Advertisement

The microbiome of the lung

  • James M. Beck
    Correspondence
    Reprint requests: James M. Beck, Chief, Medicine Service (111), Veterans Affairs Eastern Colorado Health Care System, 1055 Clermont Street, Denver, CO 80220
    Affiliations
    Pulmonary Section, Medical Service, Ann Arbor Veterans Affairs Medical Center, Ann Arbor, Mich

    Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Mich
    Search for articles by this author
  • Vincent B. Young
    Affiliations
    Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Mich

    Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Mich
    Search for articles by this author
  • Gary B. Huffnagle
    Affiliations
    Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Mich

    Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Mich
    Search for articles by this author
Published:February 29, 2012DOI:https://doi.org/10.1016/j.trsl.2012.02.005
      Investigation of the lung microbiome is a relatively new field. Although the lungs were classically believed to be sterile, recently published investigations have identified microbial communities in the lungs of healthy humans. At the present time, there are significant methodologic and technical hurdles that must be addressed in ongoing investigations, including distinguishing the microbiota of the upper and lower respiratory tracts. However, characterization of the lung microbiome is likely to provide important pathogenic insights into cystic fibrosis, respiratory disease of the newborn, chronic obstructive pulmonary disease, and asthma. In addition to characterization of the lung microbiome, the microbiota of the gastrointestinal tract have profound influence on the development and maintenance of lung immunity and inflammation. Further study of gastrointestinal–respiratory interactions is likely to yield important insights into the pathogenesis of pulmonary diseases, including asthma. As this field advances over the next several years, we anticipate that studies using larger cohorts, multicenter designs, and longitudinal sampling will add to our knowledge and understanding of the lung microbiome.

      Abbreviations:

      COPD (chronic obstructive pulmonary disease), CFTR (cystic fibrosis transmembrane conductance regulator), Ig (immunoglobulin), IL (interleukin), Th (T-helper), TLR (toll-like receptor)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kiley J.P.
        Advancing respiratory research.
        Chest. 2011; 140: 497-501
        • Baughman R.P.
        • Thorpe J.E.
        • Staneck J.
        • Rashkin M.
        • Frame P.T.
        Use of the protected specimen brush in patients with endotracheal or tracheostomy tubes.
        Chest. 1987; 91: 233-236
        • Thorpe J.E.
        • Baughman R.P.
        • Frame P.T.
        • Wesseler T.A.
        • Staneck J.L.
        Bronchoalveolar lavage for diagnosing acute bacterial pneumonia.
        J Infect Dis. 1987; 155: 855-861
        • Proctor L.M.
        The Human Microbiome Project in 2011 and beyond.
        Cell Host Microbe. 2011; 10: 287-291
        • Charlson E.S.
        • Bittingger K.
        • Haas A.R.
        • et al.
        Topographical continuity of bacterial populations in the healthy human respiratory tract.
        Am J Respir Crit Care Med. 2011; 184: 957-963
        • Erb-Downward J.R.
        • Thompson D.L.
        • Han M.K.
        • et al.
        Analysis of the lung microbiome in the “healthy” smoker and in COPD.
        PLoS One. 2011; 6: e16384
        • Zemanick E.T.
        • Sagel S.D.
        • Harris J.K.
        The airway microbiome in cystic fibrosis and implications for treatment.
        Curr Opin Pediatr. 2011; 23: 319-324
        • Beeton M.L.
        • Maxwell N.C.
        • Davies P.L.
        • et al.
        Role of pulmonary infection in the development of chronic lung disease of prematurity.
        Eur Respir J. 2011; 37: 1424-1430
        • Hilty M.
        • Burke C.
        • Pedro H.
        • et al.
        Disordered microbial communities in asthmatic airways.
        PLoS One. 2010; 5: e8578
        • Nakajima T.
        • Palchevsky V.
        • Perkins D.L.
        • Belperio J.A.
        • Finn P.W.
        Lung transplantation: infection, inflammation, and the microbiome.
        Semin Immunopathol. 2011; 33: 133-156
        • D'Journo X.B.
        • Rolain J.M.
        • Doddoli C.
        • Raoult D.
        • Thomas P.A.
        Airways colonizations in patients undergoing lung cancer surgery.
        Eur J Cardiothorac Surg. 2011; 40: 309-319
        • Ghedin E.
        • Laplante J.
        • DePasse J.
        • et al.
        Deep sequencing reveals mixed infection with 2009 pandemic influenza A (H1N1) virus strains and the emergence of oseltamivir resistance.
        J Infect Dis. 2011; 203: 168-174
        • Nelson A.
