Advertisement

Gene therapy for hemoglobinopathies: progress and challenges

  • Alisa Dong
    Affiliations
    Weill Cornell Medical College, Department of Pediatrics, Division of Hematology-Oncology, New York, NY
    Search for articles by this author
  • Stefano Rivella
    Affiliations
    Weill Cornell Medical College, Department of Pediatrics, Division of Hematology-Oncology, New York, NY

    Weill Cornell Medical College, Department of Cell and Development Biology, New York, NY
    Search for articles by this author
  • Laura Breda
    Correspondence
    Reprint requests: Laura Breda, Weill Cornell Medical College, Department of Pediatrics, Division of Hematology-Oncology, 515E 71 Street, Room S-703, New York, NY 10021
    Affiliations
    Weill Cornell Medical College, Department of Pediatrics, Division of Hematology-Oncology, New York, NY
    Search for articles by this author
Published:January 21, 2013DOI:https://doi.org/10.1016/j.trsl.2012.12.011
      Hemoglobinopathies are genetic inherited conditions that originate from the lack or malfunction of the hemoglobin (Hb) protein. Sickle cell disease (SCD) and thalassemia are the most common forms of these conditions. The severe anemia combined with complications that arise in the most affected patients raises the necessity for a cure to restore hemoglobin function. The current routine therapies for these conditions, namely transfusion and iron chelation, have significantly improved the quality of life in patients over the years, but still fail to address the underlying cause of the diseases. A curative option, allogeneic bone marrow transplantation is available, but limited by the availability of suitable donors and graft-vs-host disease. Gene therapy offers an alternative approach to cure patients with hemoglobinopathies and aims at the direct recovery of the hemoglobin function via globin gene transfer. In the last 2 decades, gene transfer tools based on lentiviral vector development have been significantly improved and proven curative in several animal models for SCD and thalassemia. As a result, clinical trials are in progress and 1 patient has been successfully treated with this approach. However, there are still frontiers to explore that might improve this approach: the stoichiometry between the transgenic hemoglobin and endogenous hemoglobin with respect to the different globin genetic mutations; donor cell sourcing, such as the use of induced pluripotent stem cells (iPSCs); and the use of safer gene insertion methods to prevent oncogenesis. With this review we will provide insights about (1) the different lentiviral gene therapy approaches in mouse models and human cells; (2) current and planned clinical trials; (3) hurdles to overcome for clinical trials, such as myeloablation toxicity, insertional oncogenesis, and high vector expression; and (4) future perspectives for gene therapy, including safe harbors and iPSCs technology.

      Abbreviations:

      BM (bone marrow), Hb (hemoglobin), HR (homologous recombination), HSC (hematopoietic stem cell), iPSC (induced pluripotent stem cell), IVS (intervening sequence), PBMC (peripheral blood mononuclear cell), SCD (sickle cell disease), TF (transcription factor), VCN (vector copy number)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Modell B.
        • Darlison M.
        Global epidemiology of haemoglobin disorders and derived service indicators.
        Bull World Health Organ. 2008; 86: 480-487
        • Mohandas N.
        • An X.
        Malaria and human red blood cells.
        Med Microbiol Immunol. 2012; 201: 593-598
        • Cappellini M.D.
        The Thalassemias. Goldman's Cecil medicine.
        24th ed. Elsevier, Philadelphia2011 (1060–6)
        • Steinberg M.H.
        Sicke cell disease and other hemoglobinopathies. Goldman's Cecil medicine.
        24th ed. Elsevier, Philadelphia2011 (1066–75)
        • Ginzburg Y.
        • Rivella S.
        Beta-thalassemia: a model for elucidating the dynamic regulation of ineffective erythropoiesis and iron metabolism.
        Blood. 2011; 118: 4321-4330
        • Gardenghi S.
        • Marongiu M.F.
        • Ramos P.
        • et al.
        Ineffective erythropoiesis in β -thalassemia is characterized by increased iron absorption mediated by down-regulation of hepcidin and up-regulation of ferroportin.
        Blood. 2007; 109: 5027-5035
        • Gardenghi S.
        • Ramos P.
        • Marongiu M.F.
        • et al.
        Hepcidin as a therapeutic tool to limit iron overload and improve anemia in β-thalassemic mice.
        J Clin Invest. 2010; 120: 4466-4477
        • La Nasa G.
        • Giardini C.
        • Argiolu F.
