Advertisement
Gene Therapy for Human Disease: Clinical Advances and Challenges Review Article| Volume 161, ISSUE 4, P255-264, April 2013

Gene therapy in cystic fibrosis

  • Michelle Prickett
    Affiliations
    Northwestern University Feinberg School of Medicine, Division of Pulmonary and Critical Care Medicine, Chicago, Ill
    Search for articles by this author
  • Manu Jain
    Correspondence
    Reprint requests: Manu Jain, MD, MS, Northwestern University Feinberg School of Medicine, Division of Pulmonary and Critical Care Medicine, 240 E Huron Ave, McGaw Mezzanine, Chicago, IL 60611.
    Affiliations
    Northwestern University Feinberg School of Medicine, Division of Pulmonary and Critical Care Medicine, Chicago, Ill
    Search for articles by this author
Published:December 28, 2012DOI:https://doi.org/10.1016/j.trsl.2012.12.001
      Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane regulator (CFTR) gene and is the most common life-shortening genetic defect in Caucasians. Life expectancy in CF has improved substantially over the last 75 years because of treatments aimed at end-organ complications. Since the CFTR gene was discovered in 1989 more than 1900 mutations have been reported to cause CF and significant effort has been put forth into gene therapy to find a mutation independent “cure” for CF. Gene-based approaches have not yet led to a viable therapy but have provided insights into hurdles that limit the efficacy of gene therapy. This review will address the nomenclature of CFTR mutations, attempts at viral and nonviral gene therapy, and recent advances in mutation-specific molecules.

      Abbreviations:

      AAV (adeno-associated viruses), AAV2 (adeno-associated vector 2), CAR (coxsackie-adenovirus receptor), CF (cystic fibrosis), CFTR (cystic fibrosis transmembrane regulator), FEV1 (forced expiratory volume in 1 s), NPD (nasal potential differences), PTC (premature termination codon), RNA (mRNA messenger)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Busch R.
        On the history of cystic fibrosis.
        Acta Universitatis Carolinae. Medica. 1990; 36: 13-15
        • Alonso Y De Los Ruyzes De Fonteca J.
        Diez Previlegios para Mgeres Prenadas.
        Alcala de Henares. 1606; 212
        • Garrod A.E.
        • Hurtley W.H.
        Congenital Family Steatorrhea.
        Q J Med. 1912; 6: 242-258
        • Andersen D.H.
        Cystic Fibrosis of the pancreas and its relation to celiac disease.
        Am J Dis Child. 1938; 56: 344-399
        • Andersen D.H.
        • Hodges R.G.
        Celiac syndrome; genetics of cystic fibrosis of the pancreas, with a consideration of etiology.
        Am J Dis Child. 1946; 72: 62-80
        • Di Sant'Agnese P.A.
        • Darling R.C.
        • Perera G.A.
        • Shea E.
        Abnormal electrolyte composition of sweat in cystic fibrosis of the pancreas; clinical significance and relationship to the disease.
        Pediatrics. 1953; 12: 549-563
        • Gibson L.E.
        • Cooke R.E.
        A test for concentration of electrolytes in sweat in cystic fibrosis of the pancreas utilizing pilocarpine by iontophoresis.
        Pediatrics. 1959; 23: 545-549
        • Boucher R.C.
        • Stutts M.J.
        • Knowles M.R.
        • Cantley L.
        • Gatzy J.T.
        Na+ transport in cystic fibrosis respiratory epithelia. Abnormal basal rate and response to adenylate cyclase activation.
        J Clin Invest. 1986; 78: 1245-1252
        • Knowles M.R.
        • Stutts M.J.
        • Spock A.
        • Fischer N.
        • Gatzy J.T.
        • Boucher R.C.
        Abnormal ion permeation through cystic fibrosis respiratory epithelium.
        Science. 1983; 221: 1067-1070
        • Kerem B.
        • Rommens J.M.
        • Buchanan J.A.
        • et al.
        Identification of the cystic fibrosis gene: genetic analysis.
        Science. 1989; 245: 1073-1080
        • Riordan J.R.
        • Rommens J.M.
        • Kerem B.
        • et al.
        Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA.
        Science. 1989; 245: 1066-1073
        • Rommens J.M.
        • Iannuzzi M.C.
        • Kerem B.
        • et al.
        Identification of the cystic fibrosis gene: chromosome walking and jumping.
        Science. 1989; 245: 1059-1065
      1. Cystic Fibrosis Mutation Database. Cystic Fibrosis Centre at the Hospital for Sick Children in Toronto. Available at: http://www.genet.sickkids.on.ca; 1989. Accessed April 9, 2012.

        • Zielenski J.
        • Tsui L.C.
        Cystic fibrosis: genotypic and phenotypic variations.
        Ann Rev Genet. 1995; 29: 777-807
        • Welsh M.J.
        • Smith A.E.
        Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis.
        Cell. 1993; 73: 1251-1254
        • Varga K.
        • Goldstein R.F.
        • Jurkuvenaite A.
        • et al.
        Enhanced cell-surface stability of rescued DeltaF508 cystic fibrosis transmembrane conductance regulator (CFTR) by pharmacological chaperones.
        Biochem J. 2008; 410: 555-564
        • Hwang T.C.
        • Wang F.
        • Yang I.C.
        • Reenstra W.W.
        Genistein potentiates wild-type and delta F508-CFTR channel activity.
        Am J Physiol. 1997; 273: C988-C998
        • McLachlan G.
        • Davidson H.
        • Holder E.
        • et al.
        Preclinical evaluation of three non-viral gene transfer agents for cystic fibrosis after aerosol delivery to the ovine lung.
        Gene Ther. 2011; 18: 996-1005
        • Griesenbach U.
        • Alton E.W.
        Cystic fibrosis gene therapy: successes, failures and hopes for the future.
        Expert Rev Respir Med. 2009; 3: 363-371
        • Griesenbach U.
        • Alton E.W.
        Current status and future directions of gene and cell therapy for cystic fibrosis.
        BioDrugs. 2011; 25: 77-88
        • Griesenbach U.
        • Alton E.W.
        Progress in gene and cell therapy for cystic fibrosis lung disease.
        Curr Pharmaceut Design. 2012; 18: 642-662
        • Griesenbach U.
        • Geddes D.M.
        • Alton E.W.
        Gene therapy progress and prospects: cystic fibrosis.
        Gene Ther. 2006; 13: 1061-1067
        • Davies J.C.
        • Alton E.W.
        Gene therapy for cystic fibrosis.
        Proc Am Thorac Soc. 2010; 7: 408-414
        • Kalin N.
        • Claass A.
        • Sommer M.
        • Puchelle E.
        • Tummler B.
        DeltaF508 CFTR protein expression in tissues from patients with cystic fibrosis.
        J Clin Invest. 1999; 103: 1379-1389
        • Wilschanski M.
        • Dupuis A.
        • Ellis L.
        • et al.
        Mutations in the cystic fibrosis transmembrane regulator gene and in vivo transepithelial potentials.
        Am J Respir Crit Care Med. 2006; 174: 787-794
        • Hyde S.C.
        • Southern K.W.
        • Gileadi U.
        • et al.
        Repeat administration of DNA/liposomes to the nasal epithelium of patients with cystic fibrosis.
        Gene Ther. 2000; 7: 1156-1165
        • Worgall S.
        • Leopold P.L.
        • Wolff G.
        • Ferris B.
        • Van Roijen N.
        • Crystal R.G.
        Role of alveolar macrophages in rapid elimination of adenovirus vectors administered to the epithelial surface of the respiratory tract.
        Hum Gene Ther. 1997; 8: 1675-1684
        • Walters R.W.
        • Grunst T.
        • Bergelson J.M.
        • Finberg R.W.
        • Welsh M.J.
        • Zabner J.
        Basolateral localization of fiber receptors limits adenovirus infection from the apical surface of airway epithelia.
        J Biol Chem. 1999; 274: 10219-10226
        • Zabner J.
        • Couture L.A.
        • Gregory R.J.
        • Graham S.M.
        • Smith A.E.
        • Welsh M.J.
        Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis.
        Cell. 1993; 75: 207-216
        • Crystal R.G.
