Future directions and treatment strategies for head and neck squamous cell carcinomas

Published:February 29, 2012DOI:
      Head and neck cancer is a devastating disease that afflicts many individuals worldwide. Conventional therapies are successful in only a limited subgroup and often leave the patient with disfigurement and long lasting adverse effects on normal physiologic functions. The field is in dire need of new therapies. Oncolytic viral as well as targeted therapies have shown some success in other malignancies and are attractive for the treatment of head and neck cancer. Recently, it has been shown that a subset of head and neck cancers is human papillomavirus (HPV) positive and that this subset of cancers is biologically distinct and more sensitive to chemoradiation therapies although the underlying mechanism is unclear. However, chemoresistance remains a general problem. One candidate mediator of therapeutic response, which is of interest for the targeting of both HPV-positive and -negative tumors is the human DEK proto-oncogene. DEK is upregulated in numerous tumors including head and neck cancers regardless of their HPV status. Depletion of DEK in tumor cells in culture results in sensitivity to genotoxic agents, particularly in rapidly proliferating cells. This suggests that tumors with high DEK protein expression may be correlated with poor clinical response to clastogenic therapies. Targeting molecules such as DEK in combination with new and/or conventional therapies, holds promise for novel future therapeutics for head and neck cancer.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Parkin D.M.
        • Bray F.
        • Ferlay J.
        • Pisani P.
        Global cancer statistics, 2002.
        CA Cancer J Clin. 2005; 55: 74-108
        • Parkin D.M.
        • Muir C.S.
        Cancer incidence in five continents. Comparability and quality of data.
        IARC Sci Publ. 1992; 120: 45-173
        • Hall S.F.
        • Groome P.A.
        • Rothwell D.
        The impact of comorbidity on the survival of patients with squamous cell carcinoma of the head and neck.
        Head Neck. 2000; 22: 317-322
        • Forastiere A.A.
        • Ang K.K.
        • Brizel D.
        • et al.
        National Comprehensive Cancer Network, Head and neck cancers.
        J Natl Compr Canc Netw. 2008; 6: 646-695
        • Workowski K.A.
        • Berman S.M.
        Sexually transmitted diseases treatment guidelines, 2006.
        MMWR Recomm Rep. 2006; 55: 1-94
        • Bosch F.X.
        • Lorincz A.
        • Munoz N.
        • Meijer C.J.
        • Shah K.V.
        The causal relation between human papillomavirus and cervical cancer.
        J Clin Pathol. 2002; 55: 244-265
        • Pett M.
        • Coleman N.
        Integration of high-risk human papillomavirus: a key event in cervical carcinogenesis?.
        J Pathol. 2007; 212: 356-367
        • Fakhry C.
        • Gillison M.L.
        Clinical implications of human papillomavirus in head and neck cancers.
        J Clin Oncol. 2006; 24: 2606-2611
        • Kreimer A.R.
        • Clifford G.M.
        • Boyle P.
        • Franceschi S.
        Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review.
        Cancer Epidemiol Biomarkers Prev. 2005; 14: 467-475
        • Scully C.
        Oral squamous cell carcinoma: from an hypothesis about a virus, to concern about possible sexual transmission.
        Oral Oncol. 2002; 38: 227-234
        • Psyrri A.
        • DiMaio D.
        Human papillomavirus in cervical and head-and-neck cancer.
        Nat Clin Pract. 2008; 5: 24-31
        • Vidal L.
        • Gillison M.L.
        Human papillomavirus in HNSCC: recognition of a distinct disease type.
        Hematol Oncol Clin North Am. 2008; 22 (vii): 1125-1142
        • von Lindern M.
        • Fornerod M.
        • van Baal S.
        • Jaegle M.
        • et al.
        The translocation (6;9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, DEK and CAN, and the expression of a chimeric, leukemia-specific DEK-CAN mRNA.
        Mol Cell Biol. 1992; 12: 1687-1697
        • Orlic M.
        • Spencer C.E.
        • Wang L.
        • Gallie B.L.
        Expression analysis of 6p22 genomic gain in retinoblastoma.
        Genes Chromosomes Cancer. 2006; 45: 72-82
        • Wu Q.
        • Hoffmann M.J.
        • Hartmann F.H.
        • Schulz W.A.
        Amplification and overexpression of the ID4 gene at 6p22.3 in bladder cancer.
        Mol Cancer. 2005; 4: 16
        • Secchiero P.
        • Voltan R.
