Arthritis gene therapy and its tortuous path into the clinic

Published:January 30, 2013DOI:
      Arthritis is a disease of joints. The biology of joints makes them very difficult targets for drug delivery in a manner that is specific and selective. This is especially true for proteinaceous drugs (“biologics”). Gene transfer is the only technology that can solve the delivery problem in a clinically reasonable fashion. There is an abundance of preclinical data confirming that genes can be efficiently transferred to tissues within joints by intra-articular injection using a variety of different vectors in conjunction with ex vivo and in vivo strategies. Using the appropriate gene transfer technologies, long-term, intra-articular expression of anti-arthritic transgenes at therapeutic concentrations can be achieved. Numerous studies confirm that gene therapy is effective in treating experimental models of rheumatoid arthritis (RA) and osteoarthritis (OA) in the laboratory. A limited number of clinical trials have been completed, which confirm safety and feasibility but only 3 protocols have reached phase II; as yet, there is no unambiguous evidence of efficacy in human disease. Only 2 clinical trials are presently underway, both phase II studies using allogeneic chondrocytes expressing transforming growth factor-β1 for the treatment of OA. Phase I studies using adeno-associated virus to deliver interleukin-1Ra in OA and interferon-β in RA are going through the regulatory process. It is to be hoped that the recent successes in treating rare, Mendelian diseases by gene therapy will lead to accelerated development of genetic treatments for common, non-Mendelian diseases, such as arthritis.


      AAV (Adeno-associated virus), FDA (Food and drug administration), GFP (Green fluorescent protein), IFN-b (Interferon-beta), IL-1 (Interleukin-1), IL-1Ra (Interleukin-1 receptor antagonist), IND (Investigational new drug), MCP (Metacarpophalangeal), OA (Osteoarthritis), OBA (Office of biotechnology activities), PI (Principal Investigator), RA (Rheumatoid arthritis), SCID (Severe combined immunodeficiency disease), TGF-b (Transforming growth factor beta), TNF-a (Tumor necrosis factor-alpha)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Lawrence R.C.
        • Felson D.T.
        • Helmick C.G.
        • et al.
        Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II.
        Arthritis Rheum. 2008; 58: 26-35
        • Nuesch E.
        • Dieppe P.
        • Reichenbach S.
        • Williams S.
        • Iff S.
        • Juni P.
        All cause and disease specific mortality in patients with knee or hip osteoarthritis: population based cohort study.
        BMJ. 2011; 342: d1165
        • Kim S.
        Changes in surgical loads and economic burden of hip and knee replacements in the US: 1997-2004.
        Arthritis Rheum. 2008; 59: 481-488
        • Kotlarz H.
        • Gunnarsson C.L.
        • Fang H.
        • Rizzo J.A.
        Insurer and out-of-pocket costs of osteoarthritis in the US: evidence from national survey data.
        Arthritis Rheum. 2009; 60: 3546-3553
        • Helmick C.G.
        • Felson D.T.
        • Lawrence R.C.
        • et al.
        Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I.
        Arthritis Rheum. 2008; 58: 15-25
        • Carmona L.
        • Cross M.
        • Williams B.
        • Lassere M.
        • March L.
        Rheumatoid arthritis.
        Best Pract Res Clin Rheumatol. 2011; 24: 733-745
        • Mandema J.W.
        • Salinger D.H.
        • Baumgartner S.W.
        • Gibbs M.A.
        A dose-response meta-analysis for quantifying relative efficacy of biologics in rheumatoid arthritis.
        Clin Pharmacol Ther. 2011; 90: 828-835
        • Scott D.L.
        Biologics-based therapy for the treatment of rheumatoid arthritis.
        Clin Pharmacol Ther. 2011; 91: 30-43
        • Evans C.H.
        • Kraus V.B.
        • Setton L.A.
        Progress in intra-articular therapy.
        Nature Rev Rheumatol. 2013; (in press)
        • Evans C.H.
        • Ghivizzani S.C.
        • Robbins P.D.
        Getting arthritis gene therapy into the clinic.
        Nat Rev Rheumatol. 2010; 7: 244-249
        • Bandara G.
        • Robbins P.D.
        • Georgescu H.I.
        • Mueller G.M.
        • Glorioso J.C.
        • Evans C.H.
        Gene transfer to synoviocytes: prospects for gene treatment of arthritis.
        DNA Cell Biol. 1992; 11: 227-231
        • McInnes I.B.
        • Schett G.
        The pathogenesis of rheumatoid arthritis.
        N Engl J Med. 2011; 365: 2205-2219
        • Scott D.L.
        • Wolfe F.
        • Huizinga T.W.
        Rheumatoid arthritis.
        Lancet. 2010; 376: 1094-1108
        • Kapoor M.
