Advertisement

T cell-based gene therapy of cancer

  • Saar Gill
    Affiliations
    Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa
    Search for articles by this author
  • Michael Kalos
    Correspondence
    Reprint requests: Michael Kalos, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Translational Research Center, 9-102, 3400 Civic Center Boulevard, Building 421, Philadelphia, PA 19104-5157.
    Affiliations
    Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa
    Search for articles by this author
Published:December 13, 2012DOI:https://doi.org/10.1016/j.trsl.2012.11.002
      Adoptive immunotherapy using gene engineered T cells is a promising and rapidly evolving field, and the ability to engineer T cells to manifest desired phenotypes and functions has become a practical reality. In this review, we describe and summarize current thought about gene engineering of T cells. We focus on the identified requirements for the successful application of T cell based immunotherapy and discuss gene-therapy based strategies that address these requirements and have the potential to enhance the successful implementation of this promising approach to treat cancer.

      Abbreviations:

      CAR (chimeric antigen receptors), GM-CSF (Granulocyte-macrophage colony-stimulating factor), HSV (Herpes simplex virus), IL (interleukin), INF (Interferon), MHC (Major Histocompatibility Complex), qPCR (quantitative polymerase chain reaction), scFv (single chain variable fragment), TCR (T cell receptor), TGF (Transforming Growth factor), TIL (Tumor Infiltrating Lymphocytes), TNF (Tumor necrosis factor)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gill S.
        • Porter D.L.
        Reduced-intensity hematopoietic stem cell transplants for malignancies: harnessing the graft-versus-tumoreEffect.
        Ann Rev Med. 2013; 64: 101-117
        • Baitsch L.
        • Baumgaertner P.
        • Devêvre E.
        • et al.
        Exhaustion of tumor-specific CD8 + T cells in metastases from melanoma patients.
        J Clin Invest. 2011; 3: 23-25
        • Galon J.
        • Costes A.
        • Sanchez-Cabo F.
        • et al.
        Type, density, and location of immune cells within human colorectal tumors predict clinical outcome.
        Science (New York, NY). 2006; 313: 1960-1964
        • Lustgarten J.
        • Dominguez A.L.
        • Cuadros C.
        The CD8+ T cell repertoire against Her-2/neu antigens in neu transgenic mice is of low avidity with antitumor activity.
        Eur J Immunol. 2004; 34: 752-761
        • Zhang L.
        • Conejo-Garcia J.R.
        • Katsaros D.
        • et al.
        Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer.
        N Engl J Med. 2003; 348: 203-213
        • Bendandi M.
        Idiotype vaccines for lymphoma: proof-of-principles and clinical trial failures.
        Nat Rev Cancer. 2009; 9: 675-681
        • Kalos M.
        Tumor antigen-specific T cells and cancer immunotherapy: current issues and future prospects.
        Vaccine. 2003; 21: 781-786
        • Tanimoto T.
        • Hori A.
        • Kami M.
        Sipuleucel-T immunotherapy for castration-resistant prostate cancer.
        N Engl J Med. 2010; 363 (author reply 1967–8): 1966
        • Pardoll D.M.
        The blockade of immune checkpoints in cancer immunotherapy.
        Nat Rev Cancer. 2012; 12: 252-264
        • Law T.
        • Motzer R.
        • Mazumdar M.
        Phase III randomized trial of interleukin-2 with or without lymphokine-activated killer cells in the treatment of patients with advanced renal cell carcinoma.
        Cancer. 1995; 76: 824-832
        • Rosenberg S.
        • Lotze M.
        • Muul L.
        • et al.
        Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer.
        New Engl J Med. 1985; 313: 1485-1492
        • Rosenberg S.A.
        • Dudley M.E.
        Adoptive cell therapy for the treatment of patients with metastatic melanoma.
        Curr Opin Immunol. 2009; 21: 233-240
        • June C.H.
        Science in medicine Adoptive T cell therapy for cancer in the clinic.
        J Clin Invest. 2007; 117: 1466-1476
        • Kalos M.
        Muscle CARs and TcRs: turbo-charged technologies for the (T cell) masses.
        Cancer Immunol Immunother CII. 2012; 61: 127-135
        • Clay T.M.
        • Custer M.C.
        • Sachs J.
        • et al.
