Advertisement

Mechanistic basis of immunotherapies for type 1 diabetes mellitus

  • Wenhao Chen
    Affiliations
    Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism, Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Tex
    Search for articles by this author
  • Aini Xie
    Affiliations
    Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism, Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Tex
    Search for articles by this author
  • Lawrence Chan
    Correspondence
    Reprint requests: Lawrence Chan, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, One Baylor Plaza (MS: BCM185), Houston, TX 77030
    Affiliations
    Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism, Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Tex
    Search for articles by this author
Published:January 24, 2013DOI:https://doi.org/10.1016/j.trsl.2012.12.017
      Type 1 diabetes (T1D) is an autoimmune disease for which there is no cure. The pancreatic beta cells are the source of insulin that keeps blood glucose normal. When susceptible individuals develop T1D, their beta cells are destroyed by autoimmune T lymphocytes and no longer produce insulin. T1D patients therefore depend on daily insulin injections for survival. Gene therapy in T1D aims at the induction of new islets to replace those that have been destroyed by autoimmunity. A major goal of T1D research is to restore functional beta cell mass while eliminating diabetogenic T cells in the hope of achieving insulin independence. Multiple therapeutic strategies for the generation of new beta cells have been under intense investigations. However, newly formed beta cells would be immediately destroyed by diabetogenic T cells. Therefore, successful islet induction therapy must be supported by potent immunotherapy that will protect the newly formed beta cells. Herein, we will summarize the current information on immunotherapies that aim at modifying T cell response to beta cells. We will first outline the immune mechanisms that underlie T1D development and progression and review the scientific background and rationale for specific modes of immunotherapy. Numerous clinical trials using antigen-specific strategies and immune-modifying drugs have been published, though most have proved too toxic or have failed to provide long-term beta cell protection. To develop an effective immunotherapy, there must be a continued effort on defining the molecular basis that underlies T cell response to pancreatic islet antigens in T1D.

      Abbreviations:

      Aire (autoimmune regulator), APC (antigen-presenting cell), ATG (antithymocyte globulin), CTLA-4 (cytotoxic T-lymphocyte antigen 4), DCs (dendritic cells), FcR (Fc receptor), GAD65 (glutamate decarboxylase 65), GWAS (genome-wide association studies), HLA (human leukocyte antigen), ICOS (inducible costimulator), IFIH1 (interferon induced with helicase C domain 1), IGRP (islet-specific glucose-6-phosphatase catalytic subunit-related protein), IL (interleukin), INS (insulin), mAb (monoclonal antibody), MHC (major histocompatibility complex), mTECs (medullary thymic epithelial cells), NOD (nonobese diabetic), PD-1 (programmed death 1), PPI (preproinsulin), TCR (T cell receptor), Th (T helper), Treg (regulatory T), T1D (type 1 diabetes), VNTR (variable number tandem repeat)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wagner R.T.
        • Lewis J.
        • Cooney A.
        • Chan L.
        Stem cell approaches for the treatment of type 1 diabetes mellitus.
        Transl Res. 2010; 156: 169-179
        • Banga A.
        • Akinci E.
        • Greder L.V.
        • Dutton J.R.
        • Slack J.M.
        In vivo reprogramming of Sox9+ cells in the liver to insulin-secreting ducts.
        Proc Natl Acad Sci U S A. 2012; 109: 15336-15341
        • Zhou Q.
        • Brown J.
        • Kanarek A.
        • Rajagopal J.
        • Melton D.A.
        In vivo reprogramming of adult pancreatic exocrine cells to beta-cells.
        Nature. 2008; 455: 627-632
        • Yechoor V.
        • Liu V.
        • Espiritu C.
        • et al.
        Neurogenin3 is sufficient for transdetermination of hepatic progenitor cells into neo-islets in vivo but not transdifferentiation of hepatocytes.
        Dev Cell. 2009; 16: 358-373
        • Yechoor V.
        • Liu V.
        • Paul A.
        • et al.
        Gene therapy with neurogenin 3 and betacellulin reverses major metabolic problems in insulin-deficient diabetic mice.
        Endocrinology. 2009; 150: 4863-4873
        • Roep B.O.
        • Peakman M.
        Diabetogenic T lymphocytes in human type 1 diabetes.
        Curr Opin Immunol. 2011; 23: 746-753
        • Lennon G.P.
        • Bettini M.
        • Burton A.R.
        • et al.
        T cell islet accumulation in type 1 diabetes is a tightly regulated, cell-autonomous event.
        Immunity. 2009; 31: 643-653
        • Luo X.
        • Herold K.C.
        • Miller S.D.
        Immunotherapy of type 1 diabetes: where are we and where should we be going?.
        Immunity. 2010; 32: 488-499
        • Waldron-Lynch F.
        • Herold K.C.
        Immunomodulatory therapy to preserve pancreatic beta-cell function in type 1 diabetes.