        • De Soyza A.
        • Bourke S.J.
        • Perry J.D.
        • Cummings S.P.
        Assessment of sample handling practices on microbial activity in sputum samples from patients with cystic fibrosis.
        Lett Appl Microbiol. 2010; 51: 272-277
        • Huang Y.J.
        • Nelson C.E.
        • Brodie E.L.
        • et al.
        Airway microbiota and bronchial hyperresponsiveness in patients with suboptimally controlled asthma.
        J Allergy Clin Immunol. 2011; 127: 372-381
        • Stressmann F.A.
        • Rogers G.B.
        • Klem E.R.
        • et al.
        Analysis of the bacterial communities present in lungs of patients with cystic fibrosis from American and British centers.
        J Clin Microbiol. 2011; 49: 281-291
        • Fujimura K.E.
        • Johnson C.C.
        • Ownby D.R.
        • et al.
        Man's best friend? The effect of pet ownership on house dust microbial communities.
        J Allergy Clin Immunol. 2010; 126: 410-412
        • Kuczynski J.
        • Lauber C.L.
        • Walters W.A.
        • et al.
        Experimental and analytical tools for studying the human microbiome.
        Nature Rev Genet. 2012; 13: 47-58
        • Doud M.
        • Zeng E.
        • Schneper L.
        • Narasimhan G.
        • Mathee K.
        Approaches to analyse dynamic microbial communities such as those seen in cystic fibrosis lung.
        Hum Genomics. 2009; 3: 246-256
        • Doud M.S.
        • Light M.
        • Gonzalez G.
        • Narasimhan G.
        • Mathee K.
        Combination of 16S rRNA variable regions provides a detailed analysis of bacterial community dynamics in the lungs of cystic fibrosis patients.
        Hum Genomics. 2010; 4: 147-169
        • Robinson C.J.
        • Bohannan B.J.
        • Young V.B.
        From structure to function: the ecology of host-associated microbial communities.
        Microbiol Mol Biol Rev. 2010; 74: 453-476
        • Flanagan J.L.
        • Brodie E.L.
        • Weng L.
        • et al.
        Loss of bacterial diversity during antibiotic treatment of intubated patients colonized with Pseudomonas aeruginosa.
        J Clin Microbiol. 2007; 45: 1954-1962
        • Rogers G.B.
        • Carroll M.P.
        • Serisier D.J.
        • et al.
        Use of 16S rRNA gene profiling by terminal restriction fragment length polymorphism analysis to compare bacterial communities in sputum and mouthwash samples from patients with cystic fibrosis.
        J Clin Microbiol. 2006; 44: 2601-2604
        • Guss A.M.
        • Roeselers G.
        • Newton I.L.
        • et al.
        Phylogenetic and metabolic diversity of bacteria associated with cystic fibrosis.
        Isme J. 2011; 5: 20-29
        • Lipuma J.J.
        The changing microbial epidemiology in cystic fibrosis.
        Clin Microbiol Rev. 2010; 23: 299-323
        • Rogers G.B.
        • Stressmann F.A.
        • Koller G.
        • Daniels T.
        • Carroll M.P.
        • Bruce K.D.
        Assessing the diagnostic importance of nonviable bacterial cells in respiratory infections.
        Diagn Microbiol Infect Dis. 2008; 62: 133-141
        • Bjarnsholt T.
        • Nielsen X.C.
        • Johansen U.
        • Norgaard L.
        • Hoiby N.
        Methods to classify bacterial pathogens in cystic fibrosis.
        Methods Mol Biol. 2011; 742: 143-171
        • Rogers G.B.
        • Carroll M.P.
        • Bruce K.D.
        Studying bacterial infections through culture-independent approaches.
        J Med Microbiol. 2009; 58: 1401-1418
        • Bittar F.
        • Richet H.
        • Dubus J.C.
        • et al.
        Molecular detection of multiple emerging pathogens in sputa from cystic fibrosis patients.
        PLoS One. 2008; 3: e2908
        • Field T.R.
        • Sibley C.D.
        • Parkins M.D.
        • Rabin H.R.
        • Surette M.G.
        The genus Prevotella in cystic fibrosis airways.
        Anaerobe. 2010; 16: 337-344
        • Sibley C.D.
        • Grinwis M.E.
        • Field T.R.
        • et al.
        Culture enriched molecular profiling of the cystic fibrosis airway microbiome.
        PLoS One. 2011; 6: e22702
        • Cox M.J.
        • Allgaier M.
        • Taylor B.
        • et al.
        Airway microbiota and pathogen abundance in age-stratified cystic fibrosis patients.
