Advertisement

Oncolytic virus therapy for cancer: the first wave of translational clinical trials

  • Manish R. Patel
    Affiliations
    Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis, Minn
    Search for articles by this author
  • Robert A. Kratzke
    Correspondence
    Reprint requests: Robert A. Kratzke, University of Minnesota, MMC 480, 420 Delaware Ave. SE, Minneapolis, MN 55455
    Affiliations
    Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis, Minn
    Search for articles by this author
Published:January 11, 2013DOI:https://doi.org/10.1016/j.trsl.2012.12.010
      The field of oncolytic virus therapy, the use of live, replicating viruses for the treatment of cancer, has expanded rapidly over the past decade. Preclinical models have clearly demonstrated anticancer activity against a number of different cancer types. Several agents have entered clinical trials and promising results have led to late stage clinical development for some viruses. The early clinical trials have demonstrated that oncolytic viruses by themselves have potential to result in tumor regression. Engineering of viruses to express novel genes have also led to the use of these vectors as a novel form of gene therapy. As a result, interest in oncolytic virus therapy has gained traction. The following review will focus on the first wave of clinical translation of oncolytic virus therapy, what has been learned so far, and potential challenges ahead for advancing the field.

      Abbreviations:

      CEA (carcinoembryonic antigen), GMCSF (granulocyte-macrophage colony stimulating factor), HSV (herpes simplex virus), MV (measles virus), MV-NIS (MV that expresses the sodium-iodide symporter), MV-CEA (MV vaccine strain carrying the human CEA gene), pfu (plaque forming units), PKR (double stranded RNA-dependent protein kinase), RECIST (Response Evaluation Criteria in Solid Tumors), RR (ribonucleotide reductase), RT3D (reovirus type 3 dearing), SCCHN (squamous cell carcinoma of the head and neck), TK (thymidine kinase), VV (vaccinia virus)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Eager R.M.
        • Nemunaitis J.
        Clinical development directions in oncolytic viral therapy.
        Cancer Gene Ther. 2011; 18: 305-317
        • Hammill A.M.
        • Conner J.
        • Cripe T.P.
        Oncolytic virotherapy reaches adolescence.
        Pediatr Blood Cancer. 2010; 55: 1253-1263
        • Breitbach C.J.
        • Reid T.
        • Burke J.
        • Bell J.C.
        • Kirn D.H.
        Navigating the clinical development landscape for oncolytic viruses and other cancer therapeutics: no shortcuts on the road to approval.
        Cytokine Growth Factor Rev. 2010; 21: 85-89
        • Vasey P.A.
        • Shulman L.N.
        • Campos S.
        • et al.
        Phase I trial of intraperitoneal injection of the E1B-55-kd-gene-deleted adenovirus ONYX-015 (dl1520) given on days 1 through 5 every 3 weeks in patients with recurrent/refractory epithelial ovarian cancer.
        J Clin Oncol. 2002; 20: 1562-1569
        • Chiocca E.A.
        • Abbed K.M.
        • Tatter S.
        • et al.
        A phase I open-label, dose-escalation, multi-institutional trial of injection with an E1B-Attenuated adenovirus, ONYX-015, into the peritumoral region of recurrent malignant gliomas, in the adjuvant setting.
        Mol Ther. 2004; 10: 958-966
        • Nemunaitis J.
        • Khuri F.
        • Ganly I.
        • et al.
        Phase II trial of intratumoral administration of ONYX-015, a replication-selective adenovirus, in patients with refractory head and neck cancer.
        J Clin Oncol. 2001; 19: 289-298
        • Khuri F.R.
        • Nemunaitis J.
        • Ganly I.
        • et al.
        A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer.
        Nat Med. 2000; 6: 879-885
        • Xia Z.J.
        • Chang J.H.
        • Zhang L.
        • et al.
        [Phase III randomized clinical trial of intratumoral injection of E1B gene-deleted adenovirus (H101) combined with cisplatin-based chemotherapy in treating squamous cell cancer of head and neck or esophagus].
