
        • Pascual V.
        • Farkas L.
        • Banchereau J.
        Systemic lupus erythematosus: all roads lead to type I interferons.
        Curr Opin Immunol. 2006; 18: 676-682
        • Han G.M.
        • Chen S.L.
        • Shen N.
        • et al.
        Analysis of gene expression profiles in human systemic lupus erythematosus using oligonucleotide microarray.
        Genes Immunity. 2003; 4: 177-186
        • Bennett L.
        • Palucka K.A.
        • Arce E.
        • et al.
        Interferon and granulopoiesis signatures in systemic lupus erythematosus blood.
        J Exp Med. 2003; 197: 711-723
        • Kirou K.A.
        • Lee C.
        • George S.
        • et al.
        Activation of the interferon-α pathway identifies a subgroup of systemic lupus erythematosus patients with distinct serologic features and active disease.
        Arthritis Rheum. 2005; 52: 1491-1503
        • Bauer J.W.
        • Baechler E.C.
        • Petri M.
        • et al.
        Elevated serum levels of interferon-regulated chemokines are biomarkers for active human systemic lupus erythematosus.
        PLoS. 2006; 3: e491
        • Feng X.
        • Wu H.
        • Grossman J.M.
        • et al.
        Association of increased interferon-inducible gene expression with disease activity and lupus nephritis in patients with systemic lupus erythematosus.
        Arthritis Rheum. 2006; 54: 2951-2962
        • Vila L.M.
        • Molina M.J.
        • Mayor A.M.
        • et al.
        Association of serum MIP-1α, MIP-1beta, and RANTES with clinical manifestations, disease activity, and damage accrual in systemic lupus erythematosus.
        Clin Rheumatol. 2007; 26: 718-722
        • Nikpour M.
        • Dempsey A.A.
        • Urowitz M.B.
        • et al.
        Association of a gene expression profile from whole blood with disease activity in systemic lupus erythaematosus.
        Ann Rheum Dis. 2008; 67: 1069-1075
        • Bauer J.W.
        • PEtri M.
        • Batliwalla F.M.
        • et al.
        Interferon-regulated chemokines as biomarkers of systemic lupus erythematosus disease activity: a validation study.
        Arthritis Rheum. 2009; 60: 3098-3107
        • Kirou K.A.
        • Lee C.
        • George S.
        • et al.
        Coordinate overexpression of interferon-α-induced genes in systemic lupus erythematosus.
        Arthritis Rheum. 2004; 50: 3958-3967
        • Landolt-Marticorena C.
        • Bonventi G.
        • Lubovich A.
        • et al.
        Lack of association between the interferon-α signature and longitudinal changes in disease activity in systemic lupus erythematosus.
        Ann Rheum Dis. 2009; 68: 1440-1446
        • Petri M.
        • Tesfasyone H.
        • Singh S.
        • et al.
        The systemic lupus erythematosus interferon signature is associated with current activity and is also predictive of hematologic and mucocutaneous disease activity at the next visit.
        Arthritis Rheum. 2005; 52: S464
        • Baechler E.C.
        • Batliwalla F.
        • Ortmann W.A.
        • et al.
        Gene signatures in peripheral blood predict future disease activity in patients with systemic lupus erythematosus.
        Arthritis Rheum. 2005; 52: S700
        • Biesen R.
        • Demir C.
        • Barkhudarova F.
        • et al.
        Sialic acid-binding Ig-like lectin 1 expression in inflammatory and resident monocytes is a potential biomarker for monitoring disease activity and success of therapy in systemic lupus erythematosus.
        Arthritis Rheum. 2008; 58: 1136-1145
        • Li Y.
        • Lee P.Y.
        • Kellner E.S.
        • et al.
        Monocyte surface expression of Fcg receptor RI (CD64), a biomarker reflecting type-I interferon levels in systemic lupus erythematosus.
        Arthritis Res Ther. 2010; 12: R90
        • Kariuki S.N.