        Efficient transfer of a tumor antigen-reactive TCR to human peripheral blood lymphocytes confers anti-tumor reactivity.
        J Immunol. 1999; 163: 507-513
        • Cooper L.J.N.
        • Kalos M.
        • Deborah A.
        • et al.
        Transfer of specificity for human immunodeficiency virus type 1 into primary human T lymphocytes by introduction of T-cell receptor genes transfer of specificity for human immunodeficiency virus type 1 into primary human T lymphocytes by introduction of T.
        J Virol. 2000; 74: 8207-8212
        • Robbins P.F.
        • Morgan R.A.
        • Feldman S.A.
        • et al.
        Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1.
        J Clin Oncol. 2011; 29: 917-924
        • Varela-Rohena A.
        • Molloy P.E.
        • Dunn S.M.
        • et al.
        Control of HIV-1 immune escape by CD8 T cells expressing enhanced T-cell receptor.
        Nat Med. 2008; 14: 1390-1395
        • Johnson L.A.
        • Morgan R.A.
        • Dudley M.E.
        • et al.
        Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen.
        Blood. 2009; 114: 535-546
        • Morgan R.A.
        • Dudley M.E.
        • Wunderlich J.R.
        • et al.
        Cancer regression in patients after transfer of genetically engineered lymphocytes.
        Science (New York, NY). 2006; 314: 126-129
        • Pule M.A.
        • Savoldo B.
        • Myers G.D.
        • et al.
        Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma.
        Nat Med. 2008; 14: 1264-1270
        • Till B.G.
        • Jensen M.C.
        • Wang J.
        • et al.
        Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells.
        Blood. 2008; 112: 2261-2271
        • Jena B.
        • Dotti G.
        • Cooper L.J.N.
        Review article redirecting T-cell specificity by introducing a tumor-specific chimeric antigen receptor.
        Blood. 2010; 116: 1035-1044
      1. Amir AL, Steen DM van der, Loenen MM van, et al. PRAME-specific Allo-HLA-restricted T cells with potent antitumor reactivity useful for therapeutic T-cell receptor gene transfer. Clin Cancer Res 2011;17:5615–25.

        • Friedman R.S.
        • Spies A.G.
        • Kalos M.
        Identification of naturally processed CD8 T cell epitopes from prostein, a prostate tissue-specific vaccine candidate.
        Eur J Immunol. 2004; 34: 1091-1101
        • Chervin A.S.
        • Aggen D.H.
        • Raseman J.M.
        • Kranz D.M.
        Engineering higher affinity T cell receptors using a T cell display system.
        J Immunol Methods. 2008; 339: 175-184
        • Li Y.
        • Moysey R.
        • Molloy P.E.
        • et al.
        Directed evolution of human T-cell receptors with picomolar affinities by phage display.
        Nat Biotechnol. 2005; 23: 349-354
        • Robbins P.F.
        • Li Y.F.
        • El-gamil M.
        • et al.
        Single and dual amino acid substitutions in TCR CDRs can enhance antigen-specific T cell functions.
        J Immunol. 2008; 180: 6116-6131
        • Kuball J.
        • Hauptrock B.
        • Malina V.
        • et al.
        Increasing functional avidity of TCR-redirected T cells by removing defined N-glycosylation sites in the TCR constant domain.
        J Exp Med. 2009; 206: 463-475
        • Zhao Y.
        • Bennett A.D.
        • Zheng Z.
        • et al.
        CD4+ T cells with the ability to recognize and kill tumor.
        J Immunol. 2007; 179: 5845-5854
        • Kuball J.
        • Dossett M.L.
        • Wolfl M.
        • et al.
        Facilitating matched pairing and expression of TCR chains introduced into human T cells.
        Blood. 2007; 109: 2331-2338
        • Gross G.
        • Waks T.
        • Eshhar Z.
        Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity.
        Proc Nat Acad Sci U S A. 1989; 86: 10024-10028
        • Milone M.C.
        • Fish J.D.
        • Carpenito C.
        • et al.
        Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo.
        Mol Ther. 2009; 17: 1453-1464
        • Sadelain M.
        • Brentjens R.
        • Rivie I.
        The promise and potential pitfalls of chimeric antigen receptors.
        Curr Opin Immunol. 2009; 21: 215-223
        • Novellino L.
        • Castelli C.
        • Parmiani G.