        • et al.
        Unrelated donor bone marrow transplantation for thalassemia: the effect of extended haplotypes.
        Blood. 2002; 99: 4350-4356
        • Sodani P.
        • Isgro A.
        • Gaziev J.
        • et al.
        Purified T-depleted, CD34+ peripheral blood and bone marrow cell transplantation from haploidentical mother to child with thalassemia.
        Blood. 2010; 115: 1296-1302
        • Maina N.
        • Zhong L.
        • Li X.
        • et al.
        Optimization of recombinant adeno-associated viral vectors for human β-globin gene transfer and transgene expression.
        Hum Gene Ther. 2008; 19: 365-375
        • Yi Y.
        • Noh M.J.
        • Lee K.H.
        Current advances in retroviral gene therapy.
        Curr Gene Ther. 2011; 11: 218-228
        • Arumugam P.
        • Malik P.
        Genetic therapy for β-thalassemia: from the bench to the bedside.
        Hematol Am Soc Hematol Educ Prog. 2010; 2010: 445-450
        • Sadelain M.
        • Boulad F.
        • Galanello R.
        • et al.
        Therapeutic options for patients with severe β-thalassemia: the need for globin gene therapy.
        Hum Gene Ther. 2007; 18: 1-9
        • Sadelain M.
        • Lisowski L.
        • Samakoglu S.
        • Rivella S.
        • May C.
        • Riviere I.
        Progress toward the genetic treatment of the β-thalassemias.
        Ann N Y Acad Sci. 2005; 1054: 78-91
        • Breda L.
        • Gambari R.
        • Rivella S.
        Gene therapy in thalassemia and hemoglobinopathies.
        Mediterranean J Hematol Infect Dis. 2009; 1 (e2009008)
        • Case S.S.
        • Price M.A.
        • Jordan C.T.
        • et al.
        Stable transduction of quiescent CD34(+)CD38(-) human hematopoietic cells by HIV-1-based lentiviral vectors.
        Proc Natl Acad Sci U S A. 1999; 96: 2988-2993
        • Lisowski L.
        • Sadelain M.
        Locus control region elements HS1 and HS4 enhance the therapeutic efficacy of globin gene transfer in β-thalassemic mice.
        Blood. 2007; 110: 4175-4178
        • Hargrove P.W.
        • Kepes S.
        • Hanawa H.
        • et al.
        Globin lentiviral vector insertions can perturb the expression of endogenous genes in β-thalassemic hematopoietic cells.
        Mol Ther. 2008; 16: 525-533
        • Zhou H.S.
        • Zhao N.
        • Li L.
        • et al.
        Site-specific transfer of an intact β-globin gene cluster through a new targeting vector.
        Biochem Biophys Res Commun. 2007; 356: 32-37
        • Yannaki E.
        • Psatha N.
        • Athanasiou E.
        • et al.
        Mobilization of hematopoietic stem cells in a thalassemic mouse model: implications for human gene therapy of thalassemia.
        Hum Gene Ther. 2010; 21: 299-310
        • Kumar P.
        • Woon-Khiong C.
        Optimization of lentiviral vectors generation for biomedical and clinical research purposes: contemporary trends in technology development and applications.
        Curr Gene Ther. 2011; 11: 144-153
        • Miccio A.
        • Cesari R.
        • Lotti F.
        • et al.
        In vivo selection of genetically modified erythroblastic progenitors leads to long-term correction of β-thalassemia.
        Proc Natl Acad Sci U S A. 2008; 105: 10547-10552
        • Negre O.
        • Fusil F.
        • Colomb C.
        • et al.
        Correction of murine β-thalassemia after minimal lentiviral gene transfer and homeostatic in vivo erythroid expansion.
        Blood. 2011; 117: 5321-5331
        • Persons D.A.
        • Allay E.R.
        • Sawai N.
        • et al.
        Successful treatment of murine β-thalassemia using in vivo selection of genetically modified, drug-resistant hematopoietic stem cells.
        Blood. 2003; 102: 506-513
        • Imren S.
        • Payen E.
        • Westerman K.A.
        • et al.
        Permanent and panerythroid correction of murine β-thalassemia by multiple lentiviral integration in hematopoietic stem cells.
        Proc Natl Acad Sci U S A. 2002; 99: 14380-14385
        • May C.
        • Rivella S.
        • Callegari J.
        • et al.