        • Crow M.K.
        • Niewold T.B.
        The PTPN22 C1858T polymorphism is associated with skewing of cytokine profiles toward high interferon-α activity and low tumor necrosis factor α levels in patients with lupus.
        Arthritis Rheum. 2008; 58: 2813-2823
        • Niewold T.B.
        • Kelly J.A.
        • Flesch M.H.
        • et al.
        Association of the IRF5 risk haplotype with high serum interferon-α activity in systemic lupus erythematosus patients.
        Arthritis Rheum. 2008; 58: 2481-2487
        • Ronnblom L.
        • Pascual V.
        The innate immune system in SLE: type I interferons and dendritic cells.
        Lupus. 2008; 17: 394-399
        • Yan B.
        • Ye S.
        • Chen G.
        • et al.
        Dysfunctional CD4+, CD25+ regulatory T cells in untreated active systemic lupus erythematosus secondary to interferon-α-producing antigen-presenting cells.
        Arthritis Rheum. 2008; 58: 801-812
        • Lee P.Y.
        • Li Y.
        • Richards H.B.
        • et al.
        Type I interferon as a novel risk factor for endothelial progenitor cell depletion and endothelial dysfunction in systemic lupus erythematosus.
        Arthritis Rheum. 2007; 56: 3759-3769
        • Denny M.F.
        • Thacker S.
        • Mehta H.
        • et al.
        Interferon-α promotes abnormal vasculogenesis in lupus: a potential pathway for premature atherosclerosis.
        Blood. 2007; 110: 2907-2915
        • Moore P.A.
        • Belvedere O.
        • Orr A.
        • et al.
        BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator.
        Science. 1999; 285: 260-263
        • Nardelli B.
        • Belvedere O.
        • Roschke V.
        • et al.
        Synthesis and release of B-lymphocyte stimulator from myeloid cells.
        Blood. 2001; 97: 198-204
        • Gross J.A.
        • Johnston J.
        • Mudri S.
        • et al.
        TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease.
        Nature. 2000; 404: 995-999
        • Mackay F.
        • Woodcock S.A.
        • Lawton P.
        • et al.
        Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations.
        J Exp Med. 1999; 190: 1697-1710
        • Zhang J.
        • Roschke V.
        • Baker K.P.
        • et al.
        Cutting edge: a role for B lymphocyte stimulator in systemic lupus erythematosus.
        J Immunol. 2001; 166: 6-10
        • Cheema G.S.
        • Roschke V.
        • Hilbert D.M.
        • et al.
        Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases.
        Arthritis Rheum. 2001; 44: 1313-1319
        • Pers J.O.
        • Daridon C.
        • Devauchelle V.
        • et al.
        BAFF overexpression is associated with autoantibody production in autoimmune diseases.
        Ann NY Acad Sci. 2005; 1050: 34-39
        • Becker-Merok A.
        • Nikolaisen C.
        • Nossent H.C.
        B-lymphocyte activating factor in systemic lupus erythematosus and rheumatoid arthritis in relation to autoantibody levels, disease measures and time.
        Lupus. 2006; 15: 570-576
        • Harigai M.
        • Kawamoto M.
        • Hara M.
        • et al.
        Excessive production of IFN-γ in patients with systemic lupus erythematosus and its contribution to induction of B lymphocyte stimulator/B cell-activating factor/TNF ligand superfamily-13B.
        J Immunol. 2008; 181: 2211-2219
        • Stohl W.
        • Metyas S.
        • Tan S.M.
        • et al.
        B lymphocyte stimulator overexpression in patients with systemic lupus erythematosus: longitudinal observations.
        Arthritis Rheum. 2003; 48: 3475-3486
        • Petri M.
        • Stohl W.
        • Chatham W.
        • et al.
        Association of plasma B lymphocyte stimulator levels and disease activity in systemic lupus erythematosus.
