Advertisement

Gene transfer for congestive heart failure: update 2013

  • Tong Tang
    Affiliations
    Department of Medicine, University of California San Diego, and VA San Diego Healthcare System, San Diego, Calif
    Search for articles by this author
  • H. Kirk Hammond
    Correspondence
    Reprint address: H. Kirk Hammond, MD, Professor of Medicine, University of California San Diego, VA San Diego Healthcare System (111A), 3350 La Jolla Village Drive, San Diego, CA 92161.
    Affiliations
    Department of Medicine, University of California San Diego, and VA San Diego Healthcare System, San Diego, Calif
    Search for articles by this author
Published:December 20, 2012DOI:https://doi.org/10.1016/j.trsl.2012.11.004
      Congestive heart failure is a major cause of morbidity and mortality with increasing social and economic costs. There have been no new high impact therapeutic agents for this devastating disease for more than a decade. However, many pivotal regulators of cardiac function have been identified using cardiac-directed transgene expression and gene deletion in preclinical studies. Some of these increase function of the failing heart. Altering the expression of these pivotal regulators using gene transfer is now either being tested in clinical gene transfer trials, or soon will be. In this review, we summarize recent progress in cardiac gene transfer for clinical congestive heart failure.

      Abbreviations:

      AAV (adeno-associated virus), AC (adenylyl cyclase), AC6 (adenylyl cyclase 6), βAR (β-adrenergic receptor), CHF (congestive heart failure), CMV (cytomegalovirus), GRK2 (G-protein-coupled receptor kinase 2), LV (left ventricular), IC (intracoronary), SR (sarcoplasmic reticulum), SERCA2a (SR Ca2+-ATPase 2a)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Roger V.L.
        • Go A.S.
        • Lloyd-Jones D.M.
        • et al.
        Executive summary: heart disease and stroke statistics–2012 update: a report from the American heart association.
        Circulation. 2012; 125: 188-197
        • Ptaszek L.M.
        • Mansour M.
        • Ruskin J.N.
        • Chien K.R.
        Towards regenerative therapy for cardiac disease.
        Lancet. 2012; 379: 933-942
        • Kaye D.M.
        • Preovolos A.
        • Marshall T.
        • et al.
        Percutaneous cardiac recirculation-mediated gene transfer of an inhibitory phospholamban peptide reverses advanced heart failure in large animals.
        J Am Coll Cardiol. 2007; 50: 253-260
        • Bolli R.
        • Chugh A.R.
        • D'Amario D.
        • et al.
        Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial.
        Lancet. 2011; 378: 1847-1857
        • Lai N.C.
        • Tang T.
        • Gao M.H.
        • et al.
        Activation of cardiac adenylyl cyclase expression increases function of the failing ischemic heart in mice.
        J Am Coll Cardiol. 2008; 51: 1490-1497
        • Pleger S.T.
        • Shan C.
        • Ksienzyk J.
        • et al.
        Cardiac AAV9-s100a1 gene therapy rescues post-ischemic heart failure in a preclinical large animal model.
        Sci Transl Med. 2011; 3: 92ra64
        • Raake P.W.
        • Schlegel P.
        • Ksienzyk J.
        • et al.
        Aav6.Betaarkct cardiac gene therapy ameliorates cardiac function and normalizes the catecholaminergic axis in a clinically relevant large animal heart failure model.
        Eur Heart J. 2012; (in press)
        • Raake P.W.
        • Tscheschner H.
        • Reinkober J.
        • et al.
        Gene therapy targets in heart failure: the path to translation.
        Clin Pharmacol Ther. 2011; 90: 542-553
        • Penn M.S.
        • Pastore J.
        • Rouy D.
        • et al.
        Initial results from a first-in-man study delivering non-viral gene therapy jvs-100 to treat ischemic heart failure.
        Mol Ther. 2011; 19: S40
        • Alba R.
        • Bosch A.
        • Chillon M.
        Gutless adenovirus: last-generation adenovirus for gene therapy.
        Gene Ther. 2005; 12: S18-S27
        • Rivera V.M.
        • Gao G.P.
        • Grant R.L.
        • et al.
        Long-term pharmacologically regulated expression of erythropoietin in primates following AAV-mediated gene transfer.
        Blood. 2005; 105: 1424-1430
        • Mingozzi F.
        • Meulenberg J.J.
        • Hui D.J.
        • et al.