        • di Iasio M.G.
        • Melloni E.
        • Tiribelli M.
        • Zauli G.
        The oncogene DEK promotes leukemic cell survival and is downregulated by both nutlin-3 and chlorambucil in B-chronic lymphocytic leukemic cells.
        Clin Cancer Res. 2010; 16: 1824-1833
        • Shibata T.
        • Kokubu A.
        • Miyamoto M.
        • et al.
        DEK oncoprotein regulates transcriptional modifiers and sustains tumor initiation activity in high-grade neuroendocrine carcinoma of the lung.
        Oncogene. 2010; 29: 4671-4681
        • Khodadoust M.S.
        • Verhaegen M.
        • Kappes F.
        • et al.
        Melanoma proliferation and chemoresistance controlled by the DEK oncogene.
        Cancer Res. 2009; 69: 6405-6413
        • Wu Q.
        • Li Z.
        • Lin H.
        • Han L.
        • Liu S.
        • Lin Z.
        DEK overexpression in uterine cervical cancers.
        Pathol Int. 2008; 58: 378-382
        • Abba M.C.
        • Sun H.
        • Hawkins K.A.
        • et al.
        Breast cancer molecular signatures as determined by SAGE: correlation with lymph node status.
        Mol Cancer Res. 2007; 5: 881-890
        • Wise-Draper T.M.
        • Allen H.V.
        • Jones E.E.
        • Habash K.B.
        • Matsuo H.
        • Wells S.I.
        Apoptosis inhibition by the human DEK oncoprotein involves interference with p53 functions.
        Mol Cell Biol. 2006; 26: 7506-7519
        • Wise-Draper T.M.
        • Allen H.V.
        • Thobe M.N.
        • et al.
        The human DEK proto-oncogene is a senescence inhibitor and an upregulated target of high-risk human papillomavirus E7.
        J Virol. 2005; 79: 14309-14317
        • Molinolo A.A.
        • Hewitt S.M.
        • Amornphimoltham P.
        • et al.
        Dissecting the Akt/mammalian target of rapamycin signaling network: emerging results from the head and neck cancer tissue array initiative.
        Clin Cancer Res. 2007; 13: 4964-4973
        • Ang K.K.
        Multidisciplinary management of locally advanced SCCHN: optimizing treatment outcomes.
        Oncologist. 2008; 13: 899-910
        • Bourhis J.
        • Overgaard J.
        • Audry H.
        • et al.
        Hyperfractionated or accelerated radiotherapy in head and neck cancer: a meta-analysis.
        Lancet. 2006; 368: 843-854
        • Fu K.K.
        • Pajak T.F.
        • Trotti A.
        • et al.
        A radiation therapy oncology group (RTOG) phase III randomized study to compare hyperfractionation and two variants of accelerated fractionation to standard fractionation radiotherapy for head and neck squamous cell carcinomas: first report of RTOG 9003.
        Int J Radiat Oncol Biol Phys. 2000; 48: 7-16
        • Mendenhall W.M.
        • Amdur R.J.
        • Palta J.R.
        Intensity-modulated radiotherapy in the standard management of head and neck cancer: promises and pitfalls.
        J Clin Oncol. 2006; 24: 2618-2623
        • Bernier J.
        • Cooper J.S.
        • Pajak T.F.
        • et al.
        Defining risk levels in locally advanced head and neck cancers: a comparative analysis of concurrent postoperative radiation plus chemotherapy trials of the EORTC (#22931) and RTOG (# 9501).
        Head Neck. 2005; 27: 843-850
        • Denis F.
        • Garaud P.
        • Bardet E.
        • et al.
        Final results of the 94-01 French head and neck oncology and radiotherapy group randomized trial comparing radiotherapy alone with concomitant radiochemotherapy in advanced-stage oropharynx carcinoma.
        J Clin Oncol. 2004; 22: 69-76
        • Chung C.H.
        • Ely K.
        • McGavran L.
        • et al.
        Increased epidermal growth factor receptor gene copy number is associated with poor prognosis in head and neck squamous cell carcinomas.
        J Clin Oncol. 2006; 24: 4170-4176
        • Bonner J.A.
        • Harari P.M.
        • Giralt J.
        • et al.
        Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival.
        Lancet Oncol. 2010; 11: 21-28
        • Burtness B.
        • Goldwasser M.A.
        • Flood W.
        • Mattar B.
        • Forastiere A.A.