        Therapeutic hemoglobin synthesis in β-thalassemic mice expressing lentivirus-encoded human β-globin.
        Nature. 2000; 406: 82-86
        • May C.
        • Rivella S.
        • Chadburn A.
        • Sadelain M.
        Successful treatment of murine β-thalassemia intermedia by transfer of the human β-globin gene.
        Blood. 2002; 99: 1902-1908
        • Puthenveetil G.
        • Scholes J.
        • Carbonell D.
        • et al.
        Successful correction of the human β-thalassemia major phenotype using a lentiviral vector.
        Blood. 2004; 104: 3445-3453
        • Hanna J.
        • Wernig M.
        • Markoulaki S.
        • et al.
        Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin.
        Science. 2007; 318: 1920-1923
        • Wu L.C.
        • Sun C.W.
        • Ryan T.M.
        • Pawlik K.M.
        • Ren J.
        • Townes T.M.
        Correction of sickle cell disease by homologous recombination in embryonic stem cells.
        Blood. 2006; 108: 1183-1188
        • Ye L.
        • Chang J.C.
        • Lin C.
        • Sun X.
        • Yu J.
        • Kan Y.W.
        Induced pluripotent stem cells offer new approach to therapy in thalassemia and sickle cell anemia and option in prenatal diagnosis in genetic diseases.
        Proc Natl Acad Sci U S A. 2009; 106: 9826-9830
        • Bender M.A.
        • Gelinas R.E.
        • Miller A.D.
        A majority of mice show long-term expression of a human β-globin gene after retrovirus transfer into hematopoietic stem cells.
        Mol Cell Biol. 1989; 9: 1426-1434
        • Dzierzak E.A.
        • Papayannopoulou T.
        • Mulligan R.C.
        Lineage-specific expression of a human β-globin gene in murine bone marrow transplant recipients reconstituted with retrovirus-transduced stem cells.
        Nature. 1988; 331: 35-41
        • Karlsson S.
        • Bodine D.M.
        • Perry L.
        • Papayannopoulou T.
        • Nienhuis A.W.
        Expression of the human β-globin gene following retroviral-mediated transfer into multipotential hematopoietic progenitors of mice.
        Proc Natl Acad Sci U S A. 1988; 85: 6062-6066
        • Lung H.Y.
        • Meeus I.S.
        • Weinberg R.S.
        • Atweh G.F.
        In vivo silencing of the human gamma-globin gene in murine erythroid cells following retroviral transduction.
        Blood Cells Mol Dis. 2000; 26: 613-619
        • Chang J.C.
        • Liu D.
        • Kan Y.W.
        A 36-base-pair core sequence of locus control region enhances retrovirally transferred human β-globin gene expression.
        Proc Natl Acad Sci U S A. 1992; 89: 3107-3110
        • Plavec I.
        • Papayannopoulou T.
        • Maury C.
        • Meyer F.
        A human β-globin gene fused to the human β-globin locus control region is expressed at high levels in erythroid cells of mice engrafted with retrovirus-transduced hematopoietic stem cells.
        Blood. 1993; 81: 1384-1392
        • Nishino T.
        • Tubb J.
        • Emery D.W.
        Partial correction of murine β-thalassemia with a gammaretrovirus vector for human gamma-globin.
        Blood Cells Mol Dis. 2006; 37: 1-7
        • Ren S.
        • Wong B.Y.
        • Li J.
        • Luo X.N.
        • Wong P.M.
        • Atweh G.F.
        Production of genetically stable high-titer retroviral vectors that carry a human gamma-globin gene under the control of the alpha-globin locus control region.
        Blood. 1996; 87: 2518-2524
        • Sabatino D.E.
        • Wong C.
        • Cline A.P.
        • et al.
        A minimal ankyrin promoter linked to a human gamma-globin gene demonstrates erythroid specific copy number dependent expression with minimal position or enhancer dependence in transgenic mice.
        J Biol Chem. 2000; 275: 28549-28554
        • Sabatino D.E.
        • Seidel N.E.
        • Aviles-Mendoza G.J.
        • et al.
        Long-term expression of gamma-globin mRNA in mouse erythrocytes from retrovirus vectors containing the human gamma-globin gene fused to the ankyrin-1 promoter.
        Proc Natl Acad Sci U S A. 2000; 97: 13294-13299
        • Fragkos M.
        • Anagnou N.P.
        • Tubb J.
        • Emery D.W.