        Ai Zheng. 2004; 23: 1666-1670
        • Somia N.
        • Verma I.M.
        Gene therapy: trials and tribulations.
        Nat Rev Genet. 2000; 1: 91-99
        • Douglas J.T.
        • Rogers B.E.
        • Rosenfeld M.E.
        • et al.
        Targeted gene delivery by tropism-modified adenoviral vectors.
        Nat Biotechnol. 1996; 14: 1574-1578
        • Rodriguez R.
        • Schuur E.R.
        • Lim H.Y.
        • et al.
        Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells.
        Cancer Res. 1997; 57: 2559-2563
        • Pesonen S.
        • Diaconu I.
        • Kangasniemi L.
        • et al.
        Oncolytic immunotherapy of advanced solid tumors with a CD40L-expressing replicating adenovirus: assessment of safety and immunologic responses in patients.
        Cancer Res. 2012; 72: 1621-1631
        • Koski A.
        • Kangasniemi L.
        • Escutenaire S.
        • et al.
        Treatment of cancer patients with a serotype 5/3 chimeric oncolytic adenovirus expressing GMCSF.
        Mol Ther. 2010; 18: 1874-1884
        • Cerullo V.
        • Pesonen S.
        • Diaconu I.
        • et al.
        Oncolytic adenovirus coding for granulocyte macrophage colony-stimulating factor induces antitumoral immunity in cancer patients.
        Cancer Res. 2010; 70: 4297-4309
        • Hemminki O.
        • Diaconu I.
        • Cerullo V.
        • et al.
        Ad3-hTERT-E1A, a fully serotype 3 oncolytic adenovirus, in patients with chemotherapy refractory cancer.
        Mol Ther. 2012; 20: 1821-1830
        • Kimball K.J.
        • Preuss M.A.
        • Barnes M.N.
        • et al.
        A phase I study of a tropism-modified conditionally replicative adenovirus for recurrent malignant gynecologic diseases.
        Clin Cancer Res. 2010; 16: 5277-5287
        • Nokisalmi P.
        • Pesonen S.
        • Escutenaire S.
        • et al.
        Oncolytic adenovirus ICOVIR-7 in patients with advanced and refractory solid tumors.
        Clin Cancer Res. 2010; 16: 3035-3043
        • Li J.L.
        • Liu H.L.
        • Zhang X.R.
        • et al.
        A phase I trial of intratumoral administration of recombinant oncolytic adenovirus overexpressing HSP70 in advanced solid tumor patients.
        Gene Ther. 2009; 16: 376-382
        • Smith K.D.
        • Mezhir J.J.
        • Bickenbach K.
        • et al.
        Activated MEK suppresses activation of PKR and enables efficient replication and in vivo oncolysis by Deltagamma(1)34.5 mutants of herpes simplex virus 1.
        J Virol. 2006; 80: 1110-1120
        • Aghi M.
        • Visted T.
        • Depinho R.A.
        • Chiocca E.A.
        Oncolytic herpes virus with defective ICP6 specifically replicates in quiescent cells with homozygous genetic mutations in p16.
        Oncogene. 2008; 27: 4249-4254
        • Markert J.M.
        • Medlock M.D.
        • Rabkin S.D.
        • et al.
        Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial.
        Gene Ther. 2000; 7: 867-874
        • Markert J.M.
        • Liechty P.G.
        • Wang W.
        • et al.
        Phase Ib trial of mutant herpes simplex virus G207 inoculated pre-and post-tumor resection for recurrent GBM.
        Mol Ther. 2009; 17: 199-207
        • Kemeny N.
        • Brown K.
        • Covey A.
        • et al.
        Phase I, open-label, dose-escalating study of a genetically engineered herpes simplex virus, NV1020, in subjects with metastatic colorectal carcinoma to the liver.
        Hum Gene Ther. 2006; 17: 1214-1224
        • Geevarghese S.K.
        • Geller D.A.