        A listing of human tumor antigens recognized by T cells: March 2004 update.
        Cancer Immunol Immunother CII. 2005; 54: 187-207
        • Caballero O.L.
        • Chen Y.-T.
        Cancer/testis (CT) antigens: potential targets for immunotherapy.
        Cancer Sci. 2009; 100: 2014-2021
        • Old L.J.
        Cancer vaccines: an overview.
        Cancer Immun. 2008; 8: 1-8
        • Parkhurst M.R.
        • Yang J.C.
        • Langan R.C.
        • et al.
        T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis.
        Mol Ther. 2011; 19: 620-626
        • Brentjens R.J.
        • Rivière I.
        • Park J.H.
        • et al.
        Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias.
        Blood. 2011; : 4817-4828
        • Kochenderfer J.N.
        • Dudley M.E.
        • Feldman S.A.
        • et al.
        B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells.
        Blood. 2012; 119: 2709-2720
        • Porter D.L.
        • Levine B.L.
        • Kalos M.
        • Bagg A.
        • June C.H.
        Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia.
        N Engl J Med. 2011; 365: 725-733
        • Kalos M.
        • Levine B.L.
        • Porter D.L.
        • et al.
        T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia.
        Sci Transl Med. 2011; 3 (95ra73–95ra73)
        • Amos S.M.
        • Duong C.P.M.
        • Westwood J.A.
        • et al.
        Autoimmunity associated with immunotherapy of cancer.
        Blood. 2011; 118: 499-509
        • Naldini L.
        • Blömer U.
        • Gallay P.
        • et al.
        In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector.
        Science. 1996; 272: 263-267
        • Amado R.G.
        • Chen I.S.Y.
        Lentiviral vectors–the promise of gene therapy within reach?.
        Science. 1999; 285: 674-676
        • Ellis J.
        Silencing and variegation of gammaretrovirus and lentivirus vectors.
        Hum Gene Ther. 2005; 16: 1241-1246
        • Wolf D.
        • Goff S.P.
        Host restriction factors blocking retroviral replication.
        Ann Rev Genet. 2008; 42: 143-163
        • Scholler J.
        • Brady T.L.
        • Binder-Scholl G.
        • et al.
        Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells.
        Sci Transl Med. 2012; 4: 132ra53
        • Bushman F.D.
        Retroviral integration and human gene therapy.
        J Clin Invest. 2007; 117: 2083-2086
        • Lindemann D.
        • Rethwilm A.
        Foamy virus biology and its application for vector development.
        Viruses. 2011; 3: 561-585
        • Perez E.E.
        • Wang J.
        • Miller J.C.
        • et al.
        Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases.
        Nat Biotechnol. 2008; 26: 808-816
        • Dupuy A.J.
        • Akagi K.
        • Largaespada D.A.
        • Copeland N.G.
        • Jenkins N.A.
        Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system.
        Nature. 2005; 436: 221-226
        • Hackett P.B.
        • Largaespada D.A.
        • Cooper L.J.N.
        A transposon and transposase system for human application.
        Mol Ther. 2010; 18: 674-683
        • Kebriaei P.
        • Huls H.
        • Jena B.
        • et al.
        Infusing CD19-directed T cells to augment disease control in patients undergoing autologous hematopoietic stem-cell transplantation for advanced B-lymphoid malignancies.
        Hum Gene Ther. 2012; 23: 444-450
        • Zhao Y.
        • Zheng Z.
        • Cohen C.J.
        • et al.
        High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation.
        Mol Ther. 2006; 13: 151-159
        • Yoon S.H.
        • Lee J.M.
        • Cho H.I.
        • et al.
        Adoptive immunotherapy using human peripheral blood lymphocytes transferred with RNA encoding Her-2/neu-specific chimeric immune receptor in ovarian cancer xenograft model.
        Cancer Gene Ther. 2009; 16: 489-497
        • Mitchell D.A.
        • Karikari I.
        • Cui X.
        • et al.
        Selective modification of antigen-specific T cells by RNA electroporation.
        Hum Gene Ther. 2008; 19: 511-521
        • Rowley J.
        • Monie A.
        • Hung C.-F.
        • Wu T.-C.
        Expression of IL-15RA or an IL-15/IL-15RA fusion on CD8+ T cells modifies adoptively transferred T-cell function in cis.