        • Martel-Pelletier J.
        • Lajeunesse D.
        • Pelletier J.P.
        • Fahmi H.
        Role of proinflammatory cytokines in the pathophysiology of osteoarthritis.
        Nat Rev Rheumatol. 2010; 7: 33-42
        • Evans C.H.
        • Mazzocchi R.A.
        • Nelson D.D.
        • Rubash H.E.
        Experimental arthritis induced by the intra-articular injection of allogeneic cartilaginous particles into rabbit knees.
        Arthritis Rheum. 1984; 27: 200-207
        • Boniface R.J.
        • Cain P.R.
        • Evans C.H.
        Articular responses to purified cartilage proteoglycans.
        Arthritis Rheum. 1988; 31: 258-266
        • Rosenthal A.K.
        Crystals, inflammation, and osteoarthritis.
        Curr Opin Rheumatol. 2010; 23: 170-173
        • Guilak F.
        • Fermor B.
        • Keefe F.J.
        • et al.
        The role of biomechanics and inflammation in cartilage injury and repair.
        Clin Orthop Relat Res. 2004; 423: 17-26
        • Troeberg L.
        • Nagase H.
        Proteases involved in cartilage matrix degradation in osteoarthritis.
        Biochim Biophys Acta. 2011; 1824: 133-145
        • Goldring M.B.
        Update on the biology of the chondrocyte and new approaches to treating cartilage diseases.
        Best Pract Res Clin Rheumatol. 2006; 20: 1003-1025
        • Simkin P.A.
        Synovial perfusion and synovial fluid solutes.
        Ann Rheum Dis. 1995; 54: 424-428
        • Wallis W.J.
        • Simkin P.A.
        • Nelp W.B.
        Protein traffic in human synovial effusions.
        Arthritis Rheum. 1987; 30: 57-63
        • Evans C.H.
        • Ghivizzani S.C.
        • Kang R.
        • et al.
        Gene therapy for rheumatic diseases.
        Arthritis Rheum. 1999; 42: 1-16
        • Evans C.H.
        • Ghivizzani S.C.
        • Robbins P.D.
        Gene therapy of the rheumatic diseases: 1998 to 2008.
        Arthritis Res Ther. 2009; 11: 209
        • Ghivizzani S.C.
        • Gouze E.
        • Gouze J.N.
        • et al.
        Perspectives on the use of gene therapy for chronic joint diseases.
        Curr Gene Ther. 2008; 8: 273-286
        • Gouze E.
        • Gouze J.N.
        • Palmer G.D.
        • Pilapil C.
        • Evans C.H.
        • Ghivizzani S.C.
        Transgene persistence and cell turnover in the diarthrodial joint: implications for gene therapy of chronic joint diseases.
        Mol Ther. 2007; 15: 1114-1120
        • Ghivizzani S.C.
        • Oligino T.J.
        • Glorioso J.C.
        • Robbins P.D.
        • Evans C.H.
        Direct gene delivery strategies for the treatment of rheumatoid arthritis.
        Drug Discov Today. 2001; 6: 259-267
        • Hannum C.H.
        • Wilcox C.J.
        • Arend W.P.
        • et al.
        Interleukin-1 receptor antagonist activity of a human interleukin-1 inhibitor.
        Nature. 1990; 343: 336-340
        • Bandara G.
        • Mueller G.M.
        • Galea-Lauri J.
        • et al.
        Intra-articular expression of biologically active interleukin 1-receptor-antagonist protein by ex vivo gene transfer.
        Proc Natl Acad Sci U S A. 1993; 90: 10764-10768
        • Bakker A.C.
        • Joosten L.A.
        • Arntz O.J.
        • et al.
        Prevention of murine collagen-induced arthritis in the knee and ipsilateral paw by local expression of human interleukin-1 receptor antagonist protein in the knee.
        Arthritis Rheum. 1997; 40: 893-900
        • Pelletier J.P.
        • Caron J.P.
        • Evans C.
        • et al.
        In vivo suppression of early experimental osteoarthritis by interleukin-1 receptor antagonist using gene therapy.
        Arthritis Rheum. 1997; 40: 1012-1019
        • Makarov S.S.
        • Olsen J.C.
        • Johnston W.N.
        • et al.
        Suppression of experimental arthritis by gene transfer of interleukin 1 receptor antagonist cDNA.
        Proc Natl Acad Sci U S A. 1996; 93: 402-406
        • Boggs S.S.
        • Patrene K.D.
        • Mueller G.M.
        • Evans C.H.
        • Doughty L.A.
        • Robbins P.D.
        Prolonged systemic expression of human IL-1 receptor antagonist (hIL-1ra) in mice reconstituted with hematopoietic cells transduced with a retrovirus carrying the hIL-1ra cDNA.