        • de Haan H.A.
        • et al.
        Phase I/II study of oncolytic herpes simplex virus NV1020 in patients with extensively pretreated refractory colorectal cancer metastatic to the liver.
        Hum Gene Ther. 2010; 21: 1119-1128
        • Hu J.C.
        • Coffin R.S.
        • Davis C.J.
        • et al.
        A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor.
        Clin Cancer Res. 2006; 12: 6737-6747
        • Kaufman H.L.
        • Kim D.W.
        • DeRaffele G.
        • et al.
        Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma.
        Ann Surg Oncol. 2010; 17: 718-730
        • Senzer N.N.
        • Kaufman H.L.
        • Amatruda T.
        • et al.
        Phase II clinical trial of a granulocyte-macrophage colony-stimulating factor-encoding, second-generation oncolytic herpes virus in patients with unresectable metastatic melanoma.
        J Clin Oncol. 2009; 27: 5763-5771
        • Kaufman H.L.
        • Bines S.D.
        OPTIM trial: a phase III trial of an oncolytic herpes virus encoding GM-CSF for unresectable stage III or IV melanoma.
        Future Oncol. 2010; 6: 941-949
        • Harrington K.J.
        • Hingorani M.
        • Tanay M.A.
        • et al.
        Phase I/II study of oncolytic HSV GM-CSF in combination with radiotherapy and cisplatin in untreated stage III/IV squamous cell cancer of the head and neck.
        Clin Cancer Res. 2010; 16: 4005-4015
        • Hwang T.H.
        • Moon A.
        • Burke J.
        • et al.
        A mechanistic proof-of-concept clinical trial with JX-594, a targeted multi-mechanistic oncolytic poxvirus, in patients with metastatic melanoma.
        Mol Ther. 2011; 19: 1913-1922
        • Breitbach C.J.
        • Burke J.
        • Jonker D.
        • et al.
        Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans.
        Nature. 2011; 477: 99-102
        • Park B.H.
        • Hwang T.
        • Liu T.C.
        • et al.
        Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial.
        Lancet Oncol. 2008; 9: 533-542
        • Liu T.C.
        • Hwang T.
        • Park B.H.
        • Bell J.
        • Kirn D.H.
        The targeted oncolytic poxvirus JX-594 demonstrates antitumoral, antivascular, and anti-HBV activities in patients with hepatocellular carcinoma.
        Mol Ther. 2008; 16: 1637-1642
        • Heo J.
        • Breitbach C.J.
        • Moon A.
        • et al.
        Sequential therapy with JX-594, a targeted oncolytic poxvirus, followed by sorafenib in hepatocellular carcinoma: preclinical and clinical demonstration of combination efficacy.
        Mol Ther. 2011; 19: 1170-1179
        • Morris D.G.
        • Feng X.
        • Difrancesco L.M.
        • et al.
        REO-001: a phase I trial of percutaneous intralesional administration of reovirus type 3 dearing (Reolysin(R)) in patients with advanced solid tumors.
        Invest New Drugs. 2012; ([Epub ahead of print])
        • Vidal L.
        • Pandha H.S.
        • Yap T.A.
        • et al.
        A phase I study of intravenous oncolytic reovirus type 3 Dearing in patients with advanced cancer.
        Clin Cancer Res. 2008; 14: 7127-7137
        • Karapanagiotou E.M.
        • Roulstone V.
        • Twigger K.
        • et al.
        Phase I/II trial of carboplatin and paclitaxel chemotherapy in combination with intravenous oncolytic reovirus in patients with advanced malignancies.
        Clin Cancer Res. 2012; 18: 2080-2089
        • Lolkema M.P.
        • Arkenau H.T.
        • Harrington K.
        • et al.
        A phase I study of the combination of intravenous reovirus type 3 Dearing and gemcitabine in patients with advanced cancer.
        Clin Cancer Res. 2011; 17: 581-588
        • Comins C.
        • Spicer J.
        • Protheroe A.