        Nat Rev Drug Discov. 2011; 10: 439-452
        • Starr T.K.
        • Jameson S.C.
        • Hogquist K.A.
        Positive and negative selection of T cells.
        Annu Rev Immunol. 2003; 21: 139-176
        • Bevan M.J.
        • Hogquist K.A.
        • Jameson S.C.
        Selecting the T cell receptor repertoire.
        Science. 1994; 264: 796-797
        • Bluestone J.A.
        Mechanisms of tolerance.
        Immunol Rev. 2011; 241: 5-19
        • Anderson M.S.
        • Su M.A.
        Aire and T cell development.
        Curr Opin Immunol. 2011; 23: 198-206
        • Husebye E.S.
        • Anderson M.S.
        Autoimmune polyendocrine syndromes: clues to type 1 diabetes pathogenesis.
        Immunity. 2010; 32: 479-487
        • Anderson M.S.
        • Venanzi E.S.
        • Klein L.
        • et al.
        Projection of an immunological self shadow within the thymus by the aire protein.
        Science. 2002; 298: 1395-1401
        • Bennett S.T.
        • Lucassen A.M.
        • Gough S.C.
        • et al.
        Susceptibility to human type 1diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus.
        Nat Genet. 1995; 9: 284-292
        • Pugliese A.
        • Zeller M.
        • Fernandez A.
        • et al.
        The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes.
        Nat Genet. 1997; 15: 293-297
        • Vafiadis P.
        • Bennett S.T.
        • Todd J.A.
        • et al.
        Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus.
        Nat Genet. 1997; 15: 289-292
        • Fan Y.
        • Rudert W.A.
        • Grupillo M.
        • He J.
        • Sisino G.
        • Trucco M.
        Thymus-specific deletion of insulin induces autoimmune diabetes.
        EMBO J. 2009; 28: 2812-2824
        • Todd J.A.
        Etiology of type 1 diabetes.
        Immunity. 2010; 32: 457-467
        • Ziegler A.G.
        • Nepom G.T.
        Prediction and pathogenesis in type 1 diabetes.
        Immunity. 2010; 32: 468-478
        • Nejentsev S.
        • Howson J.M.
        • Walker N.M.
        • et al.
        Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A.
        Nature. 2007; 450: 887-892
        • Howson J.M.
        • Walker N.M.
        • Clayton D.
        • Todd J.A.
        Confirmation of HLA class II independent type 1 diabetes associations in the major histocompatibility complex including HLA-B and HLA-A.
        Diabetes Obes Metab. 2009; 11: 31-45
        • Suri A.
        • Walters J.J.
        • Gross M.L.
        • Unanue E.R.
        Natural peptides selected by diabetogenic DQ8 and murine I-A(g7) molecules show common sequence specificity.
        J Clin Invest. 2005; 115: 2268-2276
        • Corper A.L.
        • Stratmann T.
        • Apostolopoulos V.
        • et al.
        A structural framework for deciphering the link between I-Ag7 and autoimmune diabetes.
        Science. 2000; 288: 505-511
        • Levisetti M.G.
        • Lewis D.M.
        • Suri A.
        • Unanue E.R.
        Weak proinsulin peptide-major histocompatibility complexes are targeted in autoimmune diabetes in mice.
        Diabetes. 2008; 57: 1852-1860
        • Zehn D.
        • Bevan M.J.
        T cells with low avidity for a tissue-restricted antigen routinely evade central and peripheral tolerance and cause autoimmunity.
        Immunity. 2006; 25: 261-270
        • Amrani A.
        • Verdaguer J.
        • Serra P.
        • Tafuro S.
        • Tan R.
        • Santamaria P.
        Progression of autoimmune diabetes driven by avidity maturation of a T-cell population.
        Nature. 2000; 406: 739-742
        • Palmer J.P.
        • Asplin C.M.
        • Clemons P.
        • et al.
        Insulin antibodies in insulin-dependent diabetics before insulin treatment.
        Science. 1983; 222: 1337-1339
        • Kent S.C.
        • Chen Y.
        • Bregoli L.
        • et al.
        Expanded T cells from pancreatic lymph nodes of type 1 diabetic subjects recognize an insulin epitope.
        Nature. 2005; 435: 224-228
        • Skowera A.
        • Ellis R.J.
        • Varela-Calvino R.
        • et al.
        CTLs are targeted to kill beta cells in patients with type 1 diabetes through recognition of a glucose-regulated preproinsulin epitope.
        J Clin Invest. 2008; 118: 3390-3402
        • Alleva D.G.
        • Crowe P.D.
        • Jin L.
        • et al.
        A disease-associated cellular immune response in type 1 diabetics to an immunodominant epitope of insulin.
        J Clin Invest. 2001; 107: 173-180
        • Velthuis J.H.
        • Unger W.W.
        • Abreu J.R.
        • et al.