        PLoS One. 2010; 5: e1044
        • Willner D.
        • Furlan M.
        • Haynes M.
        • et al.
        Metagenomic analysis of respiratory tract DNA viral communities in cystic fibrosis and non-cystic fibrosis individuals.
        PLoS One. 2009; 4: e7370
        • Stressmann F.A.
        • Connett G.J.
        • Goss K.
        • et al.
        The use of culture-independent tools to characterize bacteria in endo-tracheal aspirates from pre-term infants at risk of bronchopulmonary dysplasia.
        J Perinat Med. 2010; 38: 333-337
        • Barnes P.J.
        Chronic obstructive pulmonary disease.
        N Engl J Med. 2000; 343: 269-280
        • Tashkin D.P.
        • Altose M.D.
        • Bleecker E.R.
        • et al.
        The lung health study: airway responsiveness to inhaled methacholine in smokers with mild to moderate airflow limitation. The Lung Health Study Research Group.
        Am Rev Respir Dis. 1992; 145: 301-310
        • Tashkin D.P.
        • Altose M.D.
        • Connett J.E.
        • Kanner R.E.
        • Lee W.W.
        • Wise R.A.
        Methacholine reactivity predicts changes in lung function over time in smokers with early chronic obstructive pulmonary disease. The Lung Health Study Research Group.
        Am J Respir Crit Care Med. 1996; 153: 1802-1811
        • Huang Y.J.
        • Kim E.
        • Cox M.J.
        • et al.
        A persistent and diverse airway microbiota present during chronic obstructive pulmonary disease exacerbations.
        Omics. 2010; 14: 9-59
        • Cairns S.
        • Thomas J.G.
        • Hooper S.J.
        • et al.
        Molecular analysis of microbial communities in endotracheal tube biofilms.
        PLoS One. 2011; 6: e14759
        • Wills-Karp M.
        • Santeliz J.
        • Karp C.L.
        The germless theory of allergic disease: revisiting the hygiene hypothesis.
        Nat Rev Immunol. 2001; 1: 69-75
        • Huffnagle G.B.
        The microbiota and allergies/asthma.
        PLoS Pathogens. 2010; 6: e1000549
        • Alm J.S.
        • Swartz J.
        • Lilja G.
        • Scheynius A.
        • Pershagen G.
        Atopy in children of families with an anthroposophic lifestyle.
        Lancet. 1999; 353: 1485-1488
        • McKeever T.M.
        • Lewis S.A.
        • Smith C.
        • et al.
        Early exposure to infections and antibiotics and the incidence of allergic disease: a birth cohort study with the West Midlands General Practice Research Database.
        J Allergy Clin Immunol. 2002; 109: 43-50
        • Wjst M.
        • Hoelscher B.
        • Frye C.
        • Wichmann H.E.
        • Dold S.
        • Heinrich J.
        Early antibiotic treatment and later asthma.
        Eur J Med Res. 2001; 6: 263-271
        • Droste J.H.
        • Wieringa M.H.
        • Weyler J.J.
        • Nelen V.J.
        • Vermeire P.A.
        • Van Bever H.P.
        Does the use of antibiotics in early childhood increase the risk of asthma and allergic disease?.
        Clin Exp Allergy. 2000; 30: 1547-1553
        • Wickens K.
        • Pearce N.
        • Crane J.
        • Beasley R.
        Antibiotic use in early childhood and the development of asthma.
        Clin Exp Allergy. 1999; 29: 766-771
        • Bjorksten B.
        • Naaber P.
        • Sepp E.
        • Mikelsaar M.
        The intestinal microflora in allergic Estonian and Swedish 2-year-old children.
        Clin Exp Allergy. 1999; 29: 342-346
        • Bottcher M.F.
        • Nordin E.K.
        • Sandin A.
        • Midtvedt T.
        • Bjorksten B.
        Microflora-associated characteristics in faeces from allergic and nonallergic infants.
        Clin Exp Allergy. 2000; 30: 1590-1596
        • Kalliomaki M.
        • Kirjavainen P.
        • Eerola E.
        • Kero P.
        • Salminen S.
        • Isolauri E.
        Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing.
        J Allergy Clin Immunol. 2001; 107: 129-134
        • Kirjavainen P.V.
        • Apostolou E.
        • Arvola T.
        • Salminen S.J.
        • Gibson G.R.
        • Isolauri E.
        Characterizing the composition of intestinal microflora as a prospective treatment target in infant allergic disease.
        FEMS Immunol Med Microbiol. 2001; 32: 1-7
        • Bjorksten B.
        • Sepp E.
        • Julge K.