        • et al.
        REO-10: a phase I study of intravenous reovirus and docetaxel in patients with advanced cancer.
        Clin Cancer Res. 2010; 16: 5564-5572
        • Taqi A.M.
        • Abdurrahman M.B.
        • Yakubu A.M.
        • Fleming A.F.
        Regression of Hodgkin's disease after measles.
        Lancet. 1981; 1: 1112
        • Gross S.
        Measles and leukemia.
        Lancet. 1971; 1: 397-398
        • Pasquinucci G.
        Possible effect of measles on leukemia.
        Lancet. 1971; 1: 136
        • Zygiert Z.
        Hodgkin’s disease: remissions after measles.
        Lancet. 1971; 1: 593
        • Griffin D.
        • Bellini W.
        Measles virus.
        in: Knipe D. Howley P. Fields virology. Lippencott Williams & Wilkins, Philadelphia2001: 1401-1441
        • Noyce R.S.
        • Richardson C.D.
        Nectin 4 is the epithelial cell receptor for measles virus.
        Trends Microbiol. 2012; 20: 429-439
        • Muhlebach M.D.
        • Mateo M.
        • Sinn P.L.
        • et al.
        Adherens junction protein nectin-4 is the epithelial receptor for measles virus.
        Nature. 2011; 480: 530-533
        • Fabre-Lafay S.
        • Monville F.
        • Garrido-Urbani S.
        • et al.
        Nectin-4 is a new histological and serological tumor associated marker for breast cancer.
        BMC Cancer. 2007; 7: 73
        • Takano A.
        • Ishikawa N.
        • Nishino R.
        • et al.
        Identification of nectin-4 oncoprotein as a diagnostic and therapeutic target for lung cancer.
        Cancer Res. 2009; 69: 6694-6703
        • Derycke M.S.
        • Pambuccian S.E.
        • Gilks C.B.
        • et al.
        Nectin 4 overexpression in ovarian cancer tissues and serum: potential role as a serum biomarker.
        Am J Clin Pathol. 2010; 134: 835-845
        • Dingli D.
        • Peng K.W.
        • Harvey M.E.
        • et al.
        Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter.
        Blood. 2004; 103: 1641-1646
        • Grote D.
        • Russell S.J.
        • Cornu T.I.
        • et al.
        Live attenuated measles virus induces regression of human lymphoma xenografts in immunodeficient mice.
        Blood. 2001; 97: 3746-3754
        • Hasegawa K.
        • Pham L.
        • O’Connor M.K.
        • et al.
        Dual therapy of ovarian cancer using measles viruses expressing carcinoembryonic antigen and sodium iodide symporter.
        Clin Cancer Res. 2006; 12: 1868-1875
        • Li H.
        • Peng K.W.
        • Dingli D.
        • Kratzke R.A.
        • Russell S.J.
        Oncolytic measles viruses encoding interferon beta and the thyroidal sodium iodide symporter gene for mesothelioma virotherapy.
        Cancer Gene Ther. 2010; 17: 550-558
        • McDonald C.J.
        • Erlichman C.
        • Ingle J.N.
        • et al.
        A measles virus vaccine strain derivative as a novel oncolytic agent against breast cancer.
        Breast Cancer ResTreat. 2006; 99: 177-184
        • Msaouel P.
        • Iankov I.D.
        • Allen C.
        • et al.
        Engineered measles virus as a novel oncolytic therapy against prostate cancer.
        Prostate. 2009; 69: 82-91
        • Peng K.W.
        • TenEyck C.J.
        • Galanis E.
        • et al.
        Intraperitoneal therapy of ovarian cancer using an engineered measles virus.
        Cancer Res. 2002; 62: 4656-4662
        • Phuong L.K.
        • Allen C.
        • Peng K.W.
        • et al.
        Use of a vaccine strain of measles virus genetically engineered to produce carcinoembryonic antigen as a novel therapeutic agent against glioblastoma multiform.
