Advertisement

The human gut microbiome: current knowledge, challenges, and future directions

      The Human Genome Project was completed a decade ago, leaving a legacy of process, tools, and infrastructure now being turned to the study of the microbes that reside in and on the human body as determinants of health and disease, and has been branded “The Human Microbiome Project.” Of the various niches under investigation, the human gut houses the most complex and abundant microbial community and is an arena for important host–microbial interactions that have both local and systemic impact. Initial studies of the human microbiome have been largely descriptive, a testing ground for innovative molecular techniques and new hypotheses. Methods for studying the microbiome have quickly evolved from low-resolution surveys of microbial community structure to high-definition description of composition, function, and ecology. Next-generation sequencing technologies combined with advanced bioinformatics place us at the doorstep of revolutionary insight into the composition, capability, and activity of the human intestinal microbiome. Renewed efforts to cultivate previously “uncultivable” microbes will be important to the overall understanding of gut ecology. There remain numerous methodological challenges to the effective study and understanding of the gut microbiome, largely relating to study design, sample collection, and the number of predictor variables. Strategic collaboration of clinicians, microbiologists, molecular biologists, computational scientists, and bioinformaticians is the ideal paradigm for success in this field. Meaningful interpretation of the gut microbiome requires that host genetic and environmental influences be controlled or accounted for. Understanding the gut microbiome in healthy humans is a foundation for discovering its influence in various important gastrointestinal and nutritional diseases (eg, inflammatory bowel disease, diabetes, and obesity), and for rational translation to human health gains.

      Abbreviations:

      GI (gastrointestinal), IBD (inflammatory bowel disease), IBS (irritable bowel syndrome), TRFLP (terminal restriction fragment length polymorphism), UC (ulcerative colitis)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • DeLong E.F.
        • Pace N.R.
        Environmental diversity of bacteria and archaea.
        Syst Biol. 2001; 50: 470-478
        • Ley R.E.
        • Peterson D.A.
        • Gordon J.I.
        Ecological and evolutionary forces shaping microbial diversity in the human intestine.
        Cell. 2006; 124: 837-848
        • Savage D.C.
        Microbial ecology of the gastrointestinal tract.
        Annu Rev Microbiol. 1977; 31: 107-133
        • Whitman W.B.
        • Coleman D.C.
        • Wiebe W.J.
        Prokaryotes: the unseen majority.
        Proc Natl Acad Sci U S A. 1998; 95: 6578-6583
        • Backhed F.
        • Ley R.E.
        • Sonnenburg J.L.
        • Peterson D.A.
        • Gordon J.I.
        Host-bacterial mutualism in the human intestine.
        Science. 2005; 307: 1915-1920
        • Reyes A.
        • Haynes M.
        • Hanson N.
        • et al.
        Viruses in the faecal microbiota of monozygotic twins and their mothers.
        Nature. 2010; 466: 334-338
        • Lederberg J.
        • McCray A.T.
        ‘Ome sweet ‘omics—a genealogical treasury of words.
        Scientist. 2001; 15: 8-9
        • Handelsman J.
        Metagenomics: application of genomics to uncultured microorganisms.
        Microbiol Mol Biol Rev. 2004; 68: 669-685
        • Metagenomics Co
        The New Science of Metagenomics: Revealing the Secrets of Our Microbial Planet.
        The National Academies Press, Washington, DC2007
        • Turnbaugh P.J.
        • Ley R.E.
        • Hamady M.
        • Fraser-Liggett C.M.
        • Knight R.
        • Gordon J.I.
        The human microbiome project.
        Nature. 2007; 449: 804-810
        • Nelson K.E.
        • Weinstock G.M.
        • Highlander S.K.
        • et al.
        A catalog of reference genomes from the human microbiome.
        Science. 2010; 328: 994-999
        • Bik E.M.
        • Eckburg P.B.
        • Gill S.R.
        • et al.
        Molecular analysis of the bacterial microbiota in the human stomach.
        Proc Natl Acad Sci U S A. 2006; 103: 732-737
        • Dominguez-Bello M.G.
        • Blaser M.J.
        • Ley R.E.
        • Knight R.
        Development of the human gastrointestinal microbiota and insights from high-throughput sequencing.
        Gastroenterology. 2011; 140: 1713-1719
        • Neish A.S.
        Microbes in gastrointestinal health and disease.
        Gastroenterology. 2009; 136: 65-80
        • Moore W.E.
        • Holdeman L.V.
        Human fecal flora: the normal flora of 20 Japanese-Hawaiians.
        Appl Microbiol. 1974; 27: 961-979
        • Hayashi H.
        • Sakamoto M.
        • Benno Y.
        Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods.
        Microbiol Immunol. 2002; 46: 535-548
        • Dethlefsen L.