        Eastern Cooperative Oncology Group. Phase III randomized trial of cisplatin plus placebo compared with cisplatin plus cetuximab in metastatic/recurrent head and neck cancer: an Eastern Cooperative Oncology Group Study.
        J Clin Oncol. 2005; 23: 8646-8654
        • Vermorken J.B.
        • Remenar E.
        • van Herpen C.
        • et al.
        Cisplatin, fluorouracil, and docetaxel in unresectable head and neck cancer.
        N Engl J Med. 2007; 357: 1695-1704
        • Machiels J.P.
        • Schmitz S.
        Molecular-targeted therapy of head and neck squamous cell carcinoma: beyond cetuximab-based therapy.
        Curr Opin Oncol. 2011; 23: 241-248
        • Del Campo J.M.
        • Hitt R.
        • Sebastian P.
        • et al.
        Effects of lapatinib monotherapy: results of a randomised phase II study in therapy-naive patients with locally advanced squamous cell carcinoma of the head and neck.
        Br J Cancer. 2011; 105: 618-627
        • Salama J.K.
        • Haraf D.J.
        • Stenson K.M.
        • et al.
        A randomized phase II study of 5-fluorouracil, hydroxyurea, and twice-daily radiotherapy compared with bevacizumab plus 5-fluorouracil, hydroxyurea, and twice-daily radiotherapy for intermediate-stage and T4N0-1 head and neck cancers.
        Ann Oncol. 2011; 22: 2304-2309
        • Machiels J.P.
        • Henry S.
        • Zanetta S.
        • et al.
        Phase II study of sunitinib in recurrent or metastatic squamous cell carcinoma of the head and neck: GORTEC 2006-01.
        J Clin Oncol. 2010; 28: 21-28
        • Williamson S.K.
        • Moon J.
        • Huang C.H.
        • et al.
        Phase II evaluation of sorafenib in advanced and metastatic squamous cell carcinoma of the head and neck: Southwest Oncology Group Study S0420.
        J Clin Oncol. 2010; 28: 3330-3335
        • Elser C.
        • Siu L.L.
        • Winquist E.
        • et al.
        Phase II trial of sorafenib in patients with recurrent or metastatic squamous cell carcinoma of the head and neck or nasopharyngeal carcinoma.
        J Clin Oncol. 2007; 25: 3766-3773
        • Chung C.H.
        • Aulino J.
        • Muldowney N.J.
        • et al.
        Nuclear factor-κB pathway and response in a phase II trial of bortezomib and docetaxel in patients with recurrent and/or metastatic head and neck squamous cell carcinoma.
        Ann Oncol. 2010; 21: 864-870
        • Stransky N.
        • Egloff A.M.
        • Tward A.D.
        • et al.
        The mutational landscape of head and neck squamous cell carcinoma.
        Science. 2011; 333: 1157-1160
        • Agrawal N.
        • Frederick M.J.
        • Pickering C.R.
        • et al.
        Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1.
        Science. 2011; 333: 1154-1157
        • Brakenhoff R.H.
        Cancer: another NOTCH for cancer.
        Science. 2011; 333: 1102-1103
        • Zoncu R.
        • Efeyan A.
        • Sabatini D.M.
        mTOR: from growth signal integration to cancer, diabetes and ageing.
        Nat Rev Mol Cell Biol. 2011; 12: 21-35
        • Czerninski R.
        • Amornphimoltham P.
        • Patel V.
        • Molinolo A.A.
        • Gutkind J.S.
        Targeting mammalian target of rapamycin by rapamycin prevents tumor progression in an oral-specific chemical carcinogenesis model.
        Cancer Prev Res (Phila). 2009; 2: 27-36
        • Patel V.
        • Marsh C.A.
        • Dorsam R.T.
        • et al.
        Decreased lymphangiogenesis and lymph node metastasis by mTOR inhibition in head and neck cancer.
        Cancer Res. 2011; 71: 7103-7112
        • Raimondi A.R.
        • Molinolo A.
        • Gutkind J.S.
        Rapamycin prevents early onset of tumorigenesis in an oral-specific K-ras and p53 two-hit carcinogenesis model.
        Cancer Res. 2009; 69: 4159-4166
        • McCormick F.
        Cancer gene therapy: fringe or cutting edge?.
        Nat Rev Cancer. 2001; 1: 130-141
        • O’Shea C.C.
        • Johnson L.
        • Bagus B.
        • et al.
        Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity.