        Eur J Immunol. 2009; 39: 491-506
        • Zhao Y.
        • Moon E.
        • Carpenito C.
        • et al.
        Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor.
        Cancer Res. 2010; 70: 9053-9061
        • Cannon P.
        • June C.
        Chemokine receptor 5 knockout strategies.
        Curr Opin HIV AIDS. 2011; 6: 74-79
        • Reyon D.
        • Tsai S.Q.
        • Khayter C.
        • et al.
        FLASH assembly of TALENs for high-throughput genome editing.
        Nat Biotechnol. 2012; 30: 460-465
        • Varela-rohena A.
        • Carpenito C.
        • Perez E.E.
        • et al.
        Genetic engineering of T cells for adoptive immunotherapy.
        Immunol Res. 2008; 42: 166-181
        • Kalamasz D.
        • Long S.A.
        • Taniguchi R.
        • et al.
        Optimization of human T-cell expansion ex vivo using magnetic beads conjugated with anti-CD3 and Anti-CD28 antibodies.
        J Immunother. 2004; 27: 405-418
        • Maus M.V.
        • Thomas A.K.
        • Leonard D.G.B.
        • et al.
        Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4-1BB.
        Nat Biotechnol. 2002; 20: 143-148
        • Hollyman D.
        • Stefanski J.
        • Przybylowski M.
        • et al.
        Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy.
        J Immunother. 2009; 32: 169-180
        • Yang S.
        • Dudley M.E.
        • Rosenberg S.A.
        • Morgan R.A.
        A simplified method for the clinical-scale generation of central memory-like CD8+ T cells after transduction with lentiviral vectors encoding antitumor antigen T-cell receptors.
        J Immunother. 2010; 33: 648-658
        • Porter D.L.
        • Levine B.L.
        • Bunin N.
        • et al.
        A phase 1 trial of donor lymphocyte infusions expanded and activated ex vivo via CD3/CD28 costimulation.
        Blood. 2006; 107: 1325-1331
        • O’Reilly R.J.
        • Dao T.
        • Koehne G.
        • Scheinberg D.
        • Doubrovina E.
        Adoptive transfer of unselected or leukemia-reactive T-cells in the treatment of relapse following allogeneic hematopoietic cell transplantation.
        Semin Immunol. 2010; 22: 162-172
        • Rapoport A.P.
        • Stadtmauer E.A.
        • Aqui N.
        • et al.
        Rapid immune recovery and graft-versus-host disease-like engraftment syndrome following adoptive transfer of Costimulated autologous T cells.
        Clin Cancer Res. 2009; 15: 4499-4507
        • Besser M.J.
        • Shapira-Frommer R.
        • Treves A.J.
        • et al.
        Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients.
        Clin Cancer Res. 2010; 16: 2646-2655
        • Dudley M.E.
        • Wunderlich J.R.
        • Robbins P.F.
        • et al.
        Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes.
        Science. 2002; 298: 850-854
        • Tran K.Q.
        • Zhou J.
        • Durflinger K.H.
        • et al.
        Minimally cultured tumor-infiltrating lymphocytes display optimal characteristics for adoptive cell therapy.
        J Immunother. 2008; 31: 742-751
        • Leen A.M.
        • Christin A.
        • Myers G.D.
        • et al.
        Cytotoxic T lymphocyte therapy with donor T cells prevents and treats adenovirus and Epstein-Barr virus infections after haploidentical and matched unrelated stem cell transplantation.
        Blood. 2009; 114: 4283-4292
        • Louis C.U.
        • Straathof K.
        • Bollard C.M.
        • et al.
        Adoptive transfer of EBV-specific T cells results in sustained clinical responses in patients with locoregional nasopharyngeal carcinoma.
        J Immunother. 2010; 33: 983-990
        • Appay V.
        • Douek D.C.
        • Price D.A.
        CD8+ T cell efficacy in vaccination and disease.
        Nat Med. 2008; 14: 623-628
        • Carpenito C.
        • Milone M.C.
        • Hassan R.
        • et al.
        Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains.
        Proc Nat Acad Sci U S A. 2009; 106: 3360-3365
        • Wong P.
        • Pamer E.G.
        CD8 T cell responses to infectious pathogens.
        Ann Rev Immunol. 2003; 21: 29-70
        • Zhang N.
        • Bevan M.J.