        Gene Ther. 1995; 2: 632-638
        • Otani K.
        • Nita I.
        • Macaulay W.
        • Georgescu H.I.
        • Robbins P.D.
        • Evans C.H.
        Suppression of antigen-induced arthritis in rabbits by ex vivo gene therapy.
        J Immunol. 1996; 156: 3558-3562
        • Muller-Ladner U.
        • Roberts C.R.
        • Franklin B.N.
        • et al.
        Human IL-1Ra gene transfer into human synovial fibroblasts is chondroprotective.
        J Immunol. 1997; 158: 3492-3498
        • Evans C.H.
        • Robbins P.D.
        • Ghivizzani S.C.
        • et al.
        Clinical trial to assess the safety, feasibility, and efficacy of transferring a potentially anti-arthritic cytokine gene to human joints with rheumatoid arthritis.
        Hum Gene Ther. 1996; 7: 1261-1280
        • Evans C.H.
        • Robbins P.D.
        • Ghivizzani S.C.
        • et al.
        Gene transfer to human joints: progress toward a gene therapy of arthritis.
        Proc Natl Acad Sci U S A. 2005; 102: 8698-8703
        • Wehling P.
        • Reinecke J.
        • Baltzer A.W.
        • et al.
        Clinical responses to gene therapy in joints of two subjects with rheumatoid arthritis.
        Hum Gene Ther. 2009; 20: 97-101
        • Hacein-Bey-Abina S.
        • Von Kalle C.
        • Schmidt M.
        • et al.
        LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1.
        Science. 2003; 302: 415-419
        • Lee D.K.
        • Choi K.B.
        • Oh I.S.
        • et al.
        Continuous transforming growth factor beta1 secretion by cell-mediated gene therapy maintains chondrocyte redifferentiation.
        Tissue Eng. 2005; 11: 310-318
        • Noh M.J.
        • Copeland R.O.
        • Yi Y.
        • et al.
        Pre-clinical studies of retrovirally transduced human chondrocytes expressing transforming growth factor-beta-1 (TG-C).
        Cytotherapy. 2012; 12: 384-393
        • Ha C.W.
        • Noh M.J.
        • Choi K.B.
        • Lee K.H.
        Initial phase I safety of retrovirally transduced human chondrocytes expressing transforming growth factor-beta-1 in degenerative arthritis patients.
        Cytotherapy. 2012; 14: 247-256
        • Ha C.W.
        • Lee K.H.
        • Lee B.S.
        • et al.
        Efficacy of TissueGene-C (TG-C), a cell mediated gene therapy, in patients with osteoarthritis: a phase IIa clinical study.
        J Tissue Eng Regen Med. 2012; 6 (287 Abstract 48.05)
        • Nita I.
        • Ghivizzani S.C.
        • Galea-Lauri J.
        • et al.
        Direct gene delivery to synovium. An evaluation of potential vectors in vitro and in vivo.
        Arthritis Rheum. 1996; 39: 820-828
        • Roessler B.J.
        • Allen E.D.
        • Wilson J.M.
        • Hartman J.W.
        • Davidson B.L.
        Adenoviral-mediated gene transfer to rabbit synovium in vivo.
        J Clin Invest. 1993; 92: 1085-1092
        • Oligino T.
        • Ghivizzani S.
        • Wolfe D.
        • et al.
        Intra-articular delivery of a herpes simplex virus IL-1Ra gene vector reduces inflammation in a rabbit model of arthritis.
        Gene Ther. 1999; 6: 1713-1720
        • Ghivizzani S.C.
        • Lechman E.R.
        • Tio C.
        • et al.
        Direct retrovirus-mediated gene transfer to the synovium of the rabbit knee: implications for arthritis gene therapy.
        Gene Ther. 1997; 4: 977-982
        • Gouze E.
        • Pawliuk R.
        • Pilapil C.
        • et al.
        In vivo gene delivery to synovium by lentiviral vectors.
        Mol Ther. 2002; 5: 397-404
        • Goater J.
        • Muller R.
        • Kollias G.
        • et al.
        Empirical advantages of adeno associated viral vectors in vivo gene therapy for arthritis.
        J Rheumatol. 2000; 27: 983-989
        • Grieger J.C.
        • Samulski R.J.
        Adeno-associated virus vectorology, manufacturing, and clinical applications.
        Methods Enzymol. 2012; 507: 229-254
        • Gouze E.
        • Pawliuk R.
        • Gouze J.N.
        • et al.
        Lentiviral-mediated gene delivery to synovium: potent intra-articular expression with amplification by inflammation.
        Mol Ther. 2003; 7: 460-466
        • Watanabe S.