        Use of the hereditary persistence of fetal hemoglobin 2 enhancer to increase the expression of oncoretrovirus vectors for human gamma-globin.
        Gene Ther. 2005; 12: 1591-1600
        • Katsantoni E.Z.
        • Langeveld A.
        • Wai A.W.
        • et al.
        Persistent gamma-globin expression in adult transgenic mice is mediated by HPFH-2, HPFH-3, and HPFH-6 breakpoint sequences.
        Blood. 2003; 102: 3412-3419
        • Naldini L.
        • Blomer U.
        • Gallay P.
        • et al.
        In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector.
        Science. 1996; 272: 263-267
        • Lewis P.
        • Hensel M.
        • Emerman M.
        Human immunodeficiency virus infection of cells arrested in the cell cycle.
        Embo J. 1992; 11: 3053-3058
        • Zufferey R.
        • Dull T.
        • Mandel R.J.
        • et al.
        Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery.
        J Virol. 1998; 72: 9873-9880
        • Miyoshi H.
        • Blomer U.
        • Takahashi M.
        • Gage F.H.
        • Verma I.M.
        Development of a self-inactivating lentivirus vector.
        J Virol. 1998; 72: 8150-8157
        • Bukovsky A.A.
        • Song J.P.
        • Naldini L.
        Interaction of human immunodeficiency virus-derived vectors with wild-type virus in transduced cells.
        J Virol. 1999; 73: 7087-7092
        • Han X.D.
        • Lin C.
        • Chang J.
        • Sadelain M.
        • Kan Y.W.
        Fetal gene therapy of alpha-thalassemia in a mouse model.
        Proc Natl Acad Sci U S A. 2007; 104: 9007-9011
        • Rivella S.
        • May C.
        • Chadburn A.
        • Riviere I.
        • Sadelain M.
        A novel murine model of Cooley anemia and its rescue by lentiviral-mediated human β-globin gene transfer.
        Blood. 2003; 101: 2932-2939
        • Persons D.A.
        • Hargrove P.W.
        • Allay E.R.
        • Hanawa H.
        • Nienhuis A.W.
        The degree of phenotypic correction of murine β-thalassemia intermedia following lentiviral-mediated transfer of a human gamma-globin gene is influenced by chromosomal position effects and vector copy number.
        Blood. 2003; 101: 2175-2183
        • Hanawa H.
        • Hargrove P.W.
        • Kepes S.
        • Srivastava D.K.
        • Nienhuis A.W.
        • Persons D.A.
        Extended β-globin locus control region elements promote consistent therapeutic expression of a gamma-globin lentiviral vector in murine β-thalassemia.
        Blood. 2004; 104: 2281-2290
        • Pawliuk R.
        • Westerman K.A.
        • Fabry M.E.
        • et al.
        Correction of sickle cell disease in transgenic mouse models by gene therapy.
        Science. 2001; 294: 2368-2371
        • Pestina T.I.
        • Hargrove P.W.
        • Jay D.
        • Gray J.T.
        • Boyd K.M.
        • Persons D.A.
        Correction of murine sickle cell disease using gamma-globin lentiviral vectors to mediate high-level expression of fetal hemoglobin.
        Mol Ther. 2009; 17: 245-252
        • Samakoglu S.
        • Lisowski L.
        • Budak-Alpdogan T.
        • et al.
        A genetic strategy to treat sickle cell anemia by coregulating globin transgene expression and RNA interference.
        Nat Biotechnol. 2006; 24: 89-94
        • Wilber A.
        • Hargrove P.W.
        • Kim Y.S.
        • et al.
        Therapeutic levels of fetal hemoglobin in erythroid progeny of β-thalassemic CD34+ cells after lentiviral vector-mediated gene transfer.
        Blood. 2011; 117: 2817-2826
        • Breda L.
        • Casu C.
        • Gardenghi S.
        • et al.
        Therapeutic hemoglobin levels after gene transfer in β-thalassemia mice and in hematopoietic cells of β-thalassemia and sickle cells disease patients.
        PLoS One. 2012; 7: e32345
        • Miccio A.
        • Poletti V.
        • Tiboni F.
        • et al.
        The GATA1-HS2 enhancer allows persistent and position-independent expression of a β-globin transgene.
        PLoS One. 2011; 6: e27955
        • Papapetrou E.P.
        • Zoumbos N.C.
        • Athanassiadou A.
        Genetic modification of hematopoietic stem cells with nonviral systems: past progress and future prospects.