        CD8(+) T cells: foot soldiers of the immune system.
        Immunity. 2011; 35: 161-168
        • Sun J.C.
        • Bevan M.J.
        Defective CD8 T cell memory following acute infection without CD4 T cell help.
        Science. 2003; 300: 339-342
        • Sun J.C.
        • Williams M.A.
        • Bevan M.J.
        CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection.
        Nat Immunol. 2004; 5: 927-933
        • Seder R.A.
        • Darrah P.A.
        • Roederer M.
        T-cell quality in memory and protection: implications for vaccine design.
        Nature reviews. Immunology. 2008; 8: 247-258
        • Maus M.V.
        • Kovacs B.
        • Kwok W.W.
        • et al.
        Extensive replicative capacity of human central memory T cells.
        J Immunol. 2004; 172: 6675-6683
        • Wang A.
        • Chandran S.
        • Shah S.A.
        • et al.
        The Stoichiometric Production of IL-2 and IFN- mRNA defines memory T cells that can self-renew after adoptive transfer in humans.
        Sci Transl Med. 2012; 4 (149ra120–149ra120)
        • Klebanoff C.A.
        • Gattinoni L.
        • Torabi-Parizi P.
        • et al.
        Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells.
        Proc Nat Acad Sci U SA. 2005; 102: 9571-9576
        • Muranski P.
        • Boni A.
        • Antony P.A.
        • et al.
        Tumor-specific Th17-polarized cells eradicate large established melanoma.
        Blood. 2008; 112: 362-373
        • Gattinoni L.
        • Lugli E.
        • Ji Y.
        • et al.
        A human memory T cell subset with stem cell-like properties.
        Nat Med. 2011; 17: 1290-1297
        • Zhang H.
        • Snyder K.M.
        • Suhoski M.M.
        • et al.
        4-1BB is superior to CD28 costimulation for generating CD8+ cytotoxic lymphocytes for adoptive immunotherapy.
        J Immunol. 2007; 179: 4910-4918
        • Kershaw M.H.
        • Westwood J.A.
        • Parker L.L.
        • et al.
        A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer.
        Clin Cancer Res. 2006; 12: 6106-6115
        • Park J.R.
        • Digiusto D.L.
        • Slovak M.
        • et al.
        Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in Patients with neuroblastoma.
        Mol Ther. 2007; 15: 825-833
        • Zhou J.
        • Shen X.
        • Huang J.
        • et al.
        Telomere length of transferred lymphocytes correlates with in vivo persistence and tumor regression in melanoma patients receiving cell transfer therapy.
        J Immunol. 2012; 175: 7046-7052
        • Finney H.M.
        • Akbar A.N.
        • Alastair D.G.
        Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134 and CD137 in series with signals from the TCRz chain.
        J Immunol. 2004; 172: 104-113
        • Imai C.
        • Mihara K.
        • Andreansky M.
        • et al.
        Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia.
        Leukemia. 2004; 18: 676-684
        • Pulè M.A.
        • Straathof K.C.
        • Dotti G.
        • et al.
        A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells.
        Mol Ther. 2005; 12: 933-941
        • Topp M.S.
        • Riddell S.R.
        • Akatsuka Y.
        • et al.
        Restoration of CD28 expression in CD28- CD8+ memory effector T cells reconstitutes antigen-induced IL-2 production.
        J Exp Med. 2003; 198: 947-955
        • Lotze M.T.
        • Strausser J.L.
        • Rosenberg S.A.
        In vitro growth of cytotoxic human lymphocytes. II. Use of T cell growth factor (TCGF) to clone human T cells.
        J Immunol. 1980; 124: 2972-2978
        • Ma A.
        • Koka R.
        • Burkett P.
        Diverse functions of IL-2, IL-15, and IL-7 in lymphoid homeostasis.
        Ann Rev Immunol. 2006; 24: 657-679
        • Evans L.S.
        • Witte P.R.
        • Feldhaus A.L.
        • et al.
        Expression of chimeric granulocyte-macrophage colony-stimulating factor/interleukin 2 receptors in human macrophage colony-stimulating factor-dependent growth.
        Hum Gene Ther. 1999; 10: 1941-1951
        • Hsu C.
        • Jones S.A.
        • Cohen C.J.
        • et al.