        • Voor T.
        • Mikelsaar M.
        Allergy development and the intestinal microflora during the first year of life.
        J Allergy Clin Immunol. 2001; 108: 516-520
        • Kirjavainen P.V.
        • Arvola T.
        • Salminen S.J.
        • Isolauri E.
        Aberrant composition of gut microbiota of allergic infants: a target of bifidobacterial therapy at weaning?.
        Gut. 2002; 51: 51-55
        • Adlerberth I.
        • Carlsson B.
        • de Man P.
        • et al.
        Intestinal colonization with Enterobacteriaceae in Pakistani and Swedish hospital-delivered infants.
        Acta Paediatr Scand. 1991; 80: 602-610
        • Brar T.
        • Nagaraj S.
        • Mohapatra S.
        Microbes and asthma: the missing cellular and molecular links.
        Curr Opin Pulm Med. 2012; 18: 14-22
        • Noverr M.C.
        • Falkowski N.R.
        • McDonald R.A.
        • McKenzie A.N.
        • Huffnagle G.B.
        Development of allergic airway disease in mice following antibiotic therapy and fungal microbiota increase: role of host genetics, antigen, and interleukin-13.
        Infect Immun. 2005; 73: 30-38
        • Noverr M.C.
        • Noggle R.M.
        • Toews G.B.
        • Huffnagle G.B.
        Role of antibiotics and fungal microbiota in driving pulmonary allergic responses.
        Infect Immun. 2004; 79: 4996-5003
        • Pickett T.E.
        • Pasetti M.F.
        • Galen J.E.
        • Sztein M.B.
        • Levine M.M.
        In vivo characterization of the murine intranasal model for assessing the immunogenicity of attenuated Salmonella enterica serovar Typhi strains as live mucosal vaccines and as live vectors.
        Infect Immun. 2000; 68: 205-213
        • Southam D.S.
        • Dolovich M.
        • O'Byrne P.M.
        • Inman M.D.
        Distribution of intranasal instillations in mice: effects of volume, time, body position, and anesthesia.
        Am J Physiol Lung Cell Mol Physiol. 2002; 282: L833-L839
        • Eyles J.E.
        • Spiers I.D.
        • Williamson E.D.
        • Alpar H.O.
        Tissue distribution of radioactivity following intranasal administration of radioactive microspheres.
        J Pharm Pharmacol. 2001; 53: 601-607
        • Lambrecht B.N.
        • Pauwels R.A.
        Fazekas De St Groth B. Induction of rapid T cell activation, division, and recirculation by intratracheal injection of dendritic cells in a TCR transgenic model.
        J Immunol. 2000; 164: 2937-2946
        • Chung Y.
        • Cho J.
        • Chang Y.S.
        • Cho S.H.
        • Kang C.Y.
        Preventive and therapeutic effects of oral tolerance in a murine model of asthma.
        Immunobiology. 2002; 206: 408-423
        • Maeda Y.
        • Noda S.
        • Tanaka K.
        • et al.
        The failure of oral tolerance induction is functionally coupled to the absence of T cells in Peyer's patches under germfree conditions.
        Immunobiology. 2001; 204: 442-457
        • Moreau M.C.
        • Corthier G.
        Effect of the gastrointestinal microflora on induction and maintenance of oral tolerance to ovalbumin in C3H/HeJ mice.
        Infect Immun. 1988; 56: 2766-2768
        • Sudo N.
        • Sawamura S.
        • Tanaka K.
        • Aiba Y.
        • Kubo C.
        • Koga Y.
        The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction.
        J Immunol. 1997; 159: 1739-1745
        • McGuirk P.
        • Mills K.H.
        Pathogen-specific regulatory T cells provoke a shift in the Th1/Th2 paradigm in immunity to infectious diseases.
        Trends Immunol. 2002; 23: 450-455
        • Zhang X.
        • Izikson L.
        • Liu L.
        • Weiner H.L.
        Activation of CD25(+)CD4(+) regulatory T cells by oral antigen administration.
        J Immunol. 2001; 167: 4245-4253
        • Ostman S.
        • Rask C.
        • Wold A.E.
        • Hultkrantz S.
        • Telemo E.
        Impaired regulatory T cell function in germ-free mice.
        Eur J Immunol. 2006; 36: 2336-2346
        • Bashir M.E.
        • Louie S.
        • Shi H.N.
        • Nagler-Anderson C.
        Toll-like receptor 4 signaling by intestinal microbes influences susceptibility to food allergy.
        J Immunol. 2004; 172: 6978-6987
        • Rakoff-Nahoum S.
        • Paglino J.