        Gene Ther. 2005; 12: S118-S130
        • Jackson D.A.
        • Juranek S.
        • Lipps H.J.
        Designing nonviral vectors for efficient gene transfer and long-term gene expression.
        Mol Ther. 2006; 14: 613-626
        • Hackett P.B.
        • Largaespada D.A.
        • Cooper L.J.
        A transposon and transposase system for human application.
        Mol Ther. 2010; 18: 674-683
        • Dalsgaard T.
        • Moldt B.
        • Sharma N.
        • et al.
        Shielding of sleeping beauty DNA transposon-delivered transgene cassettes by heterologous insulators in early embryonal cells.
        Mol Ther. 2009; 17: 121-130
        • Mates L.
        • Chuah M.K.
        • Belay E.
        • et al.
        Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates.
        Nat Genet. 2009; 41: 753-761
        • Xue X.
        • Huang X.
        • Nodland S.E.
        • et al.
        Stable gene transfer and expression in cord blood-derived CD34+ hematopoietic stem and progenitor cells by a hyperactive Sleeping Beauty transposon system.
        Blood. 2009; 114: 1319-1330
        • Sjeklocha L.M.
        • Park C.W.
        • Wong P.Y.
        • et al.
        Erythroid-specific expression of β-globin from Sleeping Beauty-transduced human hematopoietic progenitor cells.
        PLoS One. 2011; 6: e29110
        • Forget B.G.
        Progress in understanding the hemoglobin switch.
        N Engl J Med. 2011; 365: 852-854
        • Sankaran V.G.
        • Xu J.
        • Byron R.
        • et al.
        A functional element necessary for fetal hemoglobin silencing.
        N Engl J Med. 2011; 365: 807-814
        • Thein S.L.
        • Menzel S.
        Discovering the genetics underlying foetal haemoglobin production in adults.
        Br J Haematol. 2009; 145: 455-467
        • Galanello R.
        Recent advances in the molecular understanding of non-transfusion-dependent thalassemia.
        Blood Rev. 2012; 26: S7-S11
        • Graslund T.
        • Li X.
        • Magnenat L.
        • Popkov M.
        • Barbas III, C.F.
        Exploring strategies for the design of artificial transcription factors: targeting sites proximal to known regulatory regions for the induction of gamma-globin expression and the treatment of sickle cell disease.
        J Biol Chem. 2005; 280: 3707-3714
        • Wilber A.
        • Tschulena U.
        • Hargrove P.W.
        • et al.
        A zinc-finger transcriptional activator designed to interact with the gamma-globin gene promoters enhances fetal hemoglobin production in primary human adult erythroblasts.
        Blood. 2010; 115: 3033-3041
        • Xu J.
        • Peng C.
        • Sankaran V.G.
        • et al.
        Correction of sickle cell disease in adult mice by interference with fetal hemoglobin silencing.
        Science. 2011; 334: 993-996
        • Cavazzana-Calvo M.
        • Payen E.
        • Negre O.
        • et al.
        Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia.
        Nature. 2010; 467: 318-322
        • Ikeda K.
        • Mason P.J.
        • Bessler M.
        3'UTR-truncated Hmga2 cDNA causes MPN-like hematopoiesis by conferring a clonal growth advantage at the level of HSC in mice.
        Blood. 2011; 117: 5860-5869
        • Young A.R.
        • Narita M.
        Oncogenic HMGA2: short or small?.
        Genes Dev. 2007; 21: 1005-1009
        • Sadelain M.
        • Riviere I.
        • Wang X.
        • et al.
        Strategy for a multicenter phase I clinical trial to evaluate globin gene transfer in β-thalassemia.
        Ann N Y Acad Sci. 2010; 1202: 52-58
        • Li C.K.
        • Luk C.W.
        • Ling S.C.
        • et al.
        Morbidity and mortality patterns of thalassaemia major patients in Hong Kong: retrospective study.
        Hong Kong Med J. 2002; 8: 255-260
        • Angelucci E.
        Hematopoietic stem cell transplantation in thalassemia.
        Hematol Am Soc Hematol Educ Prog. 2010; 2010: 456-462
        • Lucarelli G.
        • Galimberti M.
        • Polchi P.
        • et al.
        Bone marrow transplantation in patients with thalassemia.
        N Engl J Med. 1990; 322: 417-421
        • Lucarelli G.