        Cytokine-independent growth and clonal expansion of a primary human CD8+ T-cell clone following retroviral transduction with the IL-15 gene.
        Blood. 2007; 109: 5168-5177
        • Rufer N.
        Transfer of the human telomerase reverse transcriptase (TERT) gene into T lymphocytes results in extension of replicative potential.
        Blood. 2001; 98: 597-603
        • Charo J.
        • Finkelstein S.E.
        • Grewal N.
        • et al.
        Bcl-2 overexpression enhances tumor-specific T-cell survival.
        Cancer Res. 2005; 65: 2001-2008
      2. Eaton D, Gilham S, O’Neill A, et al Retroviral transduction of human peripheral blood lymphocytes with bcl-x L promotes in vitro lymphocyte survival in proapoptotic conditions. Gene Ther 2002;9:527–35.

        • Dotti G.
        • Savoldo B.
        • Pule M.
        • et al.
        Human cytotoxic T lymphocytes with reduced sensitivity to Fas-induced apoptosis.
        Blood. 2005; 105: 4677-4684
        • Zhang Q.
        • Yang X.
        • Pins M.
        • et al.
        Adoptive transfer of tumor-reactive transforming growth factor-beta-insensitive CD8+ T cells: eradication of autologous mouse prostate cancer.
        Cancer Res. 2005; 65: 1761-1769
        • Lacuesta K.
        • Buza E.
        • Hauser H.
        • et al.
        Assessing the safety of cytotoxic T lymphocytes transduced with a dominant negative transforming growth factor-beta receptor.
        J Immunother. 2006; 29: 250-260
        • Nolz J.C.
        • Starbeck-Miller G.R.
        • Harty J.T.
        Naive, effector and memory CD8 T cell trafficking: parallels and distinctions.
        Immunotherapy. 2011; 3: 1223-1233
        • Moon E.K.
        • Carpenito C.
        • Sun J.
        • et al.
        Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human t cells expressing a mesothelin-specific chimeric antibody receptor.
        Clin Cancer Res. 2011; 17: 4719-4730
        • Harlin H.
        • Meng Y.
        • Peterson A.
        • et al.
        Chemokine expression in melanoma metastases associated with.
        Cancer Res. 2009; 69: 3077-3085
        • Fisher D.T.
        • Chen Q.
        • Appenheimer M.M.
        • et al.
        Hurdles to lymphocyte trafficking in the tumor microenvironment: implications for effective immunotherapy.
        Immunol Invest. 2006; 35: 251-277
        • Berger C.
        • Flowers M.E.
        • Warren E.H.
        • Riddell S.R.
        Analysis of transgene-specific immune responses that limit the in vivo persistence of adoptively transferred HSV-TK-modified donor T cells after allogeneic hematopoietic cell transplantation.
        Blood. 2006; 107: 2294-2302
        • Jensen M.C.
        • Popplewell L.
        • Cooper L.J.
        • et al.
        Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans.
        Biol Blood Marrow Transplantation. 2010; 16: 1245-1256
        • Davis J.L.
        • Theoret M.R.
        • Zheng Z.
        • et al.
        Development of human anti-murine T-cell receptor antibodies in both responding and nonresponding patients enrolled in TCR gene therapy trials.
        Clin Cancer Res. 2010; 16: 5852-5861
        • Lamers C.H.J.
        • Willemsen R.
        • van Elzakker P.
        • et al.
        Immune responses to transgene and retroviral vector in patients treated with ex vivo-engineered T cells.
        Blood. 2011; 117: 72-82
        • Lamers C.H.J.
        • Langeveld S.C.L.
        • Groot-van Ruijven C.M.
        • et al.
        Gene-modified T cells for adoptive immunotherapy of renal cell cancer maintain transgene-specific immune functions in vivo.
        Cancer Immunol Immunother. 2007; 56: 1875-1883
        • Di Stasi A.
        • Tey S.-K.
        • Dotti G.
        • et al.
        Inducible apoptosis as a safety switch for adoptive cell therapy.
        N Engl J Med. 2011; 365: 1673-1683
        • Quintarelli C.
        • Vera J.F.
        • Savoldo B.
        • et al.
        Co-expression of cytokine and suicide genes to enhance the activity and safety of tumor-specific cytotoxic T lymphocytes.
        Blood. 2007; 110: 2793-2802
        • Griffioen M.