        AAV-1-mediated gene transfer to skeletal muscle in humans results in dose-dependent activation of capsid-specific t cells.
        Blood. 2009; 114: 2077-2086
        • Manno C.S.
        • Pierce G.F.
        • Arruda V.R.
        • et al.
        Successful transduction of liver in hemophilia by AAV-factor ix and limitations imposed by the host immune response.
        Nat Med. 2006; 12: 342-347
        • Hildinger M.
        • Auricchio A.
        • Gao G.
        • Wang L.
        • Chirmule N.
        • Wilson J.M.
        Hybrid vectors based on adeno-associated virus serotypes 2 and 5 for muscle-directed gene transfer.
        J Virol. 2001; 75: 6199-6203
        • Wang Z.
        • Ma H.I.
        • Li J.
        • Sun L.
        • Zhang J.
        • Xiao X.
        Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo.
        Gene Ther. 2003; 10: 2105-2111
        • Everett R.S.
        • Evans H.K.
        • Hodges B.L.
        • Ding E.Y.
        • Serra D.M.
        • Amalfitano A.
        Strain-specific rate of shutdown of CMV enhancer activity in murine liver confirmed by use of persistent [E1(-), E2b(-)] adenoviral vectors.
        Virology. 2004; 325: 96-105
        • Brooks A.R.
        • Harkins R.N.
        • Wang P.
        • Qian H.S.
        • Liu P.
        • Rubanyi G.M.
        Transcriptional silencing is associated with extensive methylation of the cmv promoter following adenoviral gene delivery to muscle.
        J Gene Med. 2004; 6: 395-404
        • Subramaniam A.
        • Jones W.K.
        • Gulick J.
        • Wert S.
        • Neumann J.
        • Robbins J.
        Tissue-specific regulation of the alpha-myosin heavy chain gene promoter in transgenic mice.
        J Biol Chem. 1991; 266: 24613-24620
        • Griscelli F.
        • Gilardi-Hebenstreit P.
        • Hanania N.
        • et al.
        Heart-specific targeting of beta-galactosidase by the ventricle-specific cardiac myosin light chain 2 promoter using adenovirus vectors.
        Hum Gene Ther. 1998; 9: 1919-1928
        • Prasad K.M.
        • Xu Y.
        • Yang Z.
        • Acton S.T.
        • French B.A.
        Robust cardiomyocyte-specific gene expression following systemic injection of AAV: in vivo gene delivery follows a poisson distribution.
        Gene Ther. 2011; 18: 43-52
        • Fleury S.
        • Simeoni E.
        • Zuppinger C.
        • et al.
        Multiply attenuated, self-inactivating lentiviral vectors efficiently deliver and express genes for extended periods of time in adult rat cardiomyocytes in vivo.
        Circulation. 2003; 107: 2375-2382
        • Tilemann L.
        • Ishikawa K.
        • Weber T.
        • Hajjar R.J.
        Gene therapy for heart failure.
        Circ Res. 2012; 110: 777-793
        • Katz M.G.
        • Swain J.D.
        • Tomasulo C.E.
        • Sumaroka M.
        • Fargnoli A.
        • Bridges C.R.
        Current strategies for myocardial gene delivery.
        J Mol Cell Cardiol. 2011; 50: 766-776
        • Lai N.C.
        • Roth D.M.
        • Gao M.H.
        • et al.
        Intracoronary delivery of adenovirus encoding adenylyl cyclase vi increases left ventricular function and camp-generating capacity.
        Circulation. 2000; 102: 2396-2401
        • Kaspar B.K.
        • Roth D.M.
        • Lai N.C.
        • et al.
        Myocardial gene transfer and long-term expression following intracoronary delivery of adeno-associated virus.
        J Gene Med. 2005; 7: 316-324
        • Roth D.M.
        • Lai N.C.
        • Gao M.H.
        • et al.
        Indirect intracoronary delivery of adenovirus encoding adenylyl cyclase increases left ventricular contractile function in mice.
        Am J Physiol Heart Circ Physiol. 2004; 287: H172-H177
        • Lai N.C.
        • Roth D.M.
        • Gao M.H.
        • et al.
        Intracoronary adenovirus encoding adenylyl cyclase vi increases left ventricular function in heart failure.
        Circulation. 2004; 110: 330-336
        • Roth D.M.
        • Lai N.C.
        • Gao M.H.
        • et al.
        Nitroprusside increases gene transfer associated with intracoronary delivery of adenovirus.