        Cancer Cell. 2004; 6: 611-623
        • Fueyo J.
        • Gomez-Manzano C.
        • Alemany R.
        • et al.
        A mutant oncolytic adenovirus targeting the rb pathway produces anti-glioma effect in vivo.
        Oncogene. 2000; 19: 2-12
        • Howe J.A.
        • Demers G.W.
        • Johnson D.E.
        • et al.
        Evaluation of E1-mutant adenoviruses as conditionally replicating agents for cancer therapy.
        Mol Ther. 2000; 2: 485-495
        • Bischoff J.R.
        • Kirn D.H.
        • Williams A.
        • et al.
        An adenovirus mutant that replicates selectively in p53-deficient human tumor cells.
        Science. 1996 Oct 18; 274: 373-376
        • Shen Y.
        • Kitzes G.
        • Nye J.A.
        • Fattaey A.
        • Hermiston T.
        Analyses of single-amino-acid substitution mutants of adenovirus type 5 E1B-55K protein.
        J Virol. 2001; 75: 4297-4307
        • van Zeeburg H.J.
        • Huizenga A.
        • Brink A.
        • et al.
        Comparison of oncolytic adenoviruses for selective eradication of oral cancer and pre-cancerous lesions.
        Gene Ther. 2010; 17: 1517-1524
        • Dias J.D.
        • Guse K.
        • Nokisalmi P.
        • et al.
        Multimodal approach using oncolytic adenovirus, cetuximab, chemotherapy and radiotherapy in HNSCC low passage tumour cell cultures.
        Eur J Cancer. 2010; 46: 625-635
        • Dias J.D.
        • Liikanen I.
        • Guse K.
        • et al.
        Targeted chemotherapy for head and neck cancer with a chimeric oncolytic adenovirus coding for bifunctional suicide protein FCU1.
        Clin Cancer Res. 2010; 16: 2540-2549
        • Nemunaitis J.
        • Khuri F.
        • Ganly I.
        • et al.
        Phase II trial of intratumoral administration of ONYX-015, a replication-selective adenovirus, in patients with refractory head and neck cancer.
        J Clin Oncol. 2001; 19: 289-298
        • Chang J.
        • Zhao X.
        • Wu X.
        • et al.
        A phase I study of KH901, a conditionally replicating granulocyte-macrophage colony-stimulating factor: armed oncolytic adenovirus for the treatment of head and neck cancers.
        Cancer Biol Ther. 2009; 8: 676-682
        • Mace A.T.
        • Ganly I.
        • Soutar D.S.
        • Brown S.M.
        Potential for efficacy of the oncolytic herpes simplex virus 1716 in patients with oral squamous cell carcinoma.
        Head Neck. 2008; 30: 1045-1051
        • Harrington K.J.
        • Hingorani M.
        • Tanay M.A.
        • et al.
        Phase I/II study of oncolytic HSV GM-CSF in combination with radiotherapy and cisplatin in untreated stage III/IV squamous cell cancer of the head and neck.
        Clin Cancer Res. 2010; 16: 4005-4015
        • Isles M.G.
        • McConkey C.
        • Mehanna H.M.
        A systematic review and meta-analysis of the role of positron emission tomography in the follow up of head and neck squamous cell carcinoma following radiotherapy or chemoradiotherapy.
        Clin Otolaryngol. 2008; 33: 210-222
        • Wong H.H.
        • Lemoine N.R.
        • Wang Y.
        Oncolytic viruses for cancer therapy: overcoming the obstacles.
        Viruses. 2010; 2: 78-106
        • Sanchez-Carbayo M.
        • Socci N.D.
        • Lozano J.J.
        • et al.
        Gene discovery in bladder cancer progression using cDNA microarrays.
        Am J Pathol. 2003; 163: 505-516
        • Wise-Draper T.M.
        • Mintz-Cole R.A.
        • Morris T.A.
        • et al.
        Overexpression of the cellular DEK protein promotes epithelial transformation in vitro and in vivo.
        Cancer Res. 2009; 69: 1792-1799
        • Carro M.S.
        • Spiga F.M.
        • Quarto M.
        • et al.
        DEK expression is controlled by E2F and deregulated in diverse tumor types.
        Cell Cycle. 2006; 5: 1202-1207
        • Privette Vinnedge L.M.
        • McClaine R.
        • Wagh P.K.
        • Wikenheiser-Brokamp K.A.
        • Waltz S.E.
        • Wells S.I.
