Identifying and exploiting defects in the Fanconi anemia/BRCA pathway in oncology

  • Shane R. Stecklein
    Department of Pathology and Laboratory Medicine and The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kan
    Search for articles by this author
  • Roy A. Jensen
    Reprint requests: Roy A. Jensen, MD, The University of Kansas Cancer Center, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 1027, Kansas City, KS 66160
    Department of Pathology and Laboratory Medicine and The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kan
    Search for articles by this author
Published:February 10, 2012DOI:
      Defects in components of DNA repair pathways are responsible for numerous hereditary cancer syndromes and are also common in many sporadic malignancies. Inherited mutations in the breast cancer susceptibility genes BRCA1 and BRCA2 or components of the Fanconi anemia (FA) complex incite genomic instability and predispose to malignancy. The products of the BRCA and FA genes participate in a conserved DNA damage repair pathway that is responsible for repairing interstrand crosslinks and double-strand DNA breaks by homologous recombination. While the genetic instability resulting from FA/BRCA dysfunction contributes to cancer pathogenesis, deficiency of these genes also lends to therapeutic exploitation. Crosslinking agents and ionizing radiation induce damage in cancer cells that requires the FA/BRCA pathway to be resolved; thus cancers that are deficient in BRCA1, BRCA2, or any other component of the FA/BRCA pathway are hypersensitive to these agents. Moreover, emerging synthetic lethal strategies offer opportunities to selectively target cancer cells with defects in homologous recombination. Conversely, enhanced activity of the FA/BRCA pathway is responsible for acquired resistance to specific therapeutic agents, suggesting that both dysfunction and hyperfunction of the FA/BRCA repair machinery are rational targets for cancer therapy. Selection of specific cytotoxic agents based on repair capacity may improve responses and enable personalized cytotoxic chemotherapy. This article reviews the FA/BRCA pathway and current approaches to identify deficiencies within it, discusses synthetic lethality and enhanced repair capacity as causes of therapeutic hypersensitivity and resistance, respectively, and highlights recent studies that have linked FA/BRCA pathway function with therapeutic efficacy.


      17-AAG (17-allylamino-17-demethoxygeldanamycin), ATM (Ataxia telangiectasia mutatated (gene)), ATR (Ataxia telangiectasia and Rad3-related (gene)), AZD-2281 (Olaparib), BER (Base excision repair), BRCA1 (Breast cancer susceptibility gene 1 (gene)), BRCA2 (Breast cancer susceptibility gene 2 (gene) [same as FANCD1]), BRIP1 (BRCA1-associated C-terminal helicase (gene) [same as FANCJ]), BSI-201 (Iniparib), cCR (Clinical complete response), CDK1 (Cyclin-dependent kinase 1 (gene)), CDK5 (Cyclin-dependent kinase 5 (gene)), CHK1 (Checkpoint kinase 1 (gene)), CHK2 (Checkpoint kinase 2 (gene)), CpG (Cytosine-phosphate-guanine dinucleotide), 137Cs (Cesium-137), DAPI (4'-6-diamidino-2-phenylindole), DDN (2,3-dichloro-5,8-dihydroxy-1,4-naphthoquinone), DDR (DNA damage response), DEB (Diepoxybutane), DN (Dominant negative), DNA (Deoxyribonucleic acid), DSB (Double-strand break), EC (Epirubicin plus cyclophosphamide), EOC (Epithelial ovarian cancer), ER (Estrogen receptor), ESR1 (Estrogen receptor 1 (gene)), FA (Fanconi anemia), FAAP24 (Fanconi anemia-associated protein 24 (gene)), FAN1 (Fanconi anemia-associated nuclease 1 (gene)), FANCA (Fanconi anemia, complementation group A (gene)), FANCB (Fanconi anemia, complementation group B (gene)), FANCC (Fanconi anemia, complementation group C (gene)), FANCD1 (Fanconi anemia, complementation group D1 (gene) [same as BRCA2]), FANCD2 (Fanconi anemia, complementation group D2 (gene)), FANCE (Fanconi anemia, complementation group E (gene)), FANCF (Fanconi anemia, complementation group F (gene)), FANCG (Fanconi anemia, complementation group G (gene)), FANCI (Fanconi anemia, complementation group I (gene)), FANCJ (Fanconi anemia, complementation group J (gene) [same as BRIP1]), FANCL (Fanconi anemia, complementation group L (gene)), FANCM (Fanconi anemia, complementation group M (gene)), FANCN (Fanconi anemia, complementation group N (gene) [same as PALB2]), FANCO (Fanconi anemia, complementation group O (gene) [same as RAD51C]), FANCP (Fanconi anemia, complementation group P (gene)), GSTP1 (Glutathione S-transferase pi 1 (gene)), GSK3β (Glycogen synthase kinase 3 beta (gene)), Gy (Gray), γH2AX (H2A histone family, member X (pS139)), H2AX (H2A histone family, member X (gene)), HBOC (Hereditary breast and/or ovarian cancer), HER2 (Avian erythroblastic leukemia viral oncogene homolog 2 (gene)), HNPCC (Hereditary non-polyposis colorectal cancer), HR (Homologous recombination), HSP90 (Heat shock protein 90), ICL (Interstrand crosslink), ICLR (Interstrand crosslink repair), IR (Ionizing radiation), LOH (Loss of heterozygosity), MAI (Mitotic activity index), MGMT (O-6-methylguanine-DNA methyltransferase (gene)), MHF (FANCM-associated histone fold 1/2 (gene)), miRNA (MicroRNA), MLH1 (mutL homolog 1 (gene)), MMC (Mitomycin C), MMR (Mismatch repair), mRNA (Messenger RNA), MSH2 (mutS homolog 2 (gene)), NER (Nucleotide excision repair), NHEJ (Non-homologous end joining), PALB2 (Partner and localizer of BRCA2 (gene) [same as FANCN]), PARP (Poly(ADP)ribose polymerase), pCR (Pathologic complete response), PCR (Polymerase chain reaction), PI3K (Phosphatidylinositol-3 kinase), PKC (Protein kinase C), PR (Progesterone receptor), RAD51 (recA homolog (gene)), ssDNA (single-strand DNA), TN (Triple-negative), TP53 (p53) (Tumor protein 53 (gene))
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • D’Andrea A.D.
        Susceptibility pathways in Fanconi’s anemia and breast cancer.
        N Engl J Med. 2010; 362: 1909-1919
        • Wang W.
        Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins.
        Nat Rev Genet. 2007; 8: 735-748
        • Kutler D.I.
        • Auerbach A.D.
        Fanconi anemia in Ashkenazi Jews.
        Fam Cancer. 2004; 3: 241-248
        • Alter B.P.
        • Greene M.H.
        • Velazquez I.
        • Rosenberg P.S.
        Cancer in Fanconi anemia.
        Blood. 2003; 101: 2072
        • Kutler D.I.
        • Singh B.
        • Satagopan J.
        • et al.
        A 20-year perspective on the International Fanconi Anemia Registry (IFAR).
        Blood. 2003; 101: 1249-1256
        • Gluckman E.
        • Auerbach A.D.
        • Horowitz M.M.
        • et al.
        Bone marrow transplantation for Fanconi anemia.
        Blood. 1995; 86: 2856-2862
        • Gluckman E.
        • Wagner J.E.
        Hematopoietic stem cell transplantation in childhood inherited bone marrow failure syndrome.
        Bone Marrow Transplant. 2008; 41: 127-132
        • Antoniou A.
        • Pharoah P.D.
        • Narod S.
        • et al.
        Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies.
        Am J Hum Genet. 2003; 72: 1117-1130
      1. Cancer risks in BRCA2 mutation carriers. The Breast Cancer Linkage Consortium.
        J Natl Cancer Inst. 1999; 91: 1310-1316
        • Rahman N.
        • Seal S.
        • Thompson D.
        • et al.
        PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene.
        Nat Genet. 2007; 39: 165-167
        • Seal S.
        • Thompson D.
        • Renwick A.
        • et al.
        Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles.
        Nat Genet. 2006; 38: 1239-1241
        • Rubinstein W.S.
        Hereditary breast cancer in Jews.
        Fam Cancer. 2004; 3: 249-257
        • Antoniou A.C.
        • Pharoah P.D.
        • Narod S.
        • et al.
        Breast and ovarian cancer risks to carriers of the BRCA1 5382insC and 185delAG and BRCA2 6174delT mutations: a combined analysis of 22 population based studies.
        J Med Genet. 2005; 42: 602-603
        • Armes J.E.
        • Trute L.
        • White D.
        • et al.
        Distinct molecular pathogeneses of early-onset breast cancers in BRCA1 and BRCA2 mutation carriers: a population-based study.