        Hum Gene Ther. 2004; 15: 989-994
        • Donahue J.K.
        • Heldman A.W.
        • Fraser H.
        • et al.
        Focal modification of electrical conduction in the heart by viral gene transfer.
        Nat Med. 2000; 6: 1395-1398
        • Iwatate M.
        • Gu Y.
        • Dieterle T.
        • et al.
        In vivo high-efficiency transcoronary gene delivery and cre-loxp gene switching in the adult mouse heart.
        Gene Ther. 2003; 10: 1814-1820
        • Davis J.
        • Westfall M.V.
        • Townsend D.
        • et al.
        Designing heart performance by gene transfer.
        Physiol Rev. 2008; 88: 1567-1651
        • Inagaki K.
        • Fuess S.
        • Storm T.A.
        • et al.
        Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8.
        Mol Ther. 2006; 14: 45-53
        • Fang H.
        • Lai N.C.
        • Gao M.H.
        • et al.
        Intracoronary vs intravenous delivery of adeno-associated virus for cardiac gene transfer in mice.
        Hum Gene Ther Methods. 2012; 23: 234-241
        • Hoppe U.C.
        • Marban E.
        • Johns D.C.
        Adenovirus-mediated inducible gene expression in vivo by a hybrid ecdysone receptor.
        Mol Ther. 2000; 1: 159-164
        • Sipo I.
        • Wang X.
        • Hurtado Pico A.
        • et al.
        Tamoxifen-regulated adenoviral E1A chimeras for the control of tumor selective oncolytic adenovirus replication in vitro and in vivo.
        Gene Ther. 2006; 13: 173-186
        • Goverdhana S.
        • Puntel M.
        • Xiong W.
        • et al.
        Regulatable gene expression systems for gene therapy applications: progress and future challenges.
        Mol Ther. 2005; 12: 189-211
        • Rivera V.M.
        • Clackson T.
        • Natesan S.
        • et al.
        A humanized system for pharmacologic control of gene expression.
        Nat Med. 1996; 2: 1028-1032
        • Stieger K.
        • Le Meur G.
        • Lasne F.
        • et al.
        Long-term doxycycline-regulated transgene expression in the retina of nonhuman primates following subretinal injection of recombinant AAV vectors.
        Mol Ther. 2006; 13: 967-975
        • Stieger K.
        • Belbellaa B.
        • Le Guiner C.
        • Moullier P.
        • Rolling F.
        In vivo gene regulation using tetracycline-regulatable systems.
        Adv Drug Deliv Rev. 2009; 61: 527-541
        • Harrison D.E.
        • Strong R.
        • Sharp Z.D.
        • et al.
        Rapamycin fed late in life extends lifespan in genetically heterogeneous mice.
        Nature. 2009; 460: 392-395
        • Villarreal F.J.
        • Griffin M.
        • Omens J.
        • Dillmann W.
        • Nguyen J.
        • Covell J.
        Early short-term treatment with doxycycline modulates postinfarction left ventricular remodeling.
        Circulation. 2003; 108: 1487-1492
        • Stieger K.
        • Mendes-Madeira A.
        • Meur G.L.
        • et al.
        Oral administration of doxycycline allows tight control of transgene expression: a key step towards gene therapy of retinal diseases.
        Gene Ther. 2007; 14: 1668-1673
        • Gao M.H.
        • Bayat H.
        • Roth D.M.
        • et al.
        Controlled expression of cardiac-directed adenylylcyclase type VI provides increased contractile function.
        Cardiovasc Res. 2002; 56: 197-204
        • Rolain J.M.
        • Mallet M.N.
        • Raoult D.
        Correlation between serum doxycycline concentrations and serologic evolution in patients with coxiella burnetii endocarditis.
        J Infect Dis. 2003; 188: 1322-1325
        • Berman B.
        • Perez O.A.
        • Zell D.
        Update on rosacea and anti-inflammatory-dose doxycycline.
        Drugs Today (Barc). 2007; 43: 27-34
        • Lai N.C.
        • Tang T.
        • Gao M.H.
        • Saito M.
        • Miyanohara A.
        • Hammond H.K.
        Improved function of the failing rat heart by regulated expression of insulin-like growth factor I via intramuscular gene transfer.
        Hum Gene Ther. 2012; 23: 255-261
        • Herzog R.W.
        • Hagstrom J.N.
        • Kung S.H.