        Arthritis Rheum. 2008; 58: 2453-2459
        • Ritterhouse L.L.
        • Crowe S.R.
        • Niewold
        • et al.
        B lymphocyte stimulator levels in systemic lupus erythematosus.
        Arthritis Rheum. 2011; 63: 3931-3941
        • Stuart R.A.
        • Littlewood A.J.
        • Maddison P.J.
        • et al.
        Elevated serum interleukin-6 levels associated with active disease in systemic connective tissue disorders.
        Clin Exp Rheumatol. 1995; 13: 17-22
        • Houssiau F.A.
        • Lefebvre C.
        • Vanden Berghe M.
        • et al.
        Serum interleukin 10 titers in systemic lupus erythematosus reflect disease activity.
        Lupus. 1995; 4: 393-395
        • Lard L.R.
        • Roep B.O.
        • Verburgh C.A.
        • et al.
        Elevated IL-16 levels in patients with systemic lupus erythematosus are associated with disease severity but not with genetic susceptibility to lupus.
        Lupus. 2002; 11: 181-185
        • Davas E.M.
        • Tsirogianni A.
        • Kappou I.
        • et al.
        Serum IL-6, TNFα, p55 srTNFα, p75srTNFα, srIL-2α levels and disease activity in systemic lupus erythematosus.
        Clin Rheumatol. 1999; 18: 17-22
        • Spronk P.E.
        • Bootsma H.
        • Huitema M.G.
        • et al.
        Levels of soluble VCAM-1, soluble ICAM-1, and soluble E-selectin during disease exacerbations in patients with systemic lupus erythematosus (SLE): a long term prospective study.
        Clin Exp Immunol. 1994; 97: 439-444
        • Sjowall C.
        • Bengtsson A.A.
        • Sturfeldt G.
        • et al.
        Serum levels of autoantibodies against monomeric C-reactive protein are correlated with disease activity in systemic lupus erythematosus.
        Arthritis Res Ther. 2004; 6: R87-R94
        • Suh C.H.
        • Hilliard B.
        • Li S.
        • et al.
        TAM receptor ligands in lupus: Protein S but not Gas6 levels reflect disease activity in systemic lupus erythematosus.
        Arthritis Res Ther. 2010; 12: R146
        • Oates J.C.
        • Shaftman S.R.
        • Self S.E.
        • et al.
        Association of serum nitrate and nitrite levels with longitudinal assessments of disease activity and damage in systemic lupus erythematosus and lupus nephritis.
        Arthritis Rheum. 2008; 58: 263-272
        • Crispin J.C.
        • Keenan B.T.
        • Finnell M.D.
        • et al.
        Expression of CD44 isoforms CD44v3 and CD44v6 is increased on T cells from patients with systemic lupus erythematosus and is correlated with disease activity.
        Arthritis Rheum. 2010; 62: 1431-1437
        • Carreno L.J.
        • Pacheco R.
        • Gutierrez M.A.
        • et al.
        Disease activity in systemic lupus erythematosus is associated with an altered expression of low-affinity Fcg receptors and costimulatory molecules on dendritic cells.
        Immunology. 2009; 128: 334-341
        • Li Y.
        • Lee P.Y.
        • Sobel E.S.
        • et al.
        Increased expression of FCgRI/CD64 on circulating monocytes parallels ongoing inflammation and nephritis in lupus.
        Arthritis Res Ther. 2009; 11: R6
        • Dolff S.
        • Quandt D.
        • Wilde B.
        • et al.
        Increased expression of costimulatory markers CD134 and CD80 on interleukin-17 producing T cells in patients with systemic lupus erythematosus.
        Arthritis Res Ther. 2010; 12: R150
        • Dong L.
        • Hu S.
        • Chen F.
        • et al.
        Increased expression of ganglioside GM1 in peripheral CD4+ T cells correlates soluble form of CD30 in systemic lupus erythematosus patients.