        Cancer Res. 2003; 63: 2462-2469
        • Galanis E.
        • Hartmann L.C.
        • Cliby W.A.
        • et al.
        Phase I trial of intraperitoneal administration of an oncolytic measles virus strain engineered to express carcinoembryonic antigen for recurrent ovarian cancer.
        Cancer Res. 2010; 70: 875-882
        • Markman M.
        • Webster K.
        • Zanotti K.
        • et al.
        Phase 2 trial of carboplatin plus tamoxifen in platinum-resistant ovarian cancer and primary carcinoma of the peritoneum.
        Gynecol Oncol. 2004; 94: 404-408
        • Markman M.
        • Webster K.
        • Zanotti K.
        • et al.
        Survival following the documentation of platinum and taxane resistance in ovarian cancer: a single institution experience involving multiple phase 2 clinical trials.
        Gynecol Oncol. 2004; 93: 699-701
        • Gauvrit A.
        • Brandler S.
        • Sapede-Peroz C.
        • et al.
        Measles virus induces oncolysis of mesothelioma cells and allows dendritic cells to cross-prime tumor-specific CD8 response.
        Cancer Research. 2008; 68: 4882-4892
        • Donnelly O.G.
        • Errington-Mais F.
        • Steele L.
        • et al.
        Measles virus causes immunogenic cell death in human melanoma.
        Gene Ther. 2013; 20: 7-15
        • Myers R.M.
        • Greiner S.M.
        • Harvey M.E.
        • et al.
        Preclinical pharmacology and toxicology of intravenous MV-NIS, an oncolytic measles virus administered with or without cyclophosphamide.
        Clin Pharmacol Ther. 2007; 82: 700-710
        • Peng K.W.
        • Myers R.
        • Greenslade A.
        • et al.
        Using clinically approved cyclophosphamide regimens to control the humoral immune response to oncolytic viruses.
        Gene Ther. 2012; ([Epub ahead of print])
        • Qiao J.
        • Wang H.
        • Kottke T.
        • et al.
        Cyclophosphamide facilitates antitumor efficacy against subcutaneous tumors following intravenous delivery of reovirus.
        Clin Cancer Res. 2008; 14: 259-269
        • Lun X.Q.
        • Jang J.H.
        • Tang N.
        • et al.
        Efficacy of systemically administered oncolytic vaccinia virotherapy for malignant gliomas is enhanced by combination therapy with rapamycin or cyclophosphamide.
        Clin Cancer Res. 2009; 15: 2777-2788
        • Cerullo V.
        • Diaconu I.
        • Kangasniemi L.
        • et al.
        Immunological effects of low-dose cyclophosphamide in cancer patients treated with oncolytic adenovirus.
        Mol Ther. 2011; 19: 1737-1746
        • Guo Z.S.
        • Parimi V.
        • O’Malley M.E.
        • et al.
        The combination of immunosuppression and carrier cells significantly enhances the efficacy of oncolytic poxvirus in the pre-immunized host.
        Gene Ther. 2010; 17: 1465-1475
        • Mingozzi F.
        • Chen Y.
        • Edmonson S.C.
        • et al.
        Prevalence and pharmacological modulation of humoral immunity to AAV vectors in gene transfer to synovial tissue.
        Gene Ther. 2012;
        • Mingozzi F.
        • Chen Y.
        • Murphy S.L.
        • et al.
        Pharmacological modulation of humoral immunity in a nonhuman primate model of AAV gene transfer for hemophilia B.
        Mol Ther. 2012; 20: 1410-1416
        • Power A.T.
        • Wang J.
        • Falls T.J.
        • et al.
        Carrier cell-based delivery of an oncolytic virus circumvents antiviral immunity.
        Mol Ther. 2007; 15: 123-130
        • Munguia A.
        • Ota T.
        • Miest T.
        • Russell S.J.
        Cell carriers to deliver oncolytic viruses to sites of myeloma tumor growth.
        Gene Ther. 2008; 15: 797-806
        • Coukos G.