        • et al.
        Stable gene transfer and expression of human blood coagulation factor ix after intramuscular injection of recombinant adeno-associated virus.
        Proc Natl Acad Sci U S A. 1997; 94: 5804-5809
        • Minniti G.
        • Muni R.
        • Lanzetta G.
        • Marchetti P.
        • Enrici R.M.
        Chemotherapy for glioblastoma: current treatment and future perspectives for cytotoxic and targeted agents.
        Anticancer Res. 2009; 29: 5171-5184
        • Zoncu R.
        • Efeyan A.
        • Sabatini D.M.
        mTOR: from growth signal integration to cancer, diabetes and ageing.
        Nat Rev Mol Cell Biol. 2011; 12: 21-35
        • Yang W.
        • Digits C.A.
        • Hatada M.
        • et al.
        Selective epimerization of rapamycin via a retroaldol/aldol mechanism mediated by titanium tetraisopropoxide.
        Org Lett. 1999; 1: 2033-2035
        • Abraham R.T.
        • Wiederrecht G.J.
        Immunopharmacology of rapamycin.
        Annu Rev Immunol. 1996; 14: 483-510
        • Bristow M.R.
        • Ginsburg R.
        • Minobe W.
        • et al.
        Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts.
        N Engl J Med. 1982; 307: 205-211
        • Rockman H.A.
        • Koch W.J.
        • Lefkowitz R.J.
        Seven-transmembrane-spanning receptors and heart function.
        Nature. 2002; 415: 206-212
        • Bristow M.R.
        Treatment of chronic heart failure with beta-adrenergic receptor antagonists: a convergence of receptor pharmacology and clinical cardiology.
        Circ Res. 2011; 109: 1176-1194
        • Ungerer M.
        • Bohm M.
        • Elce J.S.
        • Erdmann E.
        • Lohse M.J.
        Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart.
        Circulation. 1993; 87: 454-463
        • Raake P.W.
        • Vinge L.E.
        • Gao E.
        • et al.
        G protein-coupled receptor kinase 2 ablation in cardiac myocytes before or after myocardial infarction prevents heart failure.
        Circ Res. 2008; 103: 413-422
        • White D.C.
        • Hata J.A.
        • Shah A.S.
        • Glower D.D.
        • Lefkowitz R.J.
        • Koch W.J.
        Preservation of myocardial beta-adrenergic receptor signaling delays the development of heart failure after myocardial infarction.
        Proc Natl Acad Sci U S A. 2000; 97: 5428-5433
        • Rengo G.
        • Lymperopoulos A.
        • Zincarelli C.
        • et al.
        Myocardial adeno-associated virus serotype 6-betaarkct gene therapy improves cardiac function and normalizes the neurohormonal axis in chronic heart failure.
        Circulation. 2009; 119: 89-98
        • Williams M.L.
        • Hata J.A.
        • Schroder J.
        • et al.
        Targeted beta-adrenergic receptor kinase (betaark1) inhibition by gene transfer in failing human hearts.
        Circulation. 2004; 109: 1590-1593
        • Harding V.B.
        • Jones L.R.
        • Lefkowitz R.J.
        • Koch W.J.
        • Rockman H.A.
        Cardiac beta ark1 inhibition prolongs survival and augments beta blocker therapy in a mouse model of severe heart failure.
        Proc Natl Acad Sci U S A. 2001; 98: 5809-5814
        • Sunahara R.K.
        • Dessauer C.W.
        • Gilman A.G.
        Complexity and diversity of mammalian adenylyl cyclases.
        Annu Rev Pharmacol Toxicol. 1996; 36: 461-480
        • Pierce K.L.
        • Premont R.T.
        • Lefkowitz R.J.
        Seven-transmemrane receptors.
        Nat Rev Mol Cell Biol. 2002; 3: 639-650
        • Marian A.J.
        Beta-adrenergic receptors signaling and heart failure in mice, rabbits and humans.
        J Mol Cell Cardiol. 2006; 41: 11-13
        • Gao M.H.
        • Lai N.C.
        • Roth D.M.
        • et al.
        Adenylylcyclase increases responsiveness to catecholamine stimulation in transgenic mice.
        Circulation. 1999; 99: 1618-1622
        • Feldman A.M.
        Adenylyl cyclase: a new target for heart failure therapeutics.
        Circulation. 2002; 105: 1876-1878
        • Ping P.
        • Anzai T.