        Simultaneous detection of circulating autoreactive CD8+ T-cells specific for different islet cell-associated epitopes using combinatorial MHC multimers.
        Diabetes. 2010; 59: 1721-1730
        • Nakayama M.
        • Abiru N.
        • Moriyama H.
        • et al.
        Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice.
        Nature. 2005; 435: 220-223
        • Mohan J.F.
        • Levisetti M.G.
        • Calderon B.
        • Herzog J.W.
        • Petzold S.J.
        • Unanue E.R.
        Unique autoreactive T cells recognize insulin peptides generated within the islets of Langerhans in autoimmune diabetes.
        Nat Immunol. 2010; 11: 350-354
        • Wong F.S.
        • Karttunen J.
        • Dumont C.
        • et al.
        Identification of an MHC class I-restricted autoantigen in type 1 diabetes by screening an organ-specific cDNA library.
        Nat Med. 1999; 5: 1026-1031
        • Weiner H.L.
        • da Cunha A.P.
        • Quintana F.
        • Wu H.
        Oral tolerance.
        Immunol Rev. 2011; 241: 241-259
        • Fourlanos S.
        • Perry C.
        • Gellert S.A.
        • et al.
        Evidence that nasal insulin induces immune tolerance to insulin in adults with autoimmune diabetes.
        Diabetes. 2011; 60: 1237-1245
        • Skyler J.S.
        • Krischer J.P.
        • Wolfsdorf J.
        • et al.
        Effects of oral insulin in relatives of patients with type 1 diabetes: The Diabetes Prevention Trial–Type 1.
        Diabetes Care. 2005; 28: 1068-1076
        • Nanto-Salonen K.
        • Kupila A.
        • Simell S.
        • et al.
        Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: a double-blind, randomised controlled trial.
        Lancet. 2008; 372: 1746-1755
        • Martinez N.R.
        • Augstein P.
        • Moustakas A.K.
        • et al.
        Disabling an integral CTL epitope allows suppression of autoimmune diabetes by intranasal proinsulin peptide.
        J Clin Invest. 2003; 111: 1365-1371
        • Daniel D.
        • Wegmann D.R.
        Intranasal administration of insulin peptide B: 9-23 protects NOD mice from diabetes.
        Ann N Y Acad Sci. 1996; 778: 371-372
        • Bresson D.
        • Togher L.
        • Rodrigo E.
        • et al.
        Anti-CD3 and nasal proinsulin combination therapy enhances remission from recent-onset autoimmune diabetes by inducing Tregs.
        J Clin Invest. 2006; 116: 1371-1381
        • Takiishi T.
        • Korf H.
        • van Belle T.L.
        • et al.
        Reversal of autoimmune diabetes by restoration of antigen-specific tolerance using genetically modified Lactococcus lactis in mice.
        J Clin Invest. 2012; 122: 1717-1725
        • Solvason N.
        • Lou Y.P.
        • Peters W.
        • et al.
        Improved efficacy of a tolerizing DNA vaccine for reversal of hyperglycemia through enhancement of gene expression and localization to intracellular sites.
        J Immunol. 2008; 181: 8298-8307
        • Prasad S.
        • Kohm A.P.
        • McMahon J.S.
        • Luo X.
        • Miller S.D.
        Pathogenesis of NOD diabetes is initiated by reactivity to the insulin B chain 9-23 epitope and involves functional epitope spreading.
        J Autoimmun. 2012; 39: 347-353
        • Daniel C.
        • Weigmann B.
        • Bronson R.
        • von B.H.
        Prevention of type 1 diabetes in mice by tolerogenic vaccination with a strong agonist insulin mimetope.
        J Exp Med. 2011; 208: 1501-1510
        • Krishnamurthy B.
        • Chee J.
        • Jhala G.
        • et al.
        Complete diabetes protection despite delayed thymic tolerance in NOD8.3 TCR transgenic mice due to antigen-induced extrathymic deletion of T cells.
        Diabetes. 2012; 61: 425-435
        • Krishnamurthy B.
        • Mariana L.
        • Gellert S.A.
        • et al.
        Autoimmunity to both proinsulin and IGRP is required for diabetes in nonobese diabetic 8.3 TCR transgenic mice.
        J Immunol. 2008; 180: 4458-4464
        • Krishnamurthy B.
        • Dudek N.L.
        • McKenzie M.D.
        • et al.
        Responses against islet antigens in NOD mice are prevented by tolerance to proinsulin but not IGRP.
        J Clin Invest. 2006; 116: 3258-3265
        • Jarchum I.
        • Nichol L.
        • Trucco M.
        • Santamaria P.
        • Dilorenzo T.P.
        Identification of novel IGRP epitopes targeted in type 1 diabetes patients.
        Clin Immunol. 2008; 127: 359-365
        • Mally M.I.
        • Cirulli V.
        • Otonkoski T.
        • Soto G.
        • Hayek A.
        Ontogeny and tissue distribution of human GAD expression.