        Cancer Res. 1999; 59: 2011-2017
        • Lakhani S.R.
        • Van De Vijver M.J.
        • Jacquemier J.
        • et al.
        The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2.
        J Clin Oncol. 2002; 20: 2310-2318
        • Lakhani S.R.
        • Reis-Filho J.S.
        • Fulford L.
        • et al.
        Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype.
        Clin Cancer Res. 2005; 11: 5175-5180
        • Quenneville L.A.
        • Phillips K.A.
        • Ozcelik H.
        • et al.
        HER-2/neu status and tumor morphology of invasive breast carcinomas in Ashkenazi women with known BRCA1 mutation status in the Ontario Familial Breast Cancer Registry.
        Cancer. 2002; 95: 2068-2075
        • Palacios J.
        • Honrado E.
        • Osorio A.
        • et al.
        Phenotypic characterization of BRCA1 and BRCA2 tumors based in a tissue microarray study with 37 immunohistochemical markers.
        Breast Cancer Res Treat. 2005; 90: 5-14
        • Sorlie T.
        • Tibshirani R.
        • Parker J.
        • et al.
        Repeated observation of breast tumor subtypes in independent gene expression data sets.
        Proc Natl Acad Sci USA. 2003; 100: 8418-8423
        • Verhoog L.C.
        • Brekelmans C.T.
        • Seynaeve C.
        • et al.
        Survival and tumour characteristics of breast-cancer patients with germline mutations of BRCA1.
        Lancet. 1998; 351: 316-321
        • Agurs-Collins T.
        • Dunn B.K.
        • Browne D.
        • Johnson K.A.
        • Lubet R.
        Epidemiology of health disparities in relation to the biology of estrogen receptor-negative breast cancer.
        Semin Oncol. 2010; 37: 384-401
        • Turner N.C.
        • Reis-Filho J.S.
        • Russell A.M.
        • et al.
        BRCA1 dysfunction in sporadic basal-like breast cancer.
        Oncogene. 2007; 26: 2126-2132
        • Foulkes W.D.
        BRCA1 functions as a breast stem cell regulator.
        J Med Genet. 2004; 41: 1-5
        • Tkocz D.
        • Crawford N.T.
        • Buckley N.E.
        • et al.
        BRCA1 and GATA3 corepress FOXC1 to inhibit the pathogenesis of basal-like breast cancers.
        Oncogene. 2011; ([Epub ahead of print])
        • Proia T.A.
        • Keller P.J.
        • Gupta P.B.
        • et al.
        Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate.
        Cell Stem Cell. 2011; 8: 149-163
        • Auerbach A.D.
        • Wolman S.R.
        Susceptibility of Fanconi’s anaemia fibroblasts to chromosome damage by carcinogens.
        Nature. 1976; 261: 494-496
        • Bridges C.B.
        The origin of variation.
        Amer Nat. 1922; 56: 51-63
        • Cass I.
        • Baldwin R.L.
        • Varkey T.
        • Moslehi R.
        • Narod S.A.
        • Karlan B.Y.
        Improved survival in women with BRCA-associated ovarian carcinoma.
        Cancer. 2003; 97: 2187-2195
        • Chappuis P.O.
        • Goffin J.
        • Wong N.
        • et al.
        A significant response to neoadjuvant chemotherapy in BRCA1/2 related breast cancer.
        J Med Genet. 2002; 39: 608-610
        • Farmer H.
        • McCabe N.
        • Lord C.J.
        • et al.
        Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy.
        Nature. 2005; 434: 917-921
        • McCabe N.
        • Turner N.C.
        • Lord C.J.
        • et al.
        Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition.
        Cancer Res. 2006; 66: 8109-8115
        • Fong P.C.
        • Boss D.S.
        • Yap T.A.
        • et al.
        Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers.
        N Engl J Med. 2009; 361: 123-134
        • Fong P.C.
        • Yap T.A.
        • Boss D.S.
        • et al.
        Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval.
        J Clin Oncol. 2010; 28: 2512-2519
        • Audeh M.W.
        • Carmichael J.
        • Penson R.T.
        • et al.
        Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial.
        Lancet. 2010; 376: 245-251
        • Tutt A.
        • Robson M.
        • Garber J.E.
        • et al.
        Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial.
        Lancet. 2010; 376: 235-244
        • O’Shaughnessy J.