        • McFall-Ngai M.
        • Relman D.A.
        An ecological and evolutionary perspective on human-microbe mutualism and disease.
        Nature. 2007; 449: 811-818
        • Woese C.R.
        • Fox G.E.
        Phylogenetic structure of the prokaryotic domain: the primary kingdoms.
        Proc Natl Acad Sci U S A. 1977; 74: 5088-5090
        • Nocker A.
        • Burr M.
        • Camper A.K.
        Genotypic microbial community profiling: a critical technical review.
        Microb Ecol. 2007; 54: 276-289
        • Young V.B.
        • Schmidt T.M.
        Antibiotic-associated diarrhea accompanied by large-scale alterations in the composition of the fecal microbiota.
        J Clin Microbiol. 2004; 42: 1203-1206
        • Cole J.R.
        • Chai B.
        • Farris R.J.
        • et al.
        The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data.
        Nucleic Acids Res. 2007; 35: D169-D172
        • Ronaghi M.
        • Uhlen M.
        • Nyren P.
        A sequencing method based on real-time pyrophosphate.
        Science. 1998; 281: 5
        • Achtman M.
        • Wagner M.
        Microbial diversity and the genetic nature of microbial species.
        Nat Rev Microbiol. 2008; 6: 431-440
        • Schloss P.D.
        • Westcott S.L.
        Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis.
        Appl Environ Microbiol. 2011; 77: 3219-3226
        • Rondon M.R.
        • August P.R.
        • Bettermann A.D.
        • et al.
        Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms.
        Appl Environ Microbiol. 2000; 66: 2541-2547
        • Hamady M.
        • Knight R.
        Microbial community profiling for human microbiome projects: tools, techniques, and challenges.
        Genome Res. 2009; 19: 1141-1152
        • Barriuso J.
        • Valverde J.R.
        • Mellado R.P.
        Estimation of bacterial diversity using next generation sequencing of 16S rDNA: a comparison of different workflows.
        BMC Bioinformatics. 2011; 12: 473
        • Wooley J.C.
        • Ye Y.
        Metagenomics: Facts and Artifacts, and Computational Challenges*.
        J Comput Sci Technol. 2009; 25: 71-81
        • Degnan P.H.
        • Ochman H.
        Illumina-based analysis of microbial community diversity.
        Isme J. 2012; 6: 183-194
        • Quince C.
        • Lanzen A.
        • Curtis T.P.
        • et al.
        Accurate determination of microbial diversity from 454 pyrosequencing data.
        Nat Methods. 2009; 6: 639-641
        • Caporaso J.G.
        • Kuczynski J.
        • Stombaugh J.
        • et al.
        QIIME allows analysis of high-throughput community sequencing data.
        Nat Methods. 2010; 7: 335-336
        • Schloss P.D.
        • Westcott S.L.
        • Ryabin T.
        • et al.
        Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities.
        Appl Environ Microbiol. 2009; 75: 7537-7541
        • Gloor G.B.
        • Hummelen R.
        • Macklaim J.M.
        • et al.
        Microbiome profiling by illumina sequencing of combinatorial sequence-tagged PCR products.
        PLoS One. 2010; 5: e15406
        • Waljee A.K.
        • Higgins P.D.
        Machine learning in medicine: a primer for physicians.
        Am J Gastroenterol. 2010; 105: 1224-1226
        • Krampis K.
        • Booth T.
        • Chapman B.
        • et al.
        Cloud BioLinux: pre-configured and on-demand bioinformatics computing for the genomics community.
        BMC Bioinformatics. 2012; 13: 42
        • Peterson D.A.
        • Frank D.N.
        • Pace N.R.
        • Gordon J.I.
        Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases.
        Cell Host Microbe. 2008; 3: 417-427
        • Turnbaugh P.J.
        • Hamady M.
        • Yatsunenko T.
        • et al.
        A core gut microbiome in obese and lean twins.
        Nature. 2009; 457: 480-484
        • Arumugam M.
        • Raes J.
        • Pelletier E.
        • et al.
        Enterotypes of the human gut microbiome.
        Nature. 2011; 473: 174-180
        • Biagi E.
        • Nylund L.
        • Candela M.
        • et al.
        Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians.
        PLoS One. 2010; 5: e10667
        • Mueller S.
        • Saunier K.
        • Hanisch C.
        • et al.
        Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study.
        Appl Environ Microbiol. 2006; 72: 1027-1033
        • Koenig J.E.
        • Spor A.
        • Scalfone N.
        • et al.
        Succession of microbial consortia in the developing infant gut microbiome.
        Proc Natl Acad Sci U S A. 2011; 108: 4578-4585
        • Claesson M.J.
        • Cusack S.
        • O’Sullivan O.