        Diabetes. 1996; 45: 496-501
        • Hanninen A.
        • Soilu-Hanninen M.
        • Hampe C.S.
        • et al.
        Characterization of CD4+ T cells specific for glutamic acid decarboxylase (GAD65) and proinsulin in a patient with stiff-person syndrome but without type 1 diabetes.
        Diabetes Metab Res Rev. 2010; 26: 271-279
        • Tisch R.
        • Yang X.D.
        • Singer S.M.
        • Liblau R.S.
        • Fugger L.
        • McDevitt H.O.
        Immune response to glutamic acid decarboxylase correlates with insulitis in nonobese diabetic mice.
        Nature. 1993; 366: 72-75
        • Tian J.
        • Clare-Salzler M.
        • Herschenfeld A.
        • et al.
        Modulating autoimmune responses to GAD inhibits disease progression and prolongs islet graft survival in diabetes-prone mice.
        Nat Med. 1996; 2: 1348-1353
        • Schlosser M.
        • Banga J.P.
        • Madec A.M.
        • et al.
        Dynamic changes of GAD65 autoantibody epitope specificities in individuals at risk of developing type 1 diabetes.
        Diabetologia. 2005; 48: 922-930
        • Standifer N.E.
        • Burwell E.A.
        • Gersuk V.H.
        • Greenbaum C.J.
        • Nepom G.T.
        Changes in autoreactive T cell avidity during type 1 diabetes development.
        Clin Immunol. 2009; 132: 312-320
        • Ludvigsson J.
        • Faresjo M.
        • Hjorth M.
        • et al.
        GAD treatment and insulin secretion in recent-onset type 1 diabetes.
        N Engl J Med. 2008; 359: 1909-1920
        • Ludvigsson J.
        • Krisky D.
        • Casas R.
        • et al.
        GAD65 antigen therapy in recently diagnosed type 1 diabetes mellitus.
        N Engl J Med. 2012; 366: 433-442
        • Dilorenzo T.P.
        Multiple antigens versus single major antigen in type 1 diabetes: arguing for multiple antigens.
        Diabetes Metab Res Rev. 2011; 27: 778-783
        • Stadinski B.D.
        • Delong T.
        • Reisdorph N.
        • et al.
        Chromogranin A is an autoantigen in type 1 diabetes.
        Nat Immunol. 2010; 11: 225-231
        • Tsai S.
        • Shameli A.
        • Yamanouchi J.
        • et al.
        Reversal of autoimmunity by boosting memory-like autoregulatory T cells.
        Immunity. 2010; 32: 568-580
        • Willcox A.
        • Richardson S.J.
        • Bone A.J.
        • Foulis A.K.
        • Morgan N.G.
        Analysis of islet inflammation in human type 1 diabetes.
        Clin Exp Immunol. 2009; 155: 173-181
        • Gagnerault M.C.
        • Luan J.J.
        • Lotton C.
        • Lepault F.
        Pancreatic lymph nodes are required for priming of beta cell reactive T cells in NOD mice.
        J Exp Med. 2002; 196: 369-377
        • Hoglund P.
        • Mintern J.
        • Waltzinger C.
        • Heath W.
        • Benoist C.
        • Mathis D.
        Initiation of autoimmune diabetes by developmentally regulated presentation of islet cell antigens in the pancreatic lymph nodes.
        J Exp Med. 1999; 189: 331-339
        • Turley S.
        • Poirot L.
        • Hattori M.
        • Benoist C.
        • Mathis D.
        Physiological beta cell death triggers priming of self-reactive T cells by dendritic cells in a type-1 diabetes model.
        J Exp Med. 2003; 198: 1527-1537
        • Smith-Garvin J.E.
        • Koretzky G.A.
        • Jordan M.S.
        T cell activation.
        Annu Rev Immunol. 2009; 27: 591-619
        • Vang T.
        • Congia M.
        • Macis M.D.
        • et al.
        Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant.
        Nat Genet. 2005; 37: 1317-1319
        • Rieck M.
        • Arechiga A.
        • Onengut-Gumuscu S.
        • Greenbaum C.
        • Concannon P.
        • Buckner J.H.
        Genetic variation in PTPN22 corresponds to altered function of T and B lymphocytes.
        J Immunol. 2007; 179: 4704-4710
        • Ponticelli C.
        Cyclosporine: from renal transplantation to autoimmune diseases.
        Ann N Y Acad Sci. 2005; 1051: 551-558
        • Stiller C.R.
        • Dupre J.
        • Gent M.
        • et al.
        Effects of cyclosporine immunosuppression in insulin-dependent diabetes mellitus of recent onset.
        Science. 1984; 223: 1362-1367
        • Bougneres P.F.
        • Landais P.
        • Boisson C.
        • et al.
        Limited duration of remission of insulin dependency in children with recent overt type I diabetes treated with low-dose cyclosporin.
