Advertisement

Hemophilia clinical gene therapy: brief review

Published:January 25, 2013DOI:https://doi.org/10.1016/j.trsl.2012.12.016
      Genetic correction of hemophilia A and B was long considered amenable to the available gene transfer technologies. This assumption has come to fruition with the recent results of a phase I/II trial for hemophilia B. Here we review the clinical application of gene therapy for the hemophilia's as a paradigm of the evolution of gene transfer science and technology. This review is not intended as comprehensive but rather to highlight current clinical developments of gene therapy for the hemophilias.

      Abbreviations:

      AAV (adeno-associated virus), BP (branch point), FIX (factor IX), hFIX (human factor IX), PP (polypyrimidine tract), PTM (pre-trans-splicing molecule)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Carcao M.D.
        The diagnosis and management of congenital hemophilia.
        Semin Thromb Hemost. 2012; 38: 727-734
        • Vandendriessche T.
        • Chuah M.K.
        Clinical progress in gene therapy: sustained partial correction of the bleeding disorder in patients suffering from severe hemophilia B.
        Hum Gene Ther. 2012; 23: 4-6
        • Nilsson I.M.
        • Berntorp E.
        • Löfqvist T.
        • Pettersson H.
        Twenty-five years' experience of prophylactic treatment in severe haemophilia A and B.
        J Intern Med. 1992; 232: 25-32
        • Manco-Johnson M.J.
        • Abshire T.C.
        • et al.
        (2007). Prophylaxis versus episodic treatment to prevent joint disease in boys with severe hemophilia.
        N Engl J Med. 2007; 357: 535-544
        • Blanchette V.S.
        Prophylaxis in the haemophilia population.
        Haemophilia. 2010; 16: 181-188
        • Pipe S.W.
        The hope and reality of long-acting hemophilia products.
        Am J Hematol. 2012; 87: S33-S39
        • Kurachi K.
        • Kurachi S.
        • Furukawa M.
        • Yao S.N.
        Biology of factor IX.
        Blood Coagul Fibrinolysis. 1993; 4: 953-973
        • Kaufman R.J.
        • Pipe S.W.
        • Tagliavacca L.
        • Swaroop M.
        • Moussalli M.
        Biosynthesis, assembly and secretion of coagulation factor VIII.
        Blood Coagul Fibrinolysis. 1997; 8: S3-14
        • Kurachi S.
        • Pantazatos D.P.
        • Kurachi K.
        The carboxyl-terminal region of factor IX is essential for its secretion.
        Biochemistry. 1997; 36: 4337-4344
        • Qiu X.
        • Lu D.
        • Zhou J.
        • Wang J.
        • Yang J.
        • Meng P.
        • Hsueh J.L.
        Implantation of autologous skin fibroblast genetically modified to secrete clotting factor IX partially corrects the hemorrhagic tendencies in two hemophilia B patients.
        Chin Med J (Engl). 1996; 109: 832-839
        • Roth D.A.
        • Tawa Jr., N.E.
        • O'Brien J.M.
        • et al.
        Nonviral transfer of the gene encoding coagulation factor VIII in patients with severe hemophilia A.
        N Engl J Med. 2001; 344: 1735-1742
        • Shi Q.
        • Montgomery R.R.
        Platelets as delivery systems for disease treatments.
        Adv Drug Deliv Rev. 2010; 62: 1196-1203
        • Lin Y.
        • Chang L.
        • Solovey A.
        • Healey J.F.
        • Lollar P.
        • Hebbel R.P.
        Use of blood outgrowth endothelial cells for gene therapy for hemophilia A.
        Blood. 2002; 99: 457-462
        • Matsui H.
        Endothelial progenitor cell-based therapy for hemophilia A.
        Int J Hematol. 2012; 95: 119-124
        • Van Damme A.
        • Chuah M.K.
        • Dell'accio F.
        • et al.
        Bone marrow mesenchymal cells for haemophilia A gene therapy using retroviral vectors with modified long-terminal repeats.
        Haemophilia. 2003; 9: 94-103
        • Porada C.D.
        • Sanada C.
        • Kuo C.J.
        • et al.
        Phenotypic correction of hemophilia A in sheep by postnatal intraperitoneal transplantation of FVIII-expressing MSC.
        Exp Hematol. 2011; 39 (e1124): 1124-1135
        • Powell J.S.
        • Ragni M.V.
        • White 2nd, G.C.
        • et al.
        Phase 1 trial of FVIII gene transfer for severe hemophilia A using a retroviral construct administered by peripheral intravenous infusion.
        Blood. 2003; 102: 2038-2045
        • Lehrman S.