        J Biomed Biotechnol. 2010;
        • Krishnan S.
        • Nambiar M.P.
        • et al.
        Alterations in lipid raft composition and dynamics contribute to abnormal T cell responses in systemic lupus erythematosus.
        J Immunol. 2004; 172: 7821-7831
        • Jury E.C.
        • Kabouridas P.S.
        • Flores-Borja F.
        • et al.
        Altered lipid raft-associated signaling and ganglioside expression in T lymphocytes from patients with systemic lupus erythematosus.
        J Clin Invest. 2004; 113: 1176-1187
        • Basu D.
        • Liu Y.
        • Wu A.
        • et al.
        Stimulatory and inhibitory killer Ig-like receptor molecules are expressed and functional on lupus T cells.
        J Immunol. 2009; 183: 3481-3487
        • Dai Z.
        • Turtle C.J.
        • et al.
        Normally occurring NKG2D+CD4+ T cells are immunosuppressive and inversely correlated with disease activity in juvenile-onset lupus.
        J Exp Med. 2009; 206: 793-805
        • Alevizos I.
        • Illei G.G.
        MicroRNAs as biomarkers in rheumatic diseases.
        Nat Rev Rheumatol. 2010; 6: 391-398
        • Cameron J.S.
        Lupus nephritis.
        J Am Soc Nephrol. 1999; 10: 413-424
        • Rovin B.H.
        • Birmingham D.J.
        • Nagaraja H.N.
        • et al.
        Biomarker discovery in human SLE nephritis.
        Bull NYU Hosp Jt Dis. 2007; 65: 187-193
        • Rovin B.H.
        • Zhang X.
        Biomarkers for lupus nephritis: the quest continues.
        CJASN. 2009; 4: 1858-1865
        • Mok C.C.
        Biomarkers for lupus nephritis: a critical appraisal.
        J Biomed Biotech. 2010;
        • Budu-Grajdeanu P.
        • Schugart R.C.
        • Friedman A.
        • et al.
        Mathematical framework for human SLE nephritis: disease dynamics and urine biomarkers.
        Theor Biol Med Model. 2010; 7: 14
        • Simon J.A.
        • Cabiedes J.
        • Ortiz E.
        • et al.
        Anti-nucleosome antibodies in patients with systemic lupus erythematosus of recent onset. Potential utility as a diagnostic tool and disease activity marker.
        Rheumatology. 2004; 43: 220-224
        • Gutierrez-Adrianzen O.A.
        • Koutouzov S.
        • Mota R.M.
        • et al.
        Diagnostic value of anti-nucleosome antibodies in the assessment of disease activity of systemic lupus erythematosus: a prospective study comparing anti-nucleosome with anti-dsDNA antibodies.
        J Rheumatol. 2006; 33: 1538-1544
        • Seelen M.A.
        • Trouw L.A.
        • Daha M.R.
        Diagnostic and prognostic significance of anti-C1q antibodies in systemic lupus erythematosus.
        Curr Opin Nephrol Hypertens. 2003; 12: 619-624
        • Potlukova E.
        • Kralikova P.
        Complement component c1q and anti-c1q antibodies in theory and in clinical practice.
        Scand J Immunol. 2008; 67: 423-430
        • Mohan C.
        • Adams S.
        • Stanik V.
        • et al.
        Nucleosome: a major immunogen for pathogenic autoantibody-inducing T cells of lupus.
        J Exp Med. 1993; 177: 1367-1381
        • Chabre H.
        • Amoura Z.
        • Piette J.C.
        • et al.
        Presence of nucleosome-restricted antibodies in patients with systemic lupus erythematosus.
        Arthritis Rheum. 1995; 38: 1485-1491
        • Ravirajan C.T.
        • Rowse L.
        • MacGowan J.R.
        • et al.
        An analysis of clinical disease activity and nephritis-associated serum autoantibody profiles in patients with systemic lupus erythematosus: a cross-sectional study.