        • McElvaney N.G.
        • Rosenfeld M.A.
        • et al.
        Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis.
        Nat Genet. 1994; 8: 42-51
        • Knowles M.R.
        • Hohneker K.W.
        • Zhou Z.
        • et al.
        A controlled study of adenoviral-vector-mediated gene transfer in the nasal epithelium of patients with cystic fibrosis.
        N Engl J Med. 1995; 333: 823-831
        • Hay J.G.
        • McElvaney N.G.
        • Herena J.
        • Crystal R.G.
        Modification of nasal epithelial potential differences of individuals with cystic fibrosis consequent to local administration of a normal CFTR cDNA adenovirus gene transfer vector.
        Hum Gene Ther. 1995; 6: 1487-1496
        • Zabner J.
        • Ramsey B.W.
        • Meeker D.P.
        • et al.
        Repeat administration of an adenovirus vector encoding cystic fibrosis transmembrane conductance regulator to the nasal epithelium of patients with cystic fibrosis.
        J Clin Invest. 1996; 97: 1504-1511
        • Bellon G.
        • Michel-Calemard L.
        • Thouvenot D.
        • et al.
        Aerosol administration of a recombinant adenovirus expressing CFTR to cystic fibrosis patients: a phase I clinical trial.
        Hum Gene Ther. 1997; 8: 15-25
        • Harvey B.G.
        • Leopold P.L.
        • Hackett N.R.
        • et al.
        Airway epithelial CFTR mRNA expression in cystic fibrosis patients after repetitive administration of a recombinant adenovirus.
        J Clin Invest. 1999; 104: 1245-1255
        • Zuckerman J.B.
        • Robinson C.B.
        • McCoy K.S.
        • et al.
        A phase I study of adenovirus-mediated transfer of the human cystic fibrosis transmembrane conductance regulator gene to a lung segment of individuals with cystic fibrosis.
        Hum Gene Ther. 1999; 10: 2973-2985
        • Perricone M.A.
        • Morris J.E.
        • Pavelka K.
        • et al.
        Aerosol and lobar administration of a recombinant adenovirus to individuals with cystic fibrosis. II. Transfection efficiency in airway epithelium.
        Hum Gene Ther. 2001; 12: 1383-1394
        • Joseph P.M.
        • O'Sullivan B.P.
        • Lapey A.
        • et al.
        Aerosol and lobar administration of a recombinant adenovirus to individuals with cystic fibrosis. I. Methods, safety, and clinical implications.
        Hum Gene Ther. 2001; 12: 1369-1382
        • Wagner J.A.
        • Messner A.H.
        • Moran M.L.
        • et al.
        Safety and biological efficacy of an adeno-associated virus vector-cystic fibrosis transmembrane regulator (AAV-CFTR) in the cystic fibrosis maxillary sinus.
        Laryngoscope. 1999; 109: 266-274
        • Aitken M.L.
        • Moss R.B.
        • Waltz D.A.
        • et al.
        A phase I study of aerosolized administration of tgAAVCF to cystic fibrosis subjects with mild lung disease.
        Hum Gene Ther. 2001; 12: 1907-1916
        • Wagner J.A.
        • Nepomuceno I.B.
        • Messner A.H.
        • et al.
        A phase II, double-blind, randomized, placebo-controlled clinical trial of tgAAVCF using maxillary sinus delivery in patients with cystic fibrosis with antrostomies.
        Hum Gene Ther. 2002; 13: 1349-1359
        • Flotte T.R.
        • Zeitlin P.L.
        • Reynolds T.C.
        • et al.
        Phase I trial of intranasal and endobronchial administration of a recombinant adeno-associated virus serotype 2 (rAAV2)-CFTR vector in adult cystic fibrosis patients: a two-part clinical study.
        Hum Gene Ther. 2003; 14: 1079-1088
        • Moss R.B.
        • Rodman D.
        • Spencer L.T.
        • et al.
        Repeated adeno-associated virus serotype 2 aerosol-mediated cystic fibrosis transmembrane regulator gene transfer to the lungs of patients with cystic fibrosis: a multicenter, double-blind, placebo-controlled trial.