        Diabetes. 1990; 39: 1264-1272
        • Napoli K.L.
        • Taylor P.J.
        From beach to bedside: history of the development of sirolimus.
        Ther Drug Monit. 2001; 23: 559-586
        • Piemonti L.
        • Maffi P.
        • Monti L.
        • et al.
        Beta cell function during rapamycin monotherapy in long-term type 1 diabetes.
        Diabetologia. 2011; 54: 433-439
        • Long S.A.
        • Rieck M.
        • Sanda S.
        • et al.
        Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments Tregs yet transiently impairs beta-cell function.
        Diabetes. 2012; 61: 2340-2348
        • Kjer-Nielsen L.
        • Dunstone M.A.
        • Kostenko L.
        • et al.
        Crystal structure of the human T cell receptor CD3 epsilon gamma heterodimer complexed to the therapeutic mAb OKT3.
        Proc Natl Acad Sci U S A. 2004; 101: 7675-7680
        • Salmeron A.
        • Sanchez-Madrid F.
        • Ursa M.A.
        • Fresno M.
        • Alarcon B.
        A conformational epitope expressed upon association of CD3-epsilon with either CD3-delta or CD3-gamma is the main target for recognition by anti-CD3 monoclonal antibodies.
        J Immunol. 1991; 147: 3047-3052
        • Gaston R.S.
        • Deierhoi M.H.
        • Patterson T.
        • et al.
        OKT3 first-dose reaction: association with T cell subsets and cytokine release.
        Kidney Int. 1991; 39: 141-148
        • Chatenoud L.
        • Bluestone J.A.
        CD3-specific antibodies: a portal to the treatment of autoimmunity.
        Nat Rev Immunol. 2007; 7: 622-632
        • Herold K.C.
        • Burton J.B.
        • Francois F.
        • Poumian-Ruiz E.
        • Glandt M.
        • Bluestone J.A.
        Activation of human T cells by FcR nonbinding anti-CD3 mAb, hOKT3gamma1(Ala-Ala).
        J Clin Invest. 2003; 111: 409-418
        • Belghith M.
        • Bluestone J.A.
        • Barriot S.
        • Megret J.
        • Bach J.F.
        • Chatenoud L.
        TGF-beta-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes.
        Nat Med. 2003; 9: 1202-1208
        • Bisikirska B.
        • Colgan J.
        • Luban J.
        • Bluestone J.A.
        • Herold K.C.
        TCR stimulation with modified anti-CD3 mAb expands CD8+ T cell population and induces CD8+CD25+ Tregs.
        J Clin Invest. 2005; 115: 2904-2913
        • Herold K.C.
        • Hagopian W.
        • Auger J.A.
        • et al.
        Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus.
        N Engl J Med. 2002; 346: 1692-1698
        • Herold K.C.
        • Gitelman S.E.
        • Masharani U.
        • et al.
        A single course of anti-CD3 monoclonal antibody hOKT3gamma1(Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes.
        Diabetes. 2005; 54: 1763-1769
        • Keymeulen B.
        • Vandemeulebroucke E.
        • Ziegler A.G.
        • et al.
        Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes.
        N Engl J Med. 2005; 352: 2598-2608
        • Keymeulen B.
        • Walter M.
        • Mathieu C.
        • et al.
        Four-year metabolic outcome of a randomised controlled CD3-antibody trial in recent-onset type 1 diabetic patients depends on their age and baseline residual beta cell mass.
        Diabetologia. 2010; 53: 614-623
        • Herold K.C.
        • Gitelman S.
        • Greenbaum C.
        • et al.
        Treatment of patients with new onset Type 1 diabetes with a single course of anti-CD3 mAb Teplizumab preserves insulin production for up to 5 years.
        Clin Immunol. 2009; 132: 166-173
        • Sherry N.
        • Hagopian W.
        • Ludvigsson J.
        • et al.
        Teplizumab for treatment of type 1 diabetes (Protege study): 1-year results from a randomised, placebo-controlled trial.
        Lancet. 2011; 378: 487-497
        • Saudek F.
        • Havrdova T.
        • Boucek P.
        • Karasova L.
        • Novota P.
        • Skibova J.
        Polyclonal anti-T-cell therapy for type 1 diabetes mellitus of recent onset.
        Rev Diabet Stud. 2004; 1: 80-88
        • Couri C.E.
        • Oliveira M.C.
        • Stracieri A.B.
        • et al.
        C-peptide levels and insulin independence following autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus.
        JAMA. 2009; 301: 1573-1579
        • Voltarelli J.C.
        • Couri C.E.
        • Stracieri A.B.
        • et al.
        Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus.
        JAMA. 2007; 297: 1568-1576
        • Yoon J.W.
        • McClintock P.R.
        • Onodera T.
        • Notkins A.L.
        Virus-induced diabetes mellitus. XVIII. Inhibition by a nondiabetogenic variant of encephalomyocarditis virus.