        Rheumatology. 2001; 40: 1405-1412
        • Cairns A.P.
        • McMillan S.A.
        • Crockard A.D.
        • et al.
        Antinucleosome antibodies in the diagnosis of systemic lupus erythematosus.
        Ann Rheum Dis. 2003; 62: 272-273
        • Min D.J.
        • Kim S.J.
        • Park S.H.
        • et al.
        Anti-nucleosome antibody: significance in lupus patients lacking anti-double-stranded DNA antibody.
        Clin Exp Rheumatol. 2002; 20: 13-18
        • Bigler C.
        • Lopez-Trascasa M.
        • Potlukova E.
        • et al.
        Antinucleosome antibodies as a marker of active proliferative lupus nephritis.
        Am J Kid Dis. 2008; 51: 624-629
        • Horvath L.
        • Czirjak L.
        • Fekete B.
        • et al.
        High levels of antibodies against Clq are associated with disease activity and nephritis but not with other organ manifestations in SLE patients.
        Clin Exp Rheumatol. 2001; 19: 667-672
        • Moroni G.
        • Trendelenburg M.
        • Papa N.D.
        • et al.
        Anti-C1q antibodies may help in diagnosing a renal flare in lupus nephritis.
        Am J Kid Dis. 2001; 37: 490-498
        • Marto N.
        • Bertolaccini M.L.
        • Calabuig E.
        • et al.
        Anti-C1q antibodies in nephritis: correlation between titres and renal disease activity and positive predictive value in systemic lupus erythematosus.
        Ann Rheum Dis. 2005; 64: 444-448
        • Trendelenburg M.
        • Marfurt J.
        • Gerber I.
        • et al.
        Lack of occurrence of severe lupus nephritis among anti-C1q autoantibody-negative patients.
        Arthritis Rheum. 1999; 42: 187-188
        • Trendelenburg M.
        • Lopez-Trascasa M.
        • Potlukova E.
        • et al.
        High prevalence of anti-C1q antibodies in biopsy-proven active lupus nephritis.
        Nephrol Dial Transpl. 2006; 21: 3115-3121
        • Pickering M.C.
        • Botto M.
        Are anti-C1q antibodies different from other SLE autoantibodies?.
        Nat Rev Rheumatol. 2010; 6: 490-493
        • Cohen D.
        • Koopmans M.
        • Kremer Hovinga I.C.
        • et al.
        Potential for glomerular C4d as an indicator of thrombotic microangiopathy in lupus nephritis.
        Arthritis Rheum. 2008; 58: 2460-2469
        • Batal I.
        • Liang K.
        • Bastacky S.
        • et al.
        Prospective assessment of C4d deposits on circulating cells and renal tissues in lupus nephritis: a pilot study.
        Lupus. 2012; 21: 13-26
        • Kiani A.H.
        • Joohnson K.
        • Chen C.
        • et al.
        Urine osteoprotegerin and monocyte chemoattractant protein-1 in lupus nephritis.
        J Rheumatol. 2009; 36: 2224-2230
        • Rovin B.H.
        • Song H.
        • Birmingham D.J.
        • et al.
        Urine chemokines as biomarkers of human systemic lupus erythematosus activity.
        J Am Soc Neph. 2005; 16: 467-473
        • Tucci M.
        • Barnes E.V.
        • Sobel E.S.
        • et al.
        Strong association of a functional polymorphism in the monocyte chemoattractant protein 1 promoter gene with lupus nephritis.
        Arthritis Rheum. 2004; 50: 1842-1849
        • Tian S.
        • Wang Y.
        • Jia J.
        • et al.
        Urinary levels of RANTEES and M-CSF are predictors of lupus flare.
        Inflamm Res. 2007; 56: 304-310
        • Chan R.W.Y.
        • Lai F.M.M.
        • Li E.K.M.
        • et al.
        The effect of immunosuppressive therapy on the messenger RNA expression of target genes in the urinary sediment of patients with active lupus nephritis.