        • Osborne C.
        • Pippen J.E.
        • et al.
        Iniparib plus chemotherapy in metastatic triple-negative breast cancer.
        N Engl J Med. 2011; 364: 205-214
        • Guha M.
        PARP inhibitors stumble in breast cancer.
        Nat Biotechnol. 2011; 29: 373-374
        • Hennessy B.T.
        • Timms K.M.
        • Carey M.S.
        • et al.
        Somatic mutations in BRCA1 and BRCA2 could expand the number of patients that benefit from poly (ADP ribose) polymerase inhibitors in ovarian cancer.
        J Clin Oncol. 2010; 28: 3570-3576
        • Konstantinopoulos P.A.
        • Spentzos D.
        • Karlan B.Y.
        • et al.
        Gene expression profile of BRCAness that correlates with responsiveness to chemotherapy and with outcome in patients with epithelial ovarian cancer.
        J Clin Oncol. 2010; 28: 3555-3561
        • Quinn J.E.
        • James C.R.
        • Stewart G.E.
        • et al.
        BRCA1 mRNA expression levels predict for overall survival in ovarian cancer after chemotherapy.
        Clin Cancer Res. 2007; 13: 7413-7420
        • Swisher E.M.
        • Gonzalez R.M.
        • Taniguchi T.
        • et al.
        Methylation and protein expression of DNA repair genes: association with chemotherapy exposure and survival in sporadic ovarian and peritoneal carcinomas.
        Mol Cancer. 2009; 8: 48
        • Teodoridis J.M.
        • Hall J.
        • Marsh S.
        • et al.
        CpG island methylation of DNA damage response genes in advanced ovarian cancer.
        Cancer Res. 2005; 65: 8961-8967
        • Weberpals J.
        • Garbuio K.
        • O’Brien A.
        • et al.
        The DNA repair proteins BRCA1 and ERCC1 as predictive markers in sporadic ovarian cancer.
        Int J Cancer. 2009; 124: 806-815
        • Martin S.A.
        • McCarthy A.
        • Barber L.J.
        • et al.
        Methotrexate induces oxidative DNA damage and is selectively lethal to tumour cells with defects in the DNA mismatch repair gene MSH2.
        EMBO Mol Med. 2009; 1: 323-337
        • Stecklein S.R.
        • Jensen R.A.
        • Pal A.
        Genetic and epigenetic signatures of breast cancer subtypes.
        Front Biosci (Elite Ed). 2012; 4: 934-949
        • Robson M.
        • Gilewski T.
        • Haas B.
        • et al.
        BRCA-associated breast cancer in young women.
        J Clin Oncol. 1998; 16: 1642-1649
        • Johannsson O.T.
        • Ranstam J.
        • Borg A.
        • Olsson H.
        Survival of BRCA1 breast and ovarian cancer patients: a population-based study from southern Sweden.
        J Clin Oncol. 1998; 16: 397-404
        • Gaffney D.K.
        • Brohet R.M.
        • Lewis C.M.
        • et al.
        Response to radiation therapy and prognosis in breast cancer patients with BRCA1 and BRCA2 mutations.
        Radiother Oncol. 1998; 47: 129-136
        • Ansquer Y.
        • Gautier C.
        • Fourquet A.
        • Asselain B.
        • Stoppa-Lyonnet D.
        Survival in early-onset BRCA1 breast-cancer patients. Institut Curie Breast Cancer Group.
        Lancet. 1998; 352: 541
        • Chappuis P.O.
        • Kapusta L.
        • Begin L.R.
        • et al.
        Germline BRCA1/2 mutations and p27(Kip1) protein levels independently predict outcome after breast cancer.
        J Clin Oncol. 2000; 18: 4045-4052
        • Stoppa-Lyonnet D.
        • Ansquer Y.
        • Dreyfus H.
        • et al.
        Familial invasive breast cancers: worse outcome related to BRCA1 mutations.
        J Clin Oncol. 2000; 18: 4053-4059
        • Chappuis P.O.
        • Goffin J.
        • Hamel N.
        • et al.
        Good response to chemotherapy (CT) and hormonotherapy (HT) in patients with BRCA1-related breast cancer (BRCA1-BC) (abstract).
        Hum Genet Suppl. 2011; 69: 249
        • Bordeleau L.
        • Panchal S.
        • Goodwin P.
        Prognosis of BRCA-associated breast cancer: a summary of evidence.