        • Andreani M.
        • Angelucci E.
        The cure of thalassemia by bone marrow transplantation.
        Blood Rev. 2002; 16: 81-85
      1. Bertaina A, Bernardo ME, Mastronuzzi A, La Nasa G, Locatelli F. The role of reduced intensity preparative regimens in patients with thalassemia given hematopoietic transplantation. Ann N Y Acad Sci 2010;1202:141–8.

        • Bernardo M.E.
        • Piras E.
        • Vacca A.
        • et al.
        Allogeneic hematopoietic stem cell transplantation in thalassemia major: results of a reduced-toxicity conditioning regimen based on the use of treosulfan.
        Blood. 2012; 120: 473-476
        • Boztug K.
        • Schmidt M.
        • Schwarzer A.
        • et al.
        Stem-cell gene therapy for the Wiskott-Aldrich syndrome.
        N Engl J Med. 2010; 363: 1918-1927
        • Ott M.G.
        • Schmidt M.
        • Schwarzwaelder K.
        • et al.
        Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1.
        Nat Med. 2006; 12: 401-409
        • Wang G.P.
        • Berry C.C.
        • Malani N.
        • et al.
        Dynamics of gene-modified progenitor cells analyzed by tracking retroviral integration sites in a human SCID-X1 gene therapy trial.
        Blood. 2010; 115: 4356-4366
        • Arumugam P.I.
        • Higashimoto T.
        • Urbinati F.
        • et al.
        Genotoxic potential of lineage-specific lentivirus vectors carrying the β-globin locus control region.
        Mol Ther. 2009; 17: 1929-1937
        • Rivella S.
        • Callegari J.A.
        • May C.
        • Tan C.W.
        • Sadelain M.
        The cHS4 insulator increases the probability of retroviral expression at random chromosomal integration sites.
        J Virol. 2000; 74: 4679-4687
        • Steinberg M.H.
        • Forget B.G.
        • Higgs D.R.
        • Nagel R.L.
        Disorders of hemoglobin: Genetics, pathophysiology, and clinical management.
        Cambridge University Press, Cambridge, UK2001
        • Sankaran V.G.
        • Lettre G.
        • Orkin S.H.
        • Hirschhorn J.N.
        Modifier genes in Mendelian disorders: the example of hemoglobin disorders.
        Ann N Y Acad Sci. 2010; 1214: 47-56
        • Weatherall D.J.
        Phenotype-genotype relationships in monogenic disease: lessons from the thalassaemias.
        Nat Rev Genet. 2001; 2: 245-255
        • Lim S.K.
        • Sigmund C.D.
        • Gross K.W.
        • Maquat L.E.
        Nonsense codons in human β-globin mRNA result in the production of mRNA degradation products.
        Mol Cell Biol. 1992; 12: 1149-1161
        • Maquat L.E.
        • Kinniburgh A.J.
        • Rachmilewitz E.A.
        • Ross J.
        Unstable β-globin mRNA in mRNA-deficient β o thalassemia.
        Cell. 1981; 27: 543-553
        • Gardner L.B.
        Hypoxic inhibition of nonsense-mediated RNA decay regulates gene expression and the integrated stress response.
        Mol Cell Biol. 2008; 28: 3729-3741
        • Weatherall D.J.
        The definition and epidemiology of non-transfusion-dependent thalassemia.
        Blood Rev. 2012; 26: S3-S6
        • Weatherall D.J.
        • Williams T.N.
        • Allen S.J.
        • O'Donnell A.
        The population genetics and dynamics of the thalassemias.
        Hematol Oncol Clin N Am. 2010; 24: 1021-1031
        • Hall G.W.
        • Thein S.
        Nonsense codon mutations in the terminal exon of the β-globin gene are not associated with a reduction in β-mRNA accumulation: a mechanism for the phenotype of dominant β-thalassemia.
        Blood. 1994; 83: 2031-2037
        • Thein S.L.
        • Hesketh C.
        • Taylor P.
        • et al.
        Molecular basis for dominantly inherited inclusion body β-thalassemia.
        Proc Natl Acad Sci U S A. 1990; 87: 3924-3928
        • Steinberg M.H.
        • Forget B.G.
        • Higgs D.R.
        • Nagel R.L.
        Molecular mechanism of ß thalassemia; Bernard G. Forget.
        Cambridge University Press, Cambridge, UK2001
        • Gallagher P.G.
        • Steiner L.A.