        Neph Dial Transpl. 2006; 21: 1534-1540
        • Brunner H.I.
        • Mueller M.
        • Rutherford C.
        • et al.
        Urinary neutrophil gelatinase-associated lipocalin as a biomarker of nephritis in childhood-onset systemic lupus erythematosus.
        Arthritis Rheum. 2006; 54: 2577-2584
        • Pitashny M.
        • Schwartz N.
        • Qing X.
        • et al.
        Urinary lipocalin-2 is accociated with renal disease activity in human lupus nephritis.
        Arthritis Rheum. 2007; 56: 1894-1903
        • Suzuki M.
        • Wiers K.M.
        • Klein-Gitelman M.S.
        • et al.
        Neutrophil gelatinase-associated lipocalin as a biomarker of disease activity in pediatric lupus nephritis.
        Pediatric Neph. 2008; 23: 403-412
        • Hinze C.H.
        • Suzuki H.
        • Klein-Gitelman
        • et al.
        Neutrophil gelatinase-associated lipocalin as a predictor of the course of global and renal childhood-onset systemic lupus erythematosus disease activity.
        Arthritis Rheum. 2009; 60: 2772-2781
        • Rubinstein T.
        • Pitashny M.
        • Levine B.
        • et al.
        Urinary neutrophil gelatinase-associated lipocalin as a novel biomarker for disease activity in lupus nephritis.
        Rheumatology. 2010; 49: 960-971
        • Schwartz N.
        • Su L.
        • Burkly L.C.
        • et al.
        Urinary TWEAK and the activity of lupus nephritis.
        J Autoimmunity. 2006; 27: 242-250
        • Schwartz N.
        • Rubinstein T.
        • Burkly
        • et al.
        Urinary TWEAK as a biomarker of lupus nephritis: a multicenter cohort study.
        Arthritis Res Ther. 2009; 11: R143
        • Zhang X.
        • Nagaraja H.N.
        • Nadasdy T.
        • et al.
        A composite urine biomarker reflects interstitial inflammation in lupus nephritis kidney biopsies.
        Kidney Int. 2012; 81: 401-406
        • Suzuki M.
        • Wiers K.
        • Brooks E.B.
        • et al.
        Initial validation of a novel protein biomarker panel for active pediatric lupus nephritis.
        Pediatr Res. 2009; 65: 530-536
        • Hanly J.G.
        New insights into central nervous system lupus: a clinical perspective.
        Curr Rheumatol Reports. 2007; 9: 116-124
        • Bluestein H.G.
        Antibodies to brain.
        in: Wallace D.J. Hahn B. Dubois' lupus erythematosus. 5th ed. Williams & Wilkins, Baltimore1997: 517-522
        • DeGiorgio L.A.
        • Konstantinov K.N.
        • Lee S.C.
        • et al.
        A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus.
        Nat Med. 2001; 7: 1189-1193
        • Kowal C.
        • DeGiorgio L.A.
        • Nakaoka T.
        • et al.
        Cognition and immunity; antibody impairs memory.
        Immunity. 2004; 21: 179-188
        • Huerta P.T.
        • Kowal C.
        • DeGiorgio L.A.
        • et al.
        Immunity and behavior: antibodies alter emotion.
        Proc Nat Acad Sci USA. 2006; 103: 678-683
        • Kowal C.
        • Degiorgio L.A.
        • Lee J.Y.
        • et al.
        Human lupus autoantibodies against NMDA receptors mediate cognitive impairment.
        Proc Nat Acad Sci USA. 2006; 103: 19854-19859
        • Husebye E.S.
        • Sthoeger Z.M.
        • Dayan M.
        • et al.
        Autoantibodies to a NR2A peptide of the glutamate/NMDA receptor in sera of patients with systemic lupus erythematosus.
        Ann Rheum Dis. 2005; 64: 1210-1213
        • Arinuma Y.