        Virus treatment questioned after gene therapy death.
        Nature. 1999; 401: 517-518
        • Kay M.A.
        • Manno C.S.
        • Ragni M.V.
        • et al.
        Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector.
        Nat Genet. 2000; 24: 257-261
        • Manno C.S.
        • Pierce G.F.
        • Arruda V.R.
        • et al.
        Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response.
        Nat Med. 2006; 12: 342-347
        • Chao H.
        • Liu Y.
        • Rabinowitz J.
        • et al.
        Several log increase in therapeutic transgene delivery by distinct adeno-associated viral serotype vectors.
        Mol Ther. 2000; 2: 619-623
        • Gao G.
        • Vandenberghe L.H.
        • Wilson J.M.
        New recombinant serotypes of AAV vectors.
        Curr Gene Ther. 2005; 5: 285-297
        • McCarty D.M.
        Self-complementary AAV vectors; advances and applications.
        Mol Ther. 2008; 16: 1648-1656
        • Nathwani A.C.
        • Rosales C.
        • McIntosh J.
        • et al.
        Long-term safety and efficacy following systemic administration of a self-complementary AAV vector encoding human FIX pseudotyped with serotype 5 and 8 capsid proteins.
        Mol Ther. 2011; 19: 876-885
        • Simioni P.
        • Tormene D.
        • Tognin G.
        • et al.
        X-linked thrombophilia with a mutant factor IX (factor IX Padua).
        N Engl J Med. 2009; 361: 1671-1675
        • Dong J.Y.
        • Fan P.D.
        • Frizzell R.A.
        Quantitative analysis of the packaging capacity of recombinant adeno-associated virus.
        Hum Gene Ther. 1996; 7: 2101-2112
        • Pittman D.D.
        • Alderman E.M.
        • Tomkinson K.N.
        • Wang J.H.
        • Giles A.R.
        • Kaufman R.J.
        Biochemical, immunological, and in vivo functional characterization of B-domain-deleted factor VIII.
        Blood. 1993; 81: 2925-2935
        • Chao H.
        • Mao L.
        • Bruce A.T.
        • Walsh C.E.
        Sustained expression of human factor VIII in mice using a parvovirus-based vector.
        Blood. 2000; 95: 1594-1599
        • Sarkar R.
        • Tetreault R.
        • Gao G.
        • et al.
        Total correction of hemophilia A mice with canine FVIII using an AAV 8 serotype.
        Blood. 2004; 103: 1253-1260
        • Scallan C.D.
        • Liu T.
        • Parker A.E.
        • et al.
        Phenotypic correction of a mouse model of hemophilia A using AAV2 vectors encoding the heavy and light chains of FVIII.
        Blood. 2003; 102: 3919-3926
        • Chang J.
        • Jin J.
        • Lollar P.
        • et al.
        Changing residue 338 in human factor IX from arginine to alanine causes an increase in catalytic activity.
        J Biol Chem. 1998; 273: 12089-12094
        • Mauser-Bunschoten E.P.
        • Den Uijl I.E.
        • Schutgens R.E.
        • Roosendaal G.
        • Fischer K.
        Risk of inhibitor development in mild haemophilia A increases with age.
        Haemophilia. 2012; 18: 263-267
        • Puttaraju M.
        • Jamison S.F.
        • Mansfield S.G.
        • Garcia-Blanco M.A.
        • Mitchell L.G.
        Spliceosome-mediated RNA trans-splicing as a tool for gene therapy.
        Nat Biotechnol. 1999; 17: 246-252
        • Mansfield S.G.
        • Chao H.
        • Walsh C.E.
        RNA repair using spliceosome-mediated RNA trans-splicing.
        Trends Mol Med. 2004; 10: 263-268
        • Chao H.
        • Mansfield S.G.
        • Bartel R.C.
        • et al.
        Phenotype correction of hemophilia A mice by spliceosome-mediated RNA trans-splicing.
        Nat Med. 2003; 9: 1015-1019
        • Montgomery R.R.
        • Monahan P.E.
        • Ozelo M.C.
        Unique strategies for therapeutic gene transfer in haemophilia A and haemophilia BWFH State-of-the-Art Session on Therapeutic Gene Transfer Buenos Aires, Argentina.
        Haemophilia. 2010; 16: 29-34
        • Neyman M.
        • Gewirtz J.
        • Poncz M.
        Analysis of the spatial and temporal characteristics of platelet-delivered factor VIII-based clots.
        Blood. 2008; 112: 1101-1108
        • Johnston J.M.
        • Denning G.
        • Doering C.B.
        • Spencer H.T.
        Generation of an optimized lentiviral vector encoding a high-expression factor VIII transgene for gene therapy of hemophilia A.
        Gene Ther. 2012; ([Epub ahead of print])