        The human DEK oncogene stimulates beta-catenin signaling, invasion and mammosphere formation in breast cancer.
        Oncogene. 2011; 30: 2741-2752
        • Kappes F.
        • Khodadoust M.S.
        • Yu L.
        • et al.
        DEK expression in melanocytic lesions.
        Hum Pathol. 2011; 42: 932-938
        • Wise-Draper T.M.
        • Morreale R.J.
        • Morris T.A.
        • et al.
        DEK proto-oncogene expression interferes with the normal epithelial differentiation program.
        Am J Pathol. 2009; 174: 71-81
        • Kavanaugh G.M.
        • Wise-Draper T.M.
        • Morreale R.J.
        • et al.
        The human DEK oncogene regulates DNA damage response signaling and repair.
        Nucleic Acids Res. 2011; 39: 7465-7476
        • Kappes F.
        • Fahrer J.
        • Khodadoust M.S.
        • et al.
        DEK is a poly(ADP-ribose) acceptor in apoptosis and mediates resistance to genotoxic stress.
        Molecular Cellular Biol. 2008; 28: 3245-3257
        • Riveiro-Falkenbach E.
        • Soengas M.S.
        Control of tumorigenesis and chemoresistance by the DEK oncogene.
        Clin Cancer Res. 2010; 16: 2932-2938
        • Reya T.
        • Morrison S.J.
        • Clarke M.F.
        • Weissman I.L.
        Stem cells, cancer, and cancer stem cells.
        Nature. 2001; 414: 105-111
        • Prince M.E.
        • Ailles L.E.
        Cancer stem cells in head and neck squamous cell cancer.
        J Clin Oncol. 2008; 26: 2871-2875
        • Oancea C.
        • Ruster B.
        • Henschler R.
        • Puccetti E.
        • Ruthardt M.
        The t(6;9) associated DEK/CAN fusion protein targets a population of long-term repopulating hematopoietic stem cells for leukemogenic transformation.
        Leukemia. 2010; 24: 1910-1919
        • Mor-Vaknin N.
        • Punturieri A.
        • Sitwala K.
        • et al.
        The DEK nuclear autoantigen is a secreted chemotactic factor.
        Mol Cell Biol. 2006; 26: 9484-9496
        • Kappes F.
        • Waldmann T.
        • Mathew V.
        • et al.
        The DEK oncoprotein is a su(var) that is essential to heterochromatin integrity.
        Genes Dev. 2011; 25: 673-678
        • Tang X.H.
        • Knudsen B.
        • Bemis D.
        • Tickoo S.
        • Gudas L.J.
        Oral cavity and esophageal carcinogenesis modeled in carcinogen-treated mice.
        Clin Cancer Res. 2004; 10: 301-313
        • Vitale-Cross L.
        • Czerninski R.
        • Amornphimoltham P.
        • Patel V.
        • Molinolo A.A.
        • Gutkind J.S.
        Chemical carcinogenesis models for evaluating molecular-targeted prevention and treatment of oral cancer.
        Cancer Prev Res (Phila). 2009; 2: 419-422
        • Strati K.
        • Pitot H.C.
        • Lambert P.F.
        Identification of biomarkers that distinguish human papillomavirus (HPV)-positive versus HPV-negative head and neck cancers in a mouse model.
        Proc Natl Acad Sci U S A. 2006; 103: 14152-14157
        • Sano D.
        • Myers J.N.
        Xenograft models of head and neck cancers.
        Head Neck Oncol. 2009; 1: 32
        • Kerbel R.S.
        Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: better than commonly perceived-but they can be improved.
        Cancer Biol Ther. 2003; 2: S134-S139
        • Simon C.
        • Nemechek A.J.
        • Boyd D.
        • et al.
        An orthotopic floor-of-mouth cancer model allows quantification of tumor invasion.
        Laryngoscope. 1998; 108: 1686-1691
        • Reddy N.P.
        • Miyamoto S.
        • Araki K.
        • et al.
        A novel orthotopic mouse model of head and neck cancer with molecular imaging.
        Laryngoscope. 2011; 121: 1202-1207


      Trisha M. Wise-Draper, MD, PhD, is a Fellow in Hematology/Oncology in the Department of Internal Medicine at the University of Cincinnati College of Medicine. Her article is based on a presentation given at the Combined Annual Meeting of the Central Society for Clinical Research and Midwestern Section American Federation for Medical Research held in Chicago, Ill, April 2011.