        J Exp Med. 1980; 152: 878-892
        • Wen L.
        • Ley R.E.
        • Volchkov P.Y.
        • et al.
        Innate immunity and intestinal microbiota in the development of Type 1 diabetes.
        Nature. 2008; 455: 1109-1113
        • Nejentsev S.
        • Walker N.
        • Riches D.
        • Egholm M.
        • Todd J.A.
        Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes.
        Science. 2009; 324: 387-389
        • Chilton P.M.
        • Rezzoug F.
        • Fugier-Vivier I.
        • et al.
        Flt3-ligand treatment prevents diabetes in NOD mice.
        Diabetes. 2004; 53: 1995-2002
        • O'Keeffe M.
        • Brodnicki T.C.
        • Fancke B.
        • et al.
        Fms-like tyrosine kinase 3 ligand administration overcomes a genetically determined dendritic cell deficiency in NOD mice and protects against diabetes development.
        Int Immunol. 2005; 17: 307-314
        • Poligone B.
        • Weaver Jr., D.J.
        • Sen P.
        • Baldwin Jr., A.S.
        • Tisch R.
        Elevated NF-kappaB activation in nonobese diabetic mouse dendritic cells results in enhanced APC function.
        J Immunol. 2002; 168: 188-196
        • Steptoe R.J.
        • Ritchie J.M.
        • Harrison L.C.
        Increased generation of dendritic cells from myeloid progenitors in autoimmune-prone nonobese diabetic mice.
        J Immunol. 2002; 168: 5032-5041
        • Kared H.
        • Masson A.
        • Adle-Biassette H.
        • Bach J.F.
        • Chatenoud L.
        • Zavala F.
        Treatment with granulocyte colony-stimulating factor prevents diabetes in NOD mice by recruiting plasmacytoid dendritic cells and functional CD4+CD25+ regulatory T-cells.
        Diabetes. 2005; 54: 78-84
        • Mukhopadhaya A.
        • Hanafusa T.
        • Jarchum I.
        • et al.
        Selective delivery of beta cell antigen to dendritic cells in vivo leads to deletion and tolerance of autoreactive CD8+ T cells in NOD mice.
        Proc Natl Acad Sci U S A. 2008; 105: 6374-6379
        • Bingley P.J.
        Clinical applications of diabetes antibody testing.
        J Clin Endocrinol Metab. 2010; 95: 25-33
        • Mallone R.
        • Brezar V.
        To B or not to B: (anti)bodies of evidence on the crime scene of type 1 diabetes?.
        Diabetes. 2011; 60: 2020-2022
        • Noorchashm H.
        • Noorchashm N.
        • Kern J.
        • Rostami S.Y.
        • Barker C.F.
        • Naji A.
        B-cells are required for the initiation of insulitis and sialitis in nonobese diabetic mice.
        Diabetes. 1997; 46: 941-946
        • Silveira P.A.
        • Johnson E.
        • Chapman H.D.
        • Bui T.
        • Tisch R.M.
        • Serreze D.V.
        The preferential ability of B lymphocytes to act as diabetogenic APC in NOD mice depends on expression of self-antigen-specific immunoglobulin receptors.
        Eur J Immunol. 2002; 32: 3657-3666
        • Serreze D.V.
        • Chapman H.D.
        • Varnum D.S.
        • et al.
        B lymphocytes are essential for the initiation of T cell-mediated autoimmune diabetes: analysis of a new “speed congenic” stock of NOD.Ig mu null mice.
        J Exp Med. 1996; 184: 2049-2053
        • Hu C.Y.
        • Rodriguez-Pinto D.
        • Du W.
        • et al.
        Treatment with CD20-specific antibody prevents and reverses autoimmune diabetes in mice.
        J Clin Invest. 2007; 117: 3857-3867
        • Pescovitz M.D.
        • Greenbaum C.J.
        • Krause-Steinrauf H.
        • et al.
        Rituximab, B-lymphocyte depletion, and preservation of beta-cell function.
        N Engl J Med. 2009; 361: 2143-2152
        • Zotos D.
        • Coquet J.M.
        • Zhang Y.
        • et al.
        IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism.
        J Exp Med. 2010; 207: 365-378
        • Eggena M.P.
        • Walker L.S.
        • Nagabhushanam V.
        • Barron L.
        • Chodos A.
        • Abbas A.K.
        Cooperative roles of CTLA-4 and regulatory T cells in tolerance to an islet cell antigen.
        J Exp Med. 2004; 199: 1725-1730
        • Fife B.T.
        • Griffin M.D.
        • Abbas A.K.
        • Locksley R.M.
        • Bluestone J.A.
        Inhibition of T cell activation and autoimmune diabetes using a B cell surface-linked CTLA-4 agonist.
        J Clin Invest. 2006; 116: 2252-2261
        • Ueda H.
        • Howson J.M.
        • Esposito L.