        • van Egmond E.H.M.
        • Kester M.G.D.
        • et al.
        Retroviral transfer of human CD20 as a suicide gene for adoptive T-cell therapy.
        Haematologica. 2009; 94: 1316-1320
        • Pegram H.J.
        • Lee J.C.
        • Hayman E.G.
        • et al.
        Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning.
        Blood. 2012; 119: 4133-4141
        • Muranski P.
        • Boni A.
        • Wrzesinski C.
        • et al.
        Increased intensity lymphodepletion and adoptive immunotherapy - how far can we go?.
        Nat Clin Pract Oncol. 2006; 3: 668-681
        • Wrzesinski C.
        • Restifo N.P.
        Less is more: lymphodepletion followed by hematopoietic stem cell transplant augments adoptive T-cell-based anti-tumor immunotherapy.
        Curr Opin Immunol. 2005; 17: 195-201
        • Machiels J.H.
        • Reilly R.T.
        • Emens L.A.
        • et al.
        Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice.
        Cancer Res. 2001; 61: 3689-3697
        • Obeid M.
        • Tesniere A.
        • Ghiringhelli F.
        • et al.
        Calreticulin exposure dictates the immunogenicity of cancer cell death.
        Nat Med. 2007; 13: 54-61
        • Miller J.S.
        • Soignier Y.
        • Panoskaltsis-Mortari A.
        • et al.
        Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer.
        Blood. 2005; 105: 3051-3057
        • Porter D.L.
        • Collins R.H.
        • Hardy C.
        • et al.
        Treatment of relapsed leukemia after unrelated donor marrow transplantation with unrelated donor leukocyte infusions Treatment of relapsed leukemia after unrelated donor marrow transplantation with unrelated donor leukocyte infusions.
        Blood. 2000; 95: 1214-1221
        • Peggs K.S.
        • Thomson K.
        • Hart D.P.
        • et al.
        Dose-escalated donor lymphocyte infusions following reduced intensity transplantation: toxicity, chimerism, and disease responses.
        Blood. 2004; 103: 1548-1556
        • Kalos M.
        An integrative paradigm to impart quality to correlative science.
        J Transl Med. 2010; 8: 26
        • Kalos M.
        Biomarkers in T cell therapy clinical trials.
        J Transl Med. 2011; 9: 138
        • Melenhorst J.J.
        • Scheinberg P.
        • Chattopadhyay P.K.
        • et al.
        High avidity myeloid leukemia-associated antigen-specific CD8+ T cells preferentially reside in the bone marrow.
        Blood. 2009; 113: 2238-2244
        • Robbins P.F.
        • Dudley M.E.
        • Wunderlich J.
        • et al.
        Cutting edge: persistence of transferred lymphocyte clonotypes correlates with cancer regression in patients receiving cell transfer therapy.
        J Immunol. 2004; 173: 7125-7130
        • Powell D.J.
        • Dudley M.E.
        • Robbins P.F.
        • Rosenberg S.A.
        Transition of late-stage effector T cells to CD27+ CD28+ tumor-reactive effector memory T cells in humans after adoptive cell transfer therapy.
        Blood. 2005; 105: 241-250
        • Berger C.
        • Jensen M.C.
        • Lansdorp P.M.
        • et al.
        Adoptive transfer of effector CD8 + T cells derived from central memory cells establishes persistent T cell memory in primates.
        J Clin Invest. 2008; 118: 294-305
        • Gratama J.W.
        • Kern F.
        Flow cytometric enumeration of antigen-specific T lymphocytes.
        Cytometry Part A. 2004; 58: 79-86
        • Chattopadhyay P.K.
        • Betts M.R.
        • Price D.A.
        • et al.
        The cytolytic enzymes granyzme A, granzyme B, and perforin: expression patterns, cell distribution, and their relationship to cell maturity and bright CD57 expression.
        J Leukoc Biol. 2009; 85: 88-97
        • Turtle C.J.
        • Swanson H.M.
        • Fujii N.
        • Estey E.H.
        • Riddell S.R.
        A distinct subset of self-renewing human memory CD8+ T cells survives cytotoxic chemotherapy.
        Immunity. 2009; 31: 834-844
        • Betts M.R.
        • Harari A.
        Phenotype and function of protective T cell immune responses in HIV.