        • et al.
        Composition, variability, and temporal stability of the intestinal microbiota of the elderly.
        Proc Natl Acad Sci U S A. 2011; 108: 4586-4591
        • Tannock G.W.
        • Munro K.
        • Harmsen H.J.
        • Welling G.W.
        • Smart J.
        • Gopal P.K.
        Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20.
        Appl Environ Microbiol. 2000; 66: 2578-2588
        • Scanlan P.D.
        • Shanahan F.
        • O’Mahony C.
        • Marchesi J.R.
        Culture-independent analyses of temporal variation of the dominant fecal microbiota and targeted bacterial subgroups in Crohn’s disease.
        J Clin Microbiol. 2006; 44: 3980-3988
        • Caporaso J.G.
        • Lauber C.L.
        • Costello E.K.
        • et al.
        Moving pictures of the human microbiome.
        Genome Biol. 2011; 12: R50
        • Walker A.W.
        • Duncan S.H.
        • Harmsen H.J.M.
        • Holtrop G.
        • Welling G.W.
        • Flint H.J.
        The species composition of the human intestinal microbiota differs between particle-associated and liquid phase communities.
        Environ Microbiol. 2008; 10: 3275-3283
        • Lepage P.
        • Seksik P.
        • Sutren M.
        • et al.
        Biodiversity of the mucosa-associated microbiota is stable along the distal digestive tract in healthy individuals and patients with IBD.
        Inflamm Bowel Dis. 2005; 11: 473-480
        • Eckburg P.B.
        • Bik E.M.
        • Bernstein C.N.
        • et al.
        Diversity of the human intestinal microbial flora.
        Science. 2005; 308: 1635-1638
        • Gillevet P.
        • Sikaroodi M.
        • Keshavarzian A.
        • Mutlu E.A.
        Quantitative assessment of the human gut microbiome using multitag pyrosequencing.
        Chem Biodivers. 2010; 7: 1065-1075
        • Marteau P.
        • Pochart P.
        • Dore J.
        • Bera-Maillet C.
        • Bernalier A.
        • Corthier G.
        Comparative study of bacterial groups within the human cecal and fecal microbiota.
        Appl Environ Microbiol. 2001; 67: 4939-4942
        • Dave M.
        • Johnson L.A.
        • Walk S.T.
        • et al.
        A randomised trial of sheathed versus standard forceps for obtaining uncontaminated biopsy specimens of microbiota from the terminal ileum.
        Gut. 2011; 60: 1043-1049
        • Mai V.
        • Greenwald B.
        • Morris Jr., J.G.
        • Raufman J.P.
        • Stine O.C.
        Effect of bowel preparation and colonoscopy on post-procedure intestinal microbiota composition.
        Gut. 2006; 55: 1822-1823
        • Lauber C.L.
        • Zhou N.
        • Gordon J.I.
        • Knight R.
        • Fierer N.
        Effect of storage conditions on the assessment of bacterial community structure in soil and human-associated samples.
        FEMS Microbiol Lett. 2010; 307: 80-86
        • Wu G.D.
        • Lewis J.D.
        • Hoffmann C.
        • et al.
        Sampling and pyrosequencing methods for characterizing bacterial communities in the human gut using 16S sequence tags.
        BMC Microbiol. 2010; 10: 206
        • Roesch L.F.
        • Casella G.
        • Simell O.
        • et al.
        Influence of fecal sample storage on bacterial community diversity.
        Open Microbiol J. 2009; 3: 40-46
        • Zoetendal E.G.
        • Heilig H.G.
        • Klaassens E.S.
        • et al.
        Isolation of DNA from bacterial samples of the human gastrointestinal tract.
        Nat Protoc. 2006; 1: 870-873
        • Ahn J.
        • Yang L.
        • Paster B.J.
        • et al.
        Oral microbiome profiles: 16S rRNA pyrosequencing and microarray assay comparison.
        PLoS One. 2011; 6: e22788
        • Pei Z.
        • Bini E.J.
        • Yang L.
        • Zhou M.
        • Francois F.
        • Blaser M.J.
        Bacterial biota in the human distal esophagus.
        Proc Natl Acad Sci U S A. 2004; 101: 4250-4255
        • Hayashi H.
        • Takahashi R.
        • Nishi T.
        • Sakamoto M.
        • Benno Y.
        Molecular analysis of jejunal, ileal, caecal and recto-sigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism.
        J Med Microbiol. 2005; 54: 1093-1101
        • Dominguez-Bello M.G.
        • Costello E.K.
        • Contreras M.
        • et al.
        Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns.
        Proc Natl Acad Sci U S A. 2010; 107: 11971-11975
        • Ley R.E.
        • Hamady M.
        • Lozupone C.
        • et al.