        Chest. 2004; 125: 509-521
        • Moss R.B.
        • Milla C.
        • Colombo J.
        • et al.
        Repeated aerosolized AAV-CFTR for treatment of cystic fibrosis: a randomized placebo-controlled phase 2B trial.
        Hum Gene Ther. 2007; 18: 726-732
        • Keswani S.G.
        • Balaji S.
        • Le L.
        • et al.
        Pseudotyped AAV vector-mediated gene transfer in a human fetal trachea xenograft model: implications for in utero gene therapy for cystic fibrosis.
        PLoS One. 2012; 7: e43633
        • Mingozzi F.
        • High K.A.
        Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges.
        Nat Rev Genet. 2011; 12: 341-355
        • Kondo R.
        • Feitelson M.A.
        • Strayer D.S.
        Use of SV40 to immunize against hepatitis B surface antigen: implications for the use of SV40 for gene transduction and its use as an immunizing agent.
        Gene Ther. 1998; 5: 575-582
        • Griesenbach U.
        • McLachlan G.
        • Owaki T.
        • et al.
        Validation of recombinant Sendai virus in a non-natural host model.
        Gene Ther. 2011; 18: 182-188
        • Cmielewski P.
        • Anson D.S.
        • Parsons D.W.
        Lysophosphatidylcholine as an adjuvant for lentiviral vector mediated gene transfer to airway epithelium: effect of acyl chain length.
        Respir Res. 2010; 11: 84
        • Kremer K.L.
        • Dunning K.R.
        • Parsons D.W.
        • Anson D.S.
        Gene delivery to airway epithelial cells in vivo: a direct comparison of apical and basolateral transduction strategies using pseudotyped lentivirus vectors.
        J Gene Med. 2007; 9: 362-368
        • Stocker A.G.
        • Kremer K.L.
        • Koldej R.
        • Miller D.S.
        • Anson D.S.
        • Parsons D.W.
        Single-dose lentiviral gene transfer for lifetime airway gene expression.
        J Gene Med. 2009; 11: 861-867
        • Mitomo K.
        • Griesenbach U.
        • Inoue M.
        • et al.
        Toward gene therapy for cystic fibrosis using a lentivirus pseudotyped with Sendai virus envelopes.
        Mol Ther. 2010; 18: 1173-1182
        • Griesenbach U.
        • Inoue M.
        • Meng C.
        • et al.
        Assessment of F/HN-Pseudotyped Lentivirus as a Clinically Relevant Vector for Lung Gene Therapy.
        Am J Respir Crit Care Med. 2012; 186: 846-856
        • Conese M.
        Cystic fibrosis and the innate immune system: therapeutic implications.
        Endocrine Metab Immune Disord Drug Targets. 2011; 11: 8-22
        • Ruiz F.E.
        • Clancy J.P.
        • Perricone M.A.
        • et al.
        A clinical inflammatory syndrome attributable to aerosolized lipid-DNA administration in cystic fibrosis.
        Hum Gene Ther. 2001; 12: 751-761
        • Davies J.C.
        • Davies G.
        • Gill D.
        • et al.
        Safety and Expression of a Single Dose of Lipid-Mediated CFTR Gene Therapy to the Upper and Lower Airways of Patients with CF.
        Pediatr Pulmonol. 2011; (46(Suppl)46:S34)
        • Conese M.
        • Ascenzioni F.
        • Boyd A.C.
        • et al.
        Gene and cell therapy for cystic fibrosis: from bench to bedside.
        J Cyst Fibros. 2011; 10: S114-S128
        • Anderson M.P.
        • Gregory R.J.
        • Thompson S.
        • et al.
        Demonstration that CFTR is a chloride channel by alteration of its anion selectivity.
        Science. 1991; 253: 202-205
        • Tang L.
        • Fatehi M.
        • Linsdell P.
        Mechanism of direct bicarbonate transport by the CFTR anion channel.
        J Cyst Fibros. 2009; 8: 115-121
        • Moskwa P.
        • Lorentzen D.
        • Excoffon K.J.
        • et al.
        A novel host defense system of airways is defective in cystic fibrosis.