        Breast Cancer Res Treat. 2010; 119: 13-24
        • Asakawa H.
        • Koizumi H.
        • Koike A.
        • et al.
        Prediction of breast cancer sensitivity to neoadjuvant chemotherapy based on status of DNA damage repair proteins.
        Breast Cancer Res. 2010; 12: R17
        • Thompson M.E.
        • Jensen R.A.
        • Obermiller P.S.
        • et al.
        Decreased expression of BRCA1 accelerates growth and is often present during sporadic breast cancer progression.
        Nat Genet. 1995; 9: 444-450
        • Garcia A.I.
        • Buisson M.
        • Bertrand P.
        • et al.
        Down-regulation of BRCA1 expression by miR-146a and miR-146b-5p in triple negative sporadic breast cancers.
        EMBO Mol Med. 2011; 3: 279-290
        • Moskwa P.
        • Buffa F.M.
        • Pan Y.
        • et al.
        miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors.
        Mol Cell. 2011; 41: 210-220
        • Wei M.
        • Xu J.
        • Dignam J.
        • et al.
        Estrogen receptor α, BRCA1, and FANCF promoter methylation occur in distinct subsets of sporadic breast cancers.
        Breast Cancer Res Treat. 2008; 111: 113-120
        • Tokunaga E.
        • Okada S.
        • Kitao H.
        • et al.
        Low incidence of methylation of the promoter region of the FANCF gene in Japanese primary breast cancer.
        Breast Cancer. 2011; 18: 120-123
        • Potapova A.
        • Hoffman A.M.
        • Godwin A.K.
        • Al-Saleem T.
        • Cairns P.
        Promoter hypermethylation of the PALB2 susceptibility gene in inherited and sporadic breast and ovarian cancer.
        Cancer Res. 2008; 68: 998-1002
        • Sinha S.
        • Singh R.K.
        • Alam N.
        • Roy A.
        • Roychoudhury S.
        • Panda C.K.
        Alterations in candidate genes PHF2, FANCC, PTCH1 and XPA at chromosomal 9q22.3 region: pathological significance in early- and late-onset breast carcinoma.
        Mol Cancer. 2008; 7: 84
        • van der Groep P.
        • Hoelzel M.
        • Buerger H.
        • Joenje H.
        • de Winter J.P.
        • van Diest P.J.
        Loss of expression of FANCD2 protein in sporadic and hereditary breast cancer.
        Breast Cancer Res Treat. 2008; 107: 41-47
        • Tewey K.M.
        • Rowe T.C.
        • Yang L.
        • Halligan B.D.
        • Liu L.F.
        Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II.
        Science. 1984; 226: 466-468
        • Shrivastav M.
        • De Haro L.P.
        • Nickoloff J.A.
        Regulation of DNA double-strand break repair pathway choice.
        Cell Res. 2008; 18: 134-147
        • Spencer D.M.
        • Bilardi R.A.
        • Koch T.H.
        • et al.
        DNA repair in response to anthracycline-DNA adducts: a role for both homologous recombination and nucleotide excision repair.
        Mutat Res. 2008; 638: 110-121
        • Eastman A.
        Reevaluation of interaction of cis-dichloro(ethylenediamine)platinum(II) with DNA.
        Biochemistry. 1986; 25: 3912-3915
        • Deans A.J.
        • West S.C.
        DNA interstrand crosslink repair and cancer.
        Nat Rev Cancer. 2011; 11: 467-480
        • Rubin S.C.
        • Benjamin I.
        • Behbakht K.
        • et al.
        Clinical and pathological features of ovarian cancer in women with germ-line mutations of BRCA1.
        N Engl J Med. 1996; 335: 1413-1416
        • Buller R.E.
        • Shahin M.S.
        • Geisler J.P.
        • Zogg M.
        • De Young B.R.
        • Davis C.S.
        Failure of BRCA1 dysfunction to alter ovarian cancer survival.
        Clin Cancer Res. 2002; 8: 1196-1202
        • Radosa M.P.
        • Hafner N.
        • Camara O.
        • et al.
        Loss of BRCA1 protein expression as indicator of the BRCAness phenotype is associated with favorable overall survival after complete resection of sporadic ovarian cancer.
        Int J Gynecol Cancer. 2011; 21: 1399-1406
        • Lacour R.A.
        • Westin S.N.
        • Meyer L.A.
        • et al.