        Curr Opin HIVAIDS. 2008; 3: 349-355
        • Gaucher D.
        • Therrien R.
        • Kettaf N.
        • et al.
        Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses.
        J Exp Med. 2008; 205: 3119-3131
        • Makedonas G.
        • Hutnick N.
        • Haney D.
        • et al.
        Perforin and IL-2 upregulation define qualitative differences among highly functional virus-specific human CD8 T cells.
        PLoS Pathogens. 2010; 6: e1000798
        • Lin Y.
        • Gallardo H.F.
        • Ku G.Y.
        • et al.
        Optimization and validation of a robust human T cell culture method for monitoring phenotypic and polyfunctional antigen- specific CD4 and CD8 T-cell responses.
        Cytotherapy. 2009; 11: 912-922
        • Suni M.A.
        • Maino V.C.
        Flow cytometric analysis of cell signaling proteins.
        in: Methods in molecular biology. Vol. 717. Springer Science, Clifton, NJ2011: 155-169
        • Yee C.
        • Thompson J.A.
        • Roche P.
        • et al.
        Melanocyte destruction after antigen-specific immunotherapy of melanoma: direct evidence of T cell-mediated vitiligo.
        J Exp Med. 2000; 192: 1637-1644
        • Palmer D.C.
        • Chan C.-C.
        • Gattinoni L.
        • et al.
        Effective tumor treatment targeting a melanoma/melanocyte-associated antigen triggers severe ocular autoimmunity.
        Proc Nat Acad Sci U S A. 2008; 105: 8061-8066
        • Morgan R.A.
        • Yang J.C.
        • Kitano M.
        • et al.
        Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2.
        Mol Ther. 2010; 18: 843-851
        • Brentjens R.
        • Yeh R.
        • Bernal Y.
        • Riviere I.
        • Sadelain M.
        Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a phase I clinical trial.
        Mol Ther. 2010; 18: 666-668
        • Gajewski T.F.
        • Louahed J.
        • Brichard V.G.
        Gene signature in melanoma associated with clinical activity: a potential clue to unlock cancer immunotherapy.
        Cancer J. 2010; 16: 399-403
        • Stroncek D.F.
        • Jin P.
        • Wang E.
        • et al.
        Global transcriptional analysis for biomarker discovery and validation in cancer and hematological malignancy biologic therapies.
        Mol Diagn Ther. 2009; 13: 181-193
        • Carpenito C.
        • Milone M.C.
        • Hassan R.
        • et al.
        Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains.
        Proc Nat Acad Sci U S A. 2009; 106: 3360-3365
        • Brentjens R.J.
        • Santos E.
        • Nikhamin Y.
        • et al.
        Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts.
        Clin Cancer Res. 2007; 13: 5426-5435
        • Savoldo B.
        • Ramos C.A.
        • Liu E.
        • et al.
        Brief report CD28 costimulation improves expansion and persistence of chimeric antigen receptor – modified T cells in lymphoma patients.
        J Clin Invest. 2011; 121: 1822-1826
        • Riley J.L.
        • June C.H.
        The CD28 family: a T-cell rheostat for therapeutic control of T-cell activation.
        Blood. 2005; 105: 13-21
        • Loskog A.
        • Giandomenico V.
        • Rossig C.
        • et al.
        Addition of the CD28 signaling domain to chimeric T-cell receptors enhances chimeric T-cell resistance to T regulatory cells.
        Leukemia. 2006; 20: 1819-1828
        • Lamers C.H.J.
        • Sleijfer S.
        • Vulto A.G.
        • et al.
        Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience.
        J Clin Oncol. 2006; 24: e20-e22
        • Birkholz K.
        • Hofmann C.
        • Hoyer S.
        • et al.
        A fast and robust method to clone and functionally validate T-cell receptors.
        J Immunol Methods. 2009; 346: 45-54
        • Seitz S.
        • Schneider C.K.
        • Malotka J.
        • et al.
        Reconstitution of paired T cell receptor alpha- and beta-chains from microdissected single cells of human inflammatory tissues.
        Proc Nat Acad Sci U S A. 2006; 103: 12057-12062
        • Barrett D.M.
        • Zhao Y.
        • Liu X.
        • et al.
        Treatment of Advanced Leukemia in Mice with mRNA Engineered T Cells.
        Hum Gene Ther. 2011; 22: 1575-1586