        Evolution of mammals and their gut microbes.
        Science. 2008; 320: 1647-1651
        • Muegge B.D.
        • Kuczynski J.
        • Knights D.
        • et al.
        Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans.
        Science. 2011; 332: 970-974
        • Erwin G.
        • Zoetendal A.D.L.A.
        • Akkermans-van Vliet W.M.
        • de Visser J.A.G.M.
        • de Vos W.M.
        The host genotype affects the bacterial community in the human gastrointestinal tract.
        Microb Ecol Health Dis. 2001; 13: 129-134
        • Palmer C.
        • Bik E.M.
        • DiGiulio D.B.
        • Relman D.A.
        • Brown P.O.
        Development of the human infant intestinal microbiota.
        PLoS Biol. 2007; 5: e177
        • Biagi E.
        • Nylund L.
        • Candela M.
        • et al.
        Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians.
        PLoS One. 2010; 5: e10667
        • Wu G.D.
        • Chen J.
        • Hoffmann C.
        • et al.
        Linking long-term dietary patterns with gut microbial enterotypes.
        Science. 2011; 334: 105-108
        • Dethlefsen L.
        • Huse S.
        • Sogin M.L.
        • Relman D.A.
        The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing.
        PLoS Biol. 2008; 6: e280
        • Dethlefsen L.
        • Relman D.A.
        Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation.
        Proc Natl Acad Sci U S A. 2011; 108: 4554-4561
        • Jernberg C.
        • Lofmark S.
        • Edlund C.
        • Jansson J.K.
        Long-term ecological impacts of antibiotic administration on the human intestinal microbiota.
        Isme J. 2007; 1: 56-66
        • Antonopoulos D.A.
        • Huse S.M.
        • Morrison H.G.
        • Schmidt T.M.
        • Sogin M.L.
        • Young V.B.
        Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation.
        Infect Immun. 2009; 77: 2367-2375
        • Salonen A.
        • de Vos W.M.
        • Palva A.
        Gastrointestinal microbiota in irritable bowel syndrome: present state and perspectives.
        Microbiology. 2010; 156: 3205-3215
        • Vanderploeg R.
        • Panaccione R.
        • Ghosh S.
        • Rioux K.
        Influences of intestinal bacteria in human inflammatory bowel disease.
        Infect Dis Clin North Am. 2010; 24: 977-993
        • Meijer B.J.
        • Dieleman L.A.
        Probiotics in the treatment of human inflammatory bowel diseases: update 2011.
        J Clin Gastroenterol. 2011; 45: S139-S144
        • Sood A.
        • Midha V.
        • Makharia G.K.
        • et al.
        The probiotic preparation, VSL#3 induces remission in patients with mild-to-moderately active ulcerative colitis.
        Clin Gastroenterol Hepatol. 2009; 7: 1202-1209
        • Tursi A.
        • Brandimarte G.
        • Papa A.
        • et al.
        Treatment of relapsing mild-to-moderate ulcerative colitis with the probiotic VSL#3 as adjunctive to a standard pharmaceutical treatment: a double-blind, randomized, placebo-controlled study.
        Am J Gastroenterol. 2010; 105: 2218-2227
        • Kruis W.
        • Fric P.
        • Pokrotnieks J.
        • et al.
        Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine.
        Gut. 2004; 53: 1617-1623
        • Gionchetti P.
        • Rizzello F.
        • Venturi A.
        • et al.
        Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: a double-blind, placebo-controlled trial.
        Gastroenterology. 2000; 119: 305-309
        • Moayyedi P.
        • Ford A.C.
        • Talley N.J.
        • et al.
        The efficacy of probiotics in the therapy of irritable bowel syndrome: a systematic review.
        Gut. 2010; 59: 325-332
        • Brenner D.M.
        • Moeller M.J.
        • Chey W.D.
        • Schoenfeld P.S.
        The utility of probiotics in the treatment of irritable bowel syndrome: a systematic review.
        Am J Gastroenterol. 2009; 104: 1033-1049
        • Hoveyda N.
        • Heneghan C.
        • Mahtani K.R.
        • Perera R.
        • Roberts N.
        • Glasziou P.
        A systematic review and meta-analysis: probiotics in the treatment of irritable bowel syndrome.
        BMC Gastroenterol. 2009; 9: 15
        • McFarland L.V.
        • Dublin S.
        Meta-analysis of probiotics for the treatment of irritable bowel syndrome.
        World J Gastroenterol. 2008; 14: 2650-2661
        • Whorwell P.J.
        • Altringer L.
        • Morel J.
        • et al.
        Efficacy of an encapsulated probiotic Bifidobacterium infantis 35624 in women with irritable bowel syndrome.
        Am J Gastroenterol. 2006; 101: 1581-1590