        • Makrigiannakis A.
        • Kang E.H.
        • et al.
        Use of carrier cells to deliver a replication-selective herpes simplex virus-1 mutant for the intraperitoneal therapy of epithelial ovarian cancer.
        Clin Cancer Res. 1999; 5: 1523-1537
        • Ilett E.J.
        • Prestwich R.J.
        • Kottke T.
        • et al.
        Dendritic cells and T cells deliver oncolytic reovirus for tumour killing despite pre-existing anti-viral immunity.
        Gene Ther. 2009; 16: 689-699
        • Thorne S.H.
        • Liang W.
        • Sampath P.
        • et al.
        Targeting localized immune suppression within the tumor through repeat cycles of immune cell-oncolytic virus combination therapy.
        Mol Ther. 2010; 18: 1698-1705
        • Mader E.K.
        • Maeyama Y.
        • Lin Y.
        • et al.
        Mesenchymal stem cell carriers protect oncolytic measles viruses from antibody neutralization in an orthotopic ovarian cancer therapy model.
        Clin Cancer Res. 2009; 15: 7246-7255
        • Wei J.
        • Wahl J.
        • Nakamura T.
        • et al.
        Targeted release of oncolytic measles virus by blood outgrowth endothelial cells in situ inhibits orthotopic gliomas.
        Gene Ther. 2007; 14: 1573-1586
        • Kottke T.
        • Diaz R.M.
        • Kaluza K.
        • et al.
        Use of biological therapy to enhance both virotherapy and adoptive T-cell therapy for cancer.
        Mol Ther. 2008; 16: 1910-1918
        • Dudek A.Z.
        Endothelial lineage cell as a vehicle for systemic delivery of cancer gene therapy.
        Transl Res. 2010; 156: 136-146
        • Bodempudi V.
        • Ohlfest J.R.
        • Terai K.
        • et al.
        Blood outgrowth endothelial cell-based systemic delivery of antiangiogenic gene therapy for solid tumors.
        Cancer Gene Ther. 2010; 17: 855-863
        • Ahmed A.U.
        • Rolle C.E.
        • Tyler M.A.
        • et al.
        Bone marrow mesenchymal stem cells loaded with an oncolytic adenovirus suppress the anti-adenoviral immune response in the cotton rat model.
        Mol Ther. 2010; 18: 1846-1856
        • Garcia-Castro J.
        • Alemany R.
        • Cascallo M.
        • et al.
        Treatment of metastatic neuroblastoma with systemic oncolytic virotherapy delivered by autologous mesenchymal stem cells: an exploratory study.
        Cancer Gene Ther. 2010; 17: 476-483
        • Yong R.L.
        • Shinojima N.
        • Fueyo J.
        • et al.
        Human bone marrow-derived mesenchymal stem cells for intravascular delivery of oncolytic adenovirus Delta24-RGD to human gliomas.
        Cancer Res. 2009; 69: 8932-8940
        • Diaz R.M.
        • Galivo F.
        • Kottke T.
        • et al.
        Oncolytic immunovirotherapy for melanoma using vesicular stomatitis virus.
        Cancer Res. 2007; 67: 2840-2848
        • Willmon C.L.
        • Saloura V.
        • Fridlender Z.G.
        • et al.
        Expression of IFN-beta enhances both efficacy and safety of oncolytic vesicular stomatitis virus for therapy of mesothelioma.
        Cancer Res. 2009; 69: 7713-7720
        • Li H.
        • Peng K.W.
        • Dingli D.
        • Kratzke R.A.
        • Russell S.J.
        Oncolytic measles viruses encoding interferon beta and the thyroidal sodium iodide symporter gene for mesothelioma virotherapy.
        Cancer Gene Ther. 2010; 17: 550-558
        • Hodi F.S.
        • O’Day S.J.
        • McDermott D.F.
        • et al.
        Improved survival with ipilimumab in patients with metastatic melanoma.
        N Engl J Med. 2010; 363: 711-723