        • Gao M.
        • Hammond H.K.
        Adenylyl cyclase and g protein receptor kinase expression during development of heart failure.
        Am J Physiol Heart Circ Physiol. 1997; 273: H707-H717
        • Ishikawa Y.
        • Sorota S.
        • Kiuchi K.
        • et al.
        Downregulation of adenylylcyclase types v and vi mrna levels in pacing-induced heart failure in dogs.
        J Clin Invest. 1994; 93: 2224-2229
        • Feldman M.D.
        • Copelas L.
        • Gwathmey J.K.
        • et al.
        Deficient production of cyclic amp: pharmacologic evidence of an important cause of contractile dysfunction in patients with end-stage heart failure.
        Circulation. 1987; 75: 331-339
        • Roth D.M.
        • Bayat H.
        • Drumm J.D.
        • et al.
        Adenylyl cyclase increases survival in cardiomyopathy.
        Circulation. 2002; 105: 1989-1994
        • Roth D.M.
        • Gao M.H.
        • Lai N.C.
        • et al.
        Cardiac-directed adenylyl cyclase expression improves heart function in murine cardiomyopathy.
        Circulation. 1999; 99: 3099-3102
        • Tang T.
        • Gao M.H.
        • Roth D.M.
        • Guo T.
        • Hammond H.K.
        Adenylyl cyclase type vi corrects cardiac sarcoplasmic reticulum calcium uptake defects in cardiomyopathy.
        Am J Physiol Heart Circ Physiol. 2004; 287: H1906-H1912
        • Roth D.M.
        • Drumm J.D.
        • Bhargava V.
        • Swaney J.S.
        • Gao M.H.
        • Hammond H.K.
        Cardiac-directed expression of adenylyl cyclase and heart rate regulation.
        Basic Res Cardiol. 2003; 98: 380-387
        • Tang T.
        • Gao M.H.
        • Lai N.C.
        • et al.
        Adenylyl cyclase type 6 deletion decreases left ventricular function via impaired calcium handling.
        Circulation. 2008; 117: 61-69
        • Timofeyev V.
        • He Y.
        • Tuteja D.
        • et al.
        Cardiac-directed expression of adenylyl cyclase reverses electrical remodeling in cardiomyopathy.
        J Mol Cell Cardiol. 2006; 41: 170-181
        • Takahashi T.
        • Tang T.
        • Lai N.C.
        • et al.
        Increased cardiac adenylyl cyclase expression is associated with increased survival after myocardial infarction.
        Circulation. 2006; 114: 388-396
        • Tang T.
        • Hammond H.K.
        • Firth A.
        • et al.
        Adenylyl cyclase 6 improves calcium uptake and left ventricular function in aged hearts.
        J Am Coll Cardiol. 2011; 57: 1846-1855
        • Bers D.M.
        Altered cardiac myocyte ca regulation in heart failure.
        Physiology (Bethesda). 2006; 21: 380-387
        • Gwathmey J.K.
        • Copelas L.
        • MacKinnon R.
        • et al.
        Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure.
        Circ Res. 1987; 61: 70-76
        • Hasenfuss G.
        • Reinecke H.
        • Studer R.
        • et al.
        Relation between myocardial function and expression of sarcoplasmic reticulum Ca(2+)-ATpase in failing and nonfailing human myocardium.
        Circ Res. 1994; 75: 434-442
        • He H.
        • Giordano F.J.
        • Hilal-Dandan R.
        • et al.
        Overexpression of the rat sarcoplasmic reticulum Ca2+ ATpase gene in the heart of transgenic mice accelerates calcium transients and cardiac relaxation.
        J Clin Invest. 1997; 100: 380-389
        • Baker D.L.
        • Hashimoto K.
        • Grupp I.L.
        • et al.
        Targeted overexpression of the sarcoplasmic reticulum Ca2+-ATpase increases cardiac contractility in transgenic mouse hearts.
        Circ Res. 1998; 83: 1205-1214
        • Periasamy M.
        • Reed T.D.
        • Liu L.H.
        • et al.
        Impaired cardiac performance in heterozygous mice with a null mutation in the sarco(endo)plasmic reticulum Ca2+-ATpase isoform 2 (SERCA2) gene.
        J Biol Chem. 1999; 274: 2556-2562
        • Schultz Jel J.
        • Glascock B.J.
        • Witt S.A.
        • et al.