        Improved survival in non-Ashkenazi Jewish ovarian cancer patients with BRCA1 and BRCA2 gene mutations.
        Gynecol Oncol. 2011; 121: 358-363
        • Vencken P.M.
        • Kriege M.
        • Hoogwerf D.
        • et al.
        Chemosensitivity and outcome of BRCA1- and BRCA2-associated ovarian cancer patients after first-line chemotherapy compared with sporadic ovarian cancer patients.
        Ann Oncol. 2011; 22: 1346-1352
        • Gallagher D.J.
        • Konner J.A.
        • Bell-McGuinn K.M.
        • et al.
        Survival in epithelial ovarian cancer: a multivariate analysis incorporating BRCA mutation status and platinum sensitivity.
        Ann Oncol. 2011; 22: 1127-1132
        • Tan D.S.
        • Rothermundt C.
        • Thomas K.
        • et al.
        “BRCAness” syndrome in ovarian cancer: a case-control study describing the clinical features and outcome of patients with epithelial ovarian cancer associated with BRCA1 and BRCA2 mutations.
        J Clin Oncol. 2008; 26: 5530-5536
        • Taniguchi T.
        • Tischkowitz M.
        • Ameziane N.
        • et al.
        Disruption of the Fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian tumors.
        Nat Med. 2003; 9: 568-574
        • Wang Z.
        • Li M.
        • Lu S.
        • Zhang Y.
        • Wang H.
        Promoter hypermethylation of FANCF plays an important role in the occurrence of ovarian cancer through disrupting Fanconi anemia-BRCA pathway.
        Cancer Biol Ther. 2006; 5: 256-260
        • Lim S.L.
        • Smith P.
        • Syed N.
        • et al.
        Promoter hypermethylation of FANCF and outcome in advanced ovarian cancer.
        Br J Cancer. 2008; 98: 1452-1456
        • Dhillon V.S.
        • Shahid M.
        • Husain S.A.
        CpG methylation of the FHIT, FANCF, cyclin-D2, BRCA2 and RUNX3 genes in Granulosa cell tumors (GCTs) of ovarian origin.
        Mol Cancer. 2004; 3: 33
        • Chiang J.W.
        • Karlan B.Y.
        • Cass L.
        • Baldwin R.L.
        BRCA1 promoter methylation predicts adverse ovarian cancer prognosis.
        Gynecol Oncol. 2006; 101: 403-410
        • Fachal L.
        • Gomez-Caamano A.
        • Celeiro-Munoz C.
        • et al.
        BRCA1 mutations do not increase prostate cancer risk: results from a meta-analysis including new data.
        Prostate. 2011; 71: 1768-1779
        • Bednarz N.
        • Eltze E.
        • Semjonow A.
        • et al.
        BRCA1 loss preexisting in small subpopulations of prostate cancer is associated with advanced disease and metastatic spread to lymph nodes and peripheral blood.
        Clin Cancer Res. 2010; 16: 3340-3348
        • Fiorentino M.
        • Judson G.
        • Penney K.
        • et al.
        Immunohistochemical expression of BRCA1 and lethal prostate cancer.
        Cancer Res. 2010; 70: 3136-3139
        • van Asperen C.J.
        • Brohet R.M.
        • Meijers-Heijboer E.J.
        • et al.
        Cancer risks in BRCA2 families: estimates for sites other than breast and ovary.
        J Med Genet. 2005; 42: 711-719
        • Mitra A.
        • Fisher C.
        • Foster C.S.
        • et al.
        Prostate cancer in male BRCA1 and BRCA2 mutation carriers has a more aggressive phenotype.
        Br J Cancer. 2008; 98: 502-507
        • Edwards S.M.
        • Evans D.G.
        • Hope Q.
        • et al.
        Prostate cancer in BRCA2 germline mutation carriers is associated with poorer prognosis.
        Br J Cancer. 2010; 103: 918-924
        • Tryggvadottir L.
        • Vidarsdottir L.
        • Thorgeirsson T.
        • et al.
        Prostate cancer progression and survival in BRCA2 mutation carriers.
        J Natl Cancer Inst. 2007; 99: 929-935
        • Rosenberg P.S.
        • Alter B.P.
        • Ebell W.
        Cancer risks in Fanconi anemia: findings from the German Fanconi Anemia Registry.
        Haematologica. 2008; 93: 511-517
        • Rosenberg P.S.
        • Socie G.
        • Alter B.P.