        • Eslami-Varzaneh F.
        • Edberg S.
        • Medzhi-tov R.
        Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis.
        Cell. 2004; 118: 229-241
        • Herbst T.
        • Sichelstiel A.
        • Schar C.
        • et al.
        Dysregulation of allergic airway inflammation in the absence of microbial colonization.
        Am J Respir Crit Care Med. 2011; 184: 198-205
        • Macpherson A.J.
        • Smith K.
        Mesenteric lymph nodes at the center of immune anatomy.
        J Exp Med. 2006; 203: 497-500
        • Worbs T.
        • Bode U.
        • Yan S.
        • et al.
        Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells.
        J Exp Med. 2006; 203: 519-527
        • Ivanov I.I.
        • Frutos Rde L.
        • Manel N.
        • et al.
        Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine.
        Cell Host Microbe. 2008; 4: 337-349
        • Hisbergues M.
        • Magi M.
        • Rigaux P.
        • et al.
        In vivo and in vitro immunomodulation of Der p 1 allergen-specific response by Lactobacillus plantarum bacteria.
        Clin Exp Allergy. 2007; 37: 1286-1295
        • Ezendam J.
        • van Loveren H.
        Lactobacillus casei Shirota administered during lactation increases the duration of autoimmunity in rats and enhances lung inflammation in mice.
        Br J Nutr. 2008; 99: 83-90
        • Forsythe P.
        • Inman M.D.
        • Bienenstock J.
        Oral treatment with live Lactobacillus reuteri inhibits the allergic airway response in mice.
        Am J Respir Crit Care Med. 2007; 175: 561-569
        • Hori T.
        • Kiyoshima J.
        • Shida K.
        • Yasui H.
        Augmentation of cellular immunity and reduction of influenza virus titer in aged mice fed Lactobacillus casei strain Shirota.
        Clin Diagn Lab Immunol. 2002; 9: 105-108
        • Racedo S.
        • Villena J.
        • Medina M.
        • Aguero G.
        • Rodriguez V.
        • Alvarez S.
        Lactobacillus casei administration reduces lung injuries in a Streptococcus pneumoniae infection in mice.
        Microbes Infect. 2006; 8: 2359-2366
        • Villena J.
        • Racedo S.
        • Aguero G.
        • Bru E.
        • Medina M.
        • Alvarez S.
        Lactobacillus casei improves resistance to pneumococcal respiratory infection in malnourished mice.
        J Nutr. 2005; 135: 1462-1469
        • Hunt J.R.
        • Martinelli R.
        • Adams V.C.
        • Rook G.A.
        • Brunet L.R.
        Intragastric administration of Mycobacterium vaccae inhibits severe pulmonary allergic inflammation in a mouse model.
        Clin Exp Allergy. 2005; 35: 685-690
        • Adams V.C.
        • Hunt J.R.
        • Martinelli R.
        • Palmer R.
        • Rook G.A.
        • Brunet L.R.
        Mycobacterium vaccae induces a population of pulmonary CD11c+ cells with regulatory potential in allergic mice.
        Eur J Immunol. 2004; 34: 631-638
        • Zuany-Amorim C.
        • Sawicka E.
        • Manlius C.
        • et al.
        Suppression of airway eosinophilia by killed Mycobacterium vaccae-induced allergen-specific regulatory T-cells.
        Nat Med. 2002; 8: 625-629
        • Kitagaki K.
        • Businga T.R.
        • Kline J.N.
        Oral administration of CpG-ODNs suppresses antigen-induced asthma in mice.
        Clin Exp Immunol. 2006; 143: 249-259
        • Blumer N.
        • Herz U.
        • Wegmann M.
        • Renz H.
        Prenatal lipopolysaccharide-exposure prevents allergic sensitization and airway inflammation, but not airway responsiveness in a murine model of experimental asthma.
        Clin Exp Allergy. 2005; 35: 397-402
        • Eisenbarth S.C.
        • Piggott D.A.
        • Huleatt J.W.
        • Visintin I.
        • Herrick C.A.
        • Bottomly K.
        Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen.
        J Exp Med. 2002; 196: 1645-1651
        • Gerhold K.
        • Blumchen K.
        • Bock A.
        • et al.
        Endotoxins prevent murine IgE production, TH2 immune responses, and development of airway eosinophilia but not airway hyperreactivity.
        J Allergy Clin Immunol. 2002; 110: 110-116
        • Racila D.M.
        • Kline J.N.
        Perspectives in asthma: molecular use of microbial products in asthma prevention and treatment.
        J Allergy Clin Immunol. 2005; 116: 1202-1205