        Accelerated onset of heart failure in mice during pressure overload with chronically decreased SERCA2 calcium pump activity.
        Am J Physiol Heart Circ Physiol. 2004; 286: H1146-H1153
        • del Monte F.
        • Harding S.E.
        • Schmidt U.
        • et al.
        Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a.
        Circulation. 1999; 100: 2308-2311
        • Miyamoto M.I.
        • del Monte F.
        • Schmidt U.
        • et al.
        Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure.
        Proc Natl Acad Sci U S A. 2000; 97: 793-798
        • del Monte F.
        • Williams E.
        • Lebeche D.
        • et al.
        Improvement in survival and cardiac metabolism after gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase in a rat model of heart failure.
        Circulation. 2001; 104: 1424-1429
        • Schmidt U.
        • del Monte F.
        • Miyamoto M.I.
        • Matsui T.
        • et al.
        Restoration of diastolic function in senescent rat hearts through adenoviral gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase.
        Circulation. 2000; 101: 790-796
        • Byrne M.J.
        • Power J.M.
        • Preovolos A.
        • Mariani J.A.
        • Hajjar R.J.
        • Kaye D.M.
        Recirculating cardiac delivery of AAV2/1SERCA2a improves myocardial function in an experimental model of heart failure in large animals.
        Gene Ther. 2008; 15: 1550-1557
        • Most P.
        • Bernotat J.
        • Ehlermann P.
        • et al.
        S100A1: a regulator of myocardial contractility.
        Proc Natl Acad Sci U S A. 2001; 98: 13889-13894
        • Kiewitz R.
        • Acklin C.
        • Schafer B.W.
        • et al.
        Ca2+ -dependent interaction of s100a1 with the sarcoplasmic reticulum Ca2+ -ATPase2a and phospholamban in the human heart.
        Biochem Biophys Res Commun. 2003; 306: 550-557
        • Treves S.
        • Scutari E.
        • Robert M.
        • et al.
        Interaction of S100A1 with the Ca2+ release channel (ryanodine receptor) of skeletal muscle.
        Biochemistry. 1997; 36: 11496-11503
        • Remppis A.
        • Greten T.
        • Schafer B.W.
        • et al.
        Altered expression of the Ca(2+)-binding protein S100A1 in human cardiomyopathy.
        Biochim Biophys Acta. 1996; 1313: 253-257
        • Most P.
        • Remppis A.
        • Pleger S.T.
        • et al.
        Transgenic overexpression of the Ca2+-binding protein S100A1 in the heart leads to increased in vivo myocardial contractile performance.
        J Biol Chem. 2003; 278: 33809-33817
        • Pleger S.T.
        • Most P.
        • Boucher M.
        • et al.
        Stable myocardial-specific AAV6-s100a1 gene therapy results in chronic functional heart failure rescue.
        Circulation. 2007; 115: 2506-2515
        • Brinks H.
        • Rohde D.
        • Voelkers M.
        • et al.
        S100a1 genetically targeted therapy reverses dysfunction of human failing cardiomyocytes.
        J Am Coll Cardiol. 2011; 58: 966-973
        • Brinks H.
        • Boucher M.
        • Gao E.
        • et al.
        Level of G protein-coupled receptor kinase-2 determines myocardial ischemia/reperfusion injury via pro- and anti-apoptotic mechanisms.
        Circ Res. 2010; 107: 1140-1149
        • Gao M.H.
        • Tang T.
        • Guo T.
        • et al.
        Adenylyl cyclase type VI increases akt activity and phospholamban phosphorylation in cardiac myocytes.
        J Biol Chem. 2008; 283: 33527-33535
        • Most P.
        • Boerries M.
        • Eicher C.
        • et al.
        Extracellular S100A1 protein inhibits apoptosis in ventricular cardiomyocytes via activation of the extracellular signal-regulated protein kinase 1/2 (ERK1/2).
        J Biol Chem. 2003; 278: 48404-48412
        • Hulot J.S.
        • Senyei G.
        • Hajjar R.J.
        Sarcoplasmic reticulum and calcium cycling targeting by gene therapy.
        Gene Ther. 2012; 19: 596-599
        • Rohde D.
        • Ritterhoff J.
        • Voelkers M.
        • Katus H.A.
        • Parker T.G.
        • Most P.
        S100A1: a multifaceted therapeutic target in cardiovascular disease.
        J Cardiovasc Transl Res. 2010; 3: 525-537