        • Gluckman E.
        Risk of head and neck squamous cell cancer and death in patients with Fanconi anemia who did and did not receive transplants.
        Blood. 2005; 105: 67-73
        • Guardiola P.
        • Socie G.
        • Li X.
        • et al.
        Acute graft-versus-host disease in patients with Fanconi anemia or acquired aplastic anemia undergoing bone marrow transplantation from HLA-identical sibling donors: risk factors and influence on outcome.
        Blood. 2004; 103: 73-77
        • Socie G.
        • Devergie A.
        • Girinski T.
        • et al.
        Transplantation for Fanconi’s anaemia: long-term follow-up of fifty patients transplanted from a sibling donor after low-dose cyclophosphamide and thoraco-abdominal irradiation for conditioning.
        Br J Haematol. 1998; 103: 249-255
        • Marsit C.J.
        • Liu M.
        • Nelson H.H.
        • Posner M.
        • Suzuki M.
        • Kelsey K.T.
        Inactivation of the Fanconi anemia/BRCA pathway in lung and oral cancers: implications for treatment and survival.
        Oncogene. 2004; 23: 1000-1004
        • Ameziane N.
        • Chen F.
        • Leemans C.R.
        • Brakenhoff R.H.
        • Joenje H.
        No evidence for FANCF gene silencing in head-and-neck squamous cell carcinomas.
        Cell Oncol. 2009; 31: 53-56
        • Szaumkessel M.
        • Richter J.
        • Giefing M.
        • et al.
        Pyrosequencing-based DNA methylation profiling of Fanconi anemia/BRCA pathway genes in laryngeal squamous cell carcinoma.
        Int J Oncol. 2011; 39: 505-514
      2. Cancer Facts & Figures 2010. American Cancer Society, 2010.

        • Evans H.S.
        • Lewis C.M.
        • Robinson D.
        • Bell C.M.
        • Moller H.
        • Hodgson S.V.
        Incidence of multiple primary cancers in a cohort of women diagnosed with breast cancer in southeast England.
        Br J Cancer. 2001; 84: 435-440
        • Struewing J.P.
        • Hartge P.
        • Wacholder S.
        • et al.
        The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews.
        N Engl J Med. 1997; 336: 1401-1408
        • Taron M.
        • Rosell R.
        • Felip E.
        • et al.
        BRCA1 mRNA expression levels as an indicator of chemoresistance in lung cancer.
        Hum Mol Genet. 2004; 13: 2443-2449
        • Bartolucci R.
        • Wei J.
        • Sanchez J.J.
        • et al.
        XPG mRNA expression levels modulate prognosis in resected non-small-cell lung cancer in conjunction with BRCA1 and ERCC1 expression.
        Clin Lung Cancer. 2009; 10: 47-52
        • Wang L.
        • Wei J.
        • Qian X.
        • et al.
        ERCC1 and BRCA1 mRNA expression levels in metastatic malignant effusions is associated with chemosensitivity to cisplatin and/or docetaxel.
        BMC Cancer. 2008; 8: 97
        • Boukovinas I.
        • Papadaki C.
        • Mendez P.
        • et al.
        Tumor BRCA1, RRM1 and RRM2 mRNA expression levels and clinical response to first-line gemcitabine plus docetaxel in non-small-cell lung cancer patients.
        PLoS One. 2008; 3: e3695
        • Rogakou E.P.
        • Pilch D.R.
        • Orr A.H.
        • Ivanova V.S.
        • Bonner W.M.
        DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139.
        J Biol Chem. 1998; 273: 5858-5868
        • Olive P.L.
        • Banath J.P.
        Kinetics of H2AX phosphorylation after exposure to cisplatin.
        Cytometry B Clin Cytom. 2009; 76: 79-90
        • Banath J.P.
        • Macphail S.H.
        • Olive P.L.
        Radiation sensitivity, H2AX phosphorylation, and kinetics of repair of DNA strand breaks in irradiated cervical cancer cell lines.
        Cancer Res. 2004; 64: 7144-7149
        • Willers H.
        • Kachnic L.A.
        • Luo C.M.
        • et al.
        Biomarkers and mechanisms of FANCD2 function.
        J Biomed Biotechnol. 2008; 2008: 821529
        • Willers H.
        • Taghian A.G.
        • Luo C.M.
        • Treszezamsky A.
        • Sgroi D.C.
        • Powell S.N.