        • et al.
        Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease.
        Nature. 2003; 423: 506-511
        • Orban T.
        • Bundy B.
        • Becker D.J.
        • et al.
        Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled trial.
        Lancet. 2011; 378: 412-419
        • Prevot N.
        • Briet C.
        • Lassmann H.
        • et al.
        Abrogation of ICOS/ICOS ligand costimulation in NOD mice results in autoimmune deviation toward the neuromuscular system.
        Eur J Immunol. 2010; 40: 2267-2276
        • Nanji S.A.
        • Hancock W.W.
        • Luo B.
        • et al.
        Costimulation blockade of both inducible costimulator and CD40 ligand induces dominant tolerance to islet allografts and prevents spontaneous autoimmune diabetes in the NOD mouse.
        Diabetes. 2006; 55: 27-33
        • Kornete M.
        • Sgouroudis E.
        • Piccirillo C.A.
        ICOS-dependent homeostasis and function of Foxp3+ regulatory T cells in islets of nonobese diabetic mice.
        J Immunol. 2012; 188: 1064-1074
        • Riley J.L.
        PD-1 signaling in primary T cells.
        Immunol Rev. 2009; 229: 114-125
        • Wherry E.J.
        T cell exhaustion.
        Nat Immunol. 2011; 12: 492-499
        • Ansari M.J.
        • Salama A.D.
        • Chitnis T.
        • et al.
        The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice.
        J Exp Med. 2003; 198: 63-69
        • Wang J.
        • Yoshida T.
        • Nakaki F.
        • Hiai H.
        • Okazaki T.
        • Honjo T.
        Establishment of NOD-Pdcd1-/- mice as an efficient animal model of type I diabetes.
        Proc Natl Acad Sci U S A. 2005; 102: 11823-11828
        • Keir M.E.
        • Liang S.C.
        • Guleria I.
        • et al.
        Tissue expression of PD-L1 mediates peripheral T cell tolerance.
        J Exp Med. 2006; 203: 883-895
        • Okazaki T.
        • Okazaki I.M.
        • Wang J.
        • et al.
        PD-1 and LAG-3 inhibitory co-receptors act synergistically to prevent autoimmunity in mice.
        J Exp Med. 2011; 208: 395-407
        • Wang C.
        • McPherson A.J.
        • Jones R.B.
        • et al.
        Loss of the signaling adaptor TRAF1 causes CD8+ T cell dysregulation during human and murine chronic infection.
        J Exp Med. 2012; 209: 77-91
        • Sytwu H.K.
        • Lin W.D.
        • Roffler S.R.
        • et al.
        Anti-4-1BB-based immunotherapy for autoimmune diabetes: lessons from a transgenic non-obese diabetic (NOD) model.
        J Autoimmun. 2003; 21: 247-254
        • Peters A.L.
        • Stunz L.L.
        • Bishop G.A.
        CD40 and autoimmunity: the dark side of a great activator.
        Semin Immunol. 2009; 21: 293-300
        • Roth G.A.
        • Zuckermann A.
        • Klepetko W.
        • et al.
        Thrombophilia associated with anti-CD154 monoclonal antibody treatment and its prophylaxis in nonhuman primates.
        Transplantation. 2004; 78: 1238-1239
        • Hunig T.
        The storm has cleared: lessons from the CD28 superagonist TGN1412 trial.
        Nat Rev Immunol. 2012; 12: 317-318
        • Hulme M.A.
        • Wasserfall C.H.
        • Atkinson M.A.
        • Brusko T.M.
        Central role for interleukin-2 in type 1 diabetes.
        Diabetes. 2012; 61: 14-22
        • Yamanouchi J.
        • Rainbow D.
        • Serra P.
        • et al.
        Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity.
        Nat Genet. 2007; 39: 329-337
        • Tang Q.
        • Adams J.Y.
        • Penaranda C.
        • et al.
        Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction.
        Immunity. 2008; 28: 687-697
        • Grinberg-Bleyer Y.
        • Baeyens A.
        • You S.
        • et al.
        IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells.
        J Exp Med. 2010; 207: 1871-1878
        • Lindley S.
        • Dayan C.M.
        • Bishop A.
        • Roep B.O.
        • Peakman M.
        • Tree T.I.
        Defective suppressor function in CD4+CD25+ T-cells from patients with type 1 diabetes.
        Diabetes. 2005; 54: 92-99
        • Dendrou C.A.
        • Plagnol V.
        • Fung E.
        • et al.
        Cell-specific protein phenotypes for the autoimmune locus IL2RA using a genotype-selectable human bioresource.
        Nat Genet. 2009; 41: 1011-1015
        • Long S.A.
        • Cerosaletti K.
        • Bollyky P.L.
        • et al.
        Defects in IL-2R signaling contribute to diminished maintenance of FOXP3 expression in CD4+CD25+ regulatory T-cells of type 1 diabetic subjects.