        Am J Respir Crit Care Med. 2007; 175: 174-183
        • Donaldson S.H.
        • Boucher R.C.
        Sodium channels and cystic fibrosis.
        Chest. 2007; 132: 1631-1636
        • Rowe S.M.
        • Miller S.
        • Sorscher E.J.
        Cystic fibrosis.
        N Engl J Med. 2005; 352: 1992-2001
        • Van Goor F.
        • Hadida S.
        • Grootenhuis P.D.
        • et al.
        Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770.
        Proc Natl Acad Sci U S A. 2009; 106: 18825-18830
        • Sermet-Gaudelus I.
        • Boeck K.D.
        • Casimir G.J.
        • et al.
        Ataluren (PTC124) induces cystic fibrosis transmembrane conductance regulator protein expression and activity in children with nonsense mutation cystic fibrosis.
        Am J Respir Crit Care Med. 2010; 182: 1262-1272
        • Wilschanski M.
        • Yahav Y.
        • Yaacov Y.
        • et al.
        Gentamicin-induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations.
        N Engl J Med. 2003; 349: 1433-1441
        • Howard M.
        • Frizzell R.A.
        • Bedwell D.M.
        Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations.
        Nat Med. 1996; 2: 467-469
        • Accurso F.J.
        • Rowe S.M.
        • Clancy J.P.
        • et al.
        Effect of VX-770 in persons with cystic fibrosis and the G551D-CFTR mutation.
        N Engl J Med. 2010; 363: 1991-2003
        • Ramsey B.W.
        • Davies J.
        • McElvaney N.G.
        • et al.
        A CFTR potentiator in patients with cystic fibrosis and the G551D mutation.
        N Engl J Med. 2011; 365: 1663-1672
        • Davies J.C.
        • Sheridan H.
        • Lee P.
        • Song T.
        • Stone A.
        • Ratjen F.
        Lung Clearance Index to Evaluate the Effect of Ivacaftor on Lung Function in Subjects with CF who have the G551D-CFTR Mutation and Mild Lung Disease.
        Pediatr Pulmonol. 2012; 35: A249
        • Yu H.
        • Burton B.
        • Huang C.J.
        • et al.
        Ivacaftor potentiation of multiple CFTR channels with gating mutations.
        J Cyst Fibros. 2012; 11: 237-245
        • Rowe S.M.
        • Clancy J.P.
        Pharmaceuticals targeting nonsense mutations in genetic diseases: progress in development.
        BioDrugs. 2009; 23: 165-174
        • Kerem E.
        • Hirawat S.
        • Armoni S.
        • et al.
        Effectiveness of PTC124 treatment of cystic fibrosis caused by nonsense mutations: a prospective phase II trial.
        Lancet. 2008; 372: 719-727
        • Clancy J.P.
        • Konstan M.W.
        • Rowe S.M.
        • Accurso F.
        • Zeitlin P.
        • Hirawat S.
        A phase II study of PTC124 in CF patients harboring premature stop mutations.
        Pediatr Pulmonol. 2006; 41: A269
        • Rowe S.
        • Sermet-Gaudelus I.
        • Konstan M.W.
        • et al.
        Results of the Phase 3 Study of Ataluren in Nonsense Mutation Cystic Fibrosis (NMCF).
        Pediatr Pulmonol. 2012; 35: A193
        • Clancy J.P.
        • Rowe S.M.
        • Accurso F.J.
        • et al.
        Results of a phase IIa study of VX-809, an investigational CFTR corrector compound, in subjects with cystic fibrosis homozygous for the F508del-CFTR mutation.
        Thorax. 2012; 67: 12-18
        • Van Goor F.
        • Hadida S.
        • Grootenhuis P.D.
        • et al.
        Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809.
        Proc Natl Acad Sci U S A. 2011; 108: 18843-18848
        • Boyle M.P.
        • Bell S.
        • Konstan M.W.
        • et al.
        The investigational CFTR corrector VX-809 (Lumacaftor) co-administered with the oral potentiator Ivacaftor improved CFTR and lung function in F508Del homozygous patients: phase II study results.
        Pediatr Pulmonol. 2012; 35: A260