        Utility of DNA repair protein foci for the detection of putative BRCA1 pathway defects in breast cancer biopsies.
        Mol Cancer Res. 2009; 7: 1304-1309
        • Turner N.C.
        • Reis-Filho J.S.
        Basal-like breast cancer and the BRCA1 phenotype.
        Oncogene. 2006; 25: 5846-5853
        • Graeser M.
        • McCarthy A.
        • Lord C.J.
        • et al.
        A marker of homologous recombination predicts pathologic complete response to neoadjuvant chemotherapy in primary breast cancer.
        Clin Cancer Res. 2010; 16: 6159-6168
        • Wynne P.
        • Newton C.
        • Ledermann J.A.
        • Olaitan A.
        • Mould T.A.
        • Hartley J.A.
        Enhanced repair of DNA interstrand crosslinking in ovarian cancer cells from patients following treatment with platinum-based chemotherapy.
        Br J Cancer. 2007; 97: 927-933
        • Berwick M.
        • Vineis P.
        Markers of DNA repair and susceptibility to cancer in humans: an epidemiologic review.
        J Natl Cancer Inst. 2000; 92: 874-897
        • Edwards S.L.
        • Brough R.
        • Lord C.J.
        • et al.
        Resistance to therapy caused by intragenic deletion in BRCA2.
        Nature. 2008; 451: 1111-1115
        • Sakai W.
        • Swisher E.M.
        • Karlan B.Y.
        • et al.
        Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers.
        Nature. 2008; 451: 1116-1120
        • Swisher E.M.
        • Sakai W.
        • Karlan B.Y.
        • Wurz K.
        • Urban N.
        • Taniguchi T.
        Secondary BRCA1 mutations in BRCA1-mutated ovarian carcinomas with platinum resistance.
        Cancer Res. 2008; 68: 2581-2586
        • Sakai W.
        • Swisher E.M.
        • Jacquemont C.
        • et al.
        Functional restoration of BRCA2 protein by secondary BRCA2 mutations in BRCA2-mutated ovarian carcinoma.
        Cancer Res. 2009; 69: 6381-6386
        • Norquist B.
        • Wurz K.A.
        • Pennil C.C.
        • et al.
        Secondary somatic mutations restoring BRCA1/2 predict chemotherapy resistance in hereditary ovarian carcinomas.
        J Clin Oncol. 2011; 29: 3008-3015
        • Ferrer M.
        • de Winter J.P.
        • Mastenbroek D.C.
        • et al.
        Chemosensitizing tumor cells by targeting the Fanconi anemia pathway with an adenovirus overexpressing dominant-negative FANCA.
        Cancer Gene Ther. 2004; 11: 539-546
        • Chirnomas D.
        • Taniguchi T.
        • de la Vega M.
        • et al.
        Chemosensitization to cisplatin by inhibitors of the Fanconi anemia/BRCA pathway.
        Mol Cancer Ther. 2006; 5: 952-961
        • Noguchi M.
        • Yu D.
        • Hirayama R.
        • et al.
        Inhibition of homologous recombination repair in irradiated tumor cells pretreated with Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin.
        Biochem Biophys Res Commun. 2006; 351: 658-663
        • Landais I.
        • Sobeck A.
        • Stone S.
        • LaChapelle A.
        • Hoatlin M.E.
        A novel cell-free screen identifies a potent inhibitor of the Fanconi anemia pathway.
        Int J Cancer. 2009; 124: 783-792
        • Wu Y.
        • Bhattacharyya D.
        • King C.L.
        • et al.
        Solution structures of a DNA dodecamer duplex with and without a cisplatin 1,2-d(GG) intrastrand cross-link: comparison with the same DNA duplex containing an oxaliplatin 1,2-d(GG) intrastrand cross-link.
        Biochemistry. 2007; 46: 6477-6487
        • Gelasco A.
        • Lippard S.J.
        NMR solution structure of a DNA dodecamer duplex containing a cis-diammineplatinum(II) d(GpG) intrastrand cross-link, the major adduct of the anticancer drug cisplatin.
        Biochemistry. 1998; 37: 9230-9239
        • Coste F.
        • Malinge J.M.
        • Serre L.
        • et al.
        Crystal structure of a double-stranded DNA containing a cisplatin interstrand cross-link at 1.63 A resolution: hydration at the platinated site.
        Nucleic Acids Res. 1999; 27: 1837-1846