        • Yanagida T.
        • Hirohata S.
        Association of cerebrospinal fluid anti-NR2 glutamate receptor antibodies with diffuse neuropsychiatric systemic lupus erythematosus.
        Arthritis Rheum. 2008; 58: 1130-1135
        • Lapteva L.
        • Nowak M.
        • Yarboro C.H.
        • et al.
        Anti-N-methyl-D-aspartate receptor antibodies, cognitive dysfunction, and depression in systemic lupus erythematosus.
        Arthritis Rheum. 2006; 54: 2505-2514
        • Harrison M.J.
        • Ravdin L.D.
        • Lockshin M.D.
        Relationship between serum NR2a antibodies and cognitive dysfunction in systemic lupus erythematosus.
        Arthritis Rheum. 2006; 54: 2515-2522
        • Hanly J.G.
        • Robichaud J.
        • Fisk J.D.
        Anti-NR2 glutamate receptor antibodies and cognitive function in systemic lupus erythematosus.
        J Rheumatol. 2006; 33: 1553-1558
        • Omdal R.
        • Brokstad K.
        • Waterloo K.
        • et al.
        Neuropsychiatric disturbances in SLE are associated with antibodies against NMDA receptors.
        Eur J Neurol. 2005; 12: 392-398
        • Yoshio T.
        • Onda K.
        • Nara H.
        • et al.
        Association of IgG anti-NR2 glutamate receptor antibodies in cerebrospinal fluid with neuropsychiatric systemic lupus erythematosus.
        Arthritis Rheum. 2006; 54: 675-678
        • McMahon M.M.
        • Grossman J.
        • Skaggs B.
        • et al.
        Dysfunctional proinflammatory high-density lipoproteins confer increased risk of atherosclerosis in women with systemic lupus erythematosus.
        Arthritis Rheum. 2009; 60: 2428-2437
        • McMahon M.
        • Grossman J.
        • Fitzgerald J.
        • et al.
        Proinflammatory high-density lipoprotein as a biomarker for atherosclerosis in patients with systemic lupus erythematosus and rheumatoid arthritis.
        Arthritis Rheum. 2006; 54: 2541-2549
        • McBurney C.A.
        • Kao A.H.
        • Sattar A.
        • et al.
        Platelet C4d is associated with all-cause mortality in patients with systemic lupus erythematosus.
        Arthritis Rheum. 2010; 62: 620
        • Hood L.
        • Perlmutter R.M.
        The impact of systems approaches on biological problems in drug discovery.
        Nat Biotechnol. 2004; 22: 1215-1217
        • Kyttaris V.C.
        • Krishnan S.
        • Tsokos G.C.
        Systems biology in systemic lupus erythematosus: integrating genes, biology and immune function.
        Autoimmunity. 2006; 39: 705-709
        • Petricoin E.F.
        • Zoon K.C.
        • Kohn E.C.
        • et al.
        Clinical proteomics: translating benchside promise into bedside reality.
        Nat Rev Drug Discov. 2002; 1: 683-695
        • Utz P.J.
        Multiplexed assays for identification of biomarkers and surrogate markers in systemic lupus erythematosus.
        Lupus. 2004; 13: 304-311
        • Forabosco P.
        • Gorman J.D.
        • Cleveland C.
        • et al.
        Meta-analysis of genome-wide linkage studies of systemic lupus erythematosus.
        Genes Immunity. 2006; 7: 609-614
        • Li Q.Z.
        • Zhou J.
        • Wandstrat A.E.
        • et al.
        Protein array autoantibody profiles for insights into systemic lupus erythematosus and incomplete lupus syndromes.
        Clin Exp Immunol. 2007; 147: 60-70
        • Chaussabel D.
        • Quinn C.
        • Shen J.
        • et al.
        A modular analysis framework for blood genomics studies: application to systemic lupus erythematosus.
        Immunity. 2008; 29: 150-164