        Diabetes. 2010; 59: 407-415
        • Lawson J.M.
        • Tremble J.
        • Dayan C.
        • et al.
        Increased resistance to CD4+CD25hi regulatory T cell-mediated suppression in patients with type 1 diabetes.
        Clin Exp Immunol. 2008; 154: 353-359
        • Schneider A.
        • Rieck M.
        • Sanda S.
        • Pihoker C.
        • Greenbaum C.
        • Buckner J.H.
        The effector T cells of diabetic subjects are resistant to regulation via CD4+ FOXP3+ regulatory T cells.
        J Immunol. 2008; 181: 7350-7355
        • Sutherland A.P.
        • Van B.T.
        • Wurster A.L.
        • et al.
        Interleukin-21 is required for the development of type 1 diabetes in NOD mice.
        Diabetes. 2009; 58: 1144-1155
        • McGuire H.M.
        • Walters S.
        • Vogelzang A.
        • et al.
        Interleukin-21 is critically required in autoimmune and allogeneic responses to islet tissue in murine models.
        Diabetes. 2011; 60: 867-875
        • McGuire H.M.
        • Vogelzang A.
        • Ma C.S.
        • et al.
        A subset of interleukin-21+ chemokine receptor CCR9+ T helper cells target accessory organs of the digestive system in autoimmunity.
        Immunity. 2011; 34: 602-615
        • van Belle T.L.
        • Nierkens S.
        • Arens R.
        • von Herrath M.G.
        Interleukin-21 receptor-mediated signals control autoreactive T cell infiltration in pancreatic islets.
        Immunity. 2012; 36: 1060-1072
        • Elsaesser H.
        • Sauer K.
        • Brooks D.G.
        IL-21 is required to control chronic viral infection.
        Science. 2009; 324: 1569-1572
        • Yi J.S.
        • Du M.
        • Zajac A.J.
        A vital role for interleukin-21 in the control of a chronic viral infection.
        Science. 2009; 324: 1572-1576
        • Frohlich A.
        • Kisielow J.
        • Schmitz I.
        • et al.
        IL-21R on T cells is critical for sustained functionality and control of chronic viral infection.
        Science. 2009; 324: 1576-1580
        • Spolski R.
        • Leonard W.J.
        Interleukin-21: basic biology and implications for cancer and autoimmunity.
        Annu Rev Immunol. 2008; 26: 57-79
        • Zhou L.
        • Ivanov II,
        • Spolski R.
        • et al.
        IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways.
        Nat Immunol. 2007; 8: 967-974
        • Korn T.
        • Bettelli E.
        • Gao W.
        • et al.
        IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells.
        Nature. 2007; 448: 484-487
        • Nurieva R.
        • Yang X.O.
        • Martinez G.
        • et al.
        Essential autocrine regulation by IL-21 in the generation of inflammatory T cells.
        Nature. 2007; 448: 480-483
        • Arif S.
        • Moore F.
        • Marks K.
        • et al.
        Peripheral and islet interleukin-17 pathway activation characterizes human autoimmune diabetes and promotes cytokine-mediated beta-cell death.
        Diabetes. 2011; 60: 2112-2119
        • Marwaha A.K.
        • Crome S.Q.
        • Panagiotopoulos C.
        • et al.
        Cutting edge: Increased IL-17-secreting T cells in children with new-onset type 1 diabetes.
        J Immunol. 2010; 185: 3814-3818
        • Honkanen J.
        • Nieminen J.K.
        • Gao R.
        • et al.
        IL-17 immunity in human type 1 diabetes.
        J Immunol. 2010; 185: 1959-1967
        • Emamaullee J.A.
        • Davis J.
        • Merani S.
        • et al.
        Inhibition of Th17 cells regulates autoimmune diabetes in NOD mice.
        Diabetes. 2009; 58: 1302-1311
        • Bendtzen K.
        • Mandrup-Poulsen T.
        • Nerup J.
        • Nielsen J.H.
        • Dinarello C.A.
        • Svenson M.
        Cytotoxicity of human pI 7 interleukin-1 for pancreatic islets of Langerhans.
        Science. 1986; 232: 1545-1547
        • Sumpter K.M.
        • Adhikari S.
        • Grishman E.K.
        • White P.C.
        Preliminary studies related to anti-interleukin-1beta therapy in children with newly diagnosed type 1 diabetes.
        Pediatr Diabetes. 2011; 12: 656-667
        • Ablamunits V.
        • Henegariu O.
        • Hansen J.B.
        • et al.
        Synergistic reversal of type 1 diabetes in NOD mice with anti-CD3 and interleukin-1 blockade: evidence of improved immune regulation.
        Diabetes. 2012; 61: 145-154
        • Xia A.
        • Buras E.
        • Xia J.
        • Chen W.
        The emerging role of interleukin-21 in transplantation.
        J Clin Cell Immunol. 2012; (in press)