        • Liem R.I.
        • et al.
        Mutation of a barrier insulator in the human ankyrin-1 gene is associated with hereditary spherocytosis.
        J Clin Invest. 2010; 120: 4453-4465
        • Khandros E.
        • Thom C.S.
        • D'Souza J.
        • Weiss M.J.
        Integrated protein quality-control pathways regulate free alpha-globin in murine β-thalassemia.
        Blood. 2012; 119: 5265-5275
        • Rivella S.
        • Sadelain M.
        Genetic treatment of severe hemoglobinopathies: the combat against transgene variegation and transgene silencing.
        Semin Hematol. 1998; 35: 112-125
        • Nienhuis A.W.
        • Dunbar C.E.
        • Sorrentino B.P.
        Genotoxicity of retroviral integration in hematopoietic cells.
        Mol Ther. 2006; 13: 1031-1049
        • Bohne J.
        • Cathomen T.
        Genotoxicity in gene therapy: an account of vector integration and designer nucleases.
        Curr Opin Mol Therapeut. 2008; 10: 214-223
        • Hacein-Bey-Abina S.
        • Von Kalle C.
        • Schmidt M.
        • et al.
        LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1.
        Science. 2003; 302: 415-419
        • Cornu T.I.
        • Cathomen T.
        Targeted genome modifications using integrase-deficient lentiviral vectors.
        Mol Ther. 2007; 15: 2107-2113
        • Nightingale S.J.
        • Hollis R.P.
        • Pepper K.A.
        • et al.
        Transient gene expression by nonintegrating lentiviral vectors.
        Mol Ther. 2006; 13: 1121-1132
        • Lombardo A.
        • Genovese P.
        • Beausejour C.M.
        • et al.
        Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery.
        Nat Biotechnol. 2007; 25: 1298-1306
        • Lombardo A.
        • Cesana D.
        • Genovese P.
        • et al.
        Site-specific integration and tailoring of cassette design for sustainable gene transfer.
        Nat Methods. 2011; 8: 861-869
        • Provasi E.
        • Genovese P.
        • Lombardo A.
        • et al.
        Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer.
        Nat Med. 2012; 18: 807-815
        • Takahashi K.
        • Yamanaka S.
        Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.
        Cell. 2006; 126: 663-676
        • Okita K.
        • Ichisaka T.
        • Yamanaka S.
        Generation of germline-competent induced pluripotent stem cells.
        Nature. 2007; 448: 313-317
        • Wernig M.
        • Meissner A.
        • Foreman R.
        • et al.
        In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state.
        Nature. 2007; 448: 318-324
        • Sommer C.A.
        • Stadtfeld M.
        • Murphy G.J.
        • Hochedlinger K.
        • Kotton D.N.
        • Mostoslavsky G.
        Induced pluripotent stem cell generation using a single lentiviral stem cell cassette.
        Stem Cells. 2009; 27: 543-549
        • Staerk J.
        • Dawlaty M.M.
        • Gao Q.
        • et al.
        Reprogramming of human peripheral blood cells to induced pluripotent stem cells.
        Cell Stem Cell. 2010; 7: 20-24
        • Chou B.K.
        • Mali P.
        • Huang X.
        • et al.
        Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures.
        Cell Res. 2011; 21: 518-529
        • Okita K.
        • Matsumura Y.
        • Sato Y.
        • et al.
        A more efficient method to generate integration-free human iPS cells.
        Nat Methods. 2011; 8: 409-412
        • Yamanaka S.
        Induced pluripotent stem cells: past, present, and future.
        Cell Stem Cell. 2012; 10: 678-684
        • Papapetrou E.P.
        • Lee G.
        • Malani N.
        • et al.
        Genomic safe harbors permit high β-globin transgene expression in thalassemia induced pluripotent stem cells.
        Nat Biotechnol. 2011; 29: 73-78
        • Chang J.C.
        • Ye L.
        • Kan Y.W.
        Correction of the sickle cell mutation in embryonic stem cells.
        Proc Natl Acad Sci U S A. 2006; 103: 1036-1040
        • Zou J.
        • Mali P.
        • Huang X.
        • Dowey S.N.
        • Cheng L.
        Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease.
        Blood. 2011; 118: 4599-4608
        • Sebastiano V.
        • Maeder M.L.
        • Angstman J.F.
        • et al.
        In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases.
        Stem Cells. 2011; 29: 1717-1726