        • Imagawa T.
        • Boivin G.P.
        • Gao G.
        • Wilson J.M.
        • Hirsch R.
        Adeno-associated virus mediates long-term gene transfer and delivery of chondroprotective IL-4 to murine synovium.
        Mol Ther. 2000; 2: 147-152
        • Kay J.D.
        • Gouze E.
        • Oligino T.J.
        • et al.
        Intra-articular gene delivery and expression of interleukin-1Ra mediated by self-complementary adeno-associated virus.
        J Gene Med. 2009; 11: 605-614
        • Payne K.A.
        • Lee H.H.
        • Haleem A.M.
        • et al.
        Single intra-articular injection of adeno-associated virus results in stable and controllable in vivo transgene expression in normal rat knees.
        Osteoarthritis Cartilage. 2011; 19: 1058-1065
        • Sun J.
        • Hakobyan N.
        • Valentino L.A.
        • Feldman B.L.
        • Samulski R.J.
        • Monahan P.E.
        Intra-articular factor IX protein or gene replacement protects against development of hemophilic synovitis in the absence of circulating factor IX.
        Blood. 2008; 112: 4532-4541
        • Apparailly F.
        • Khoury M.
        • Vervoordeldonk M.J.
        • et al.
        Adeno-associated virus pseudotype 5 vector improves gene transfer in arthritic joints.
        Hum Gene Ther. 2005; 16: 426-434
        • Boissier M.C.
        • Lemeiter D.
        • Clavel C.
        • et al.
        Synoviocyte infection with adeno-associated virus (AAV) is neutralized by human synovial fluid from arthritis patients and depends on AAV serotype.
        Hum Gene Ther. 2007; 18: 525-535
        • Goodrich L.R.
        • Choi V.W.
        • Carbone B.A.
        • McIlwraith C.W.
        • Samulski R.J.
        Ex vivo serotype-specific transduction of equine joint tissue by self-complementary adeno-associated viral vectors.
        Hum Gene Ther. 2009; 20: 1697-1702
        • Watson R.S.
        • Broome T.A.
        • Rice B.L.
        • et al.
        scAAV-mediated gene transfer of interleukin-1-receptor antagonist to synovium and articular cartilage in large mammalian joints.
        Gene Ther. 2012; (doi:10.1038/gt.2012.81)
        • Madry H.
        • Cucchiarini M.
        • Terwilliger E.F.
        • Trippel S.B.
        Recombinant adeno-associated virus vectors efficiently and persistently transduce chondrocytes in normal and osteoarthritic human articular cartilage.
        Hum Gene Ther. 2003; 14: 393-402
        • Manno C.S.
        • Pierce G.F.
        • Arruda V.R.
        • et al.
        Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response.
        Nat Med. 2006; 12: 342-347
        • Ishihara A.
        • Bartlett J.S.
        • Bertone A.L.
        Inflammation and immune response of intra-articular serotype 2 adeno-associated virus or adenovirus vectors in a large animal model.
        Arthritis. 2012; 735472 (doi:10.1155/2012/735472)
        • Kerensky T.A.
        • Gottlieb A.B.
        • Yaniv S.
        • Au S.C.
        Etanercept: efficacy and safety for approved indications.
        Expert Opin Drug Saf. 2011; 11: 121-139
        • Chan J.M.
        • Villarreal G.
        • Jin W.W.
        • Stepan T.
        • Burstein H.
        • Wahl S.M.
        Intra-articular gene transfer of TNFR: Fc suppresses experimental arthritis with reduced systemic distribution of the gene product.
        Mol Ther. 2002; 6: 727-736
        • Mease P.J.
        • Hobbs K.
        • Chalmers A.
        • et al.
        Local delivery of a recombinant adeno-associated vector containing a tumor necrosis factor alpha antagonist gene in inflammatory arthritis: a phase 1 dose-escalation safety and tolerability study.
        Ann Rheum Dis. 2009; 68: 1247-1254
        • Evans C.
        Arthritis gene therapy trials reach phase II.
        J Rheumatol. 2010; 37: 683-685
        • Mease P.J.
        • Wei N.
        • Fudman E.J.
        • et al.
        Safety, tolerability, and clinical outcomes after intra-articular injection of a recombinant adeno-associated vector containing a tumor necrosis factor antagonist gene: results of a phase 1/2 study.
        J Rheumatol. 2010; 37: 692-703
        • Evans C.H.
        • Ghivizzani S.C.
        • Robbins P.D.
        Arthritis gene therapy's first death.
        Arthritis Res Ther. 2008; 10: 110
        • Frank K.M.
        • Hogarth D.K.
        • Miller J.L.
        • et al.
        Investigation of the cause of death in a gene-therapy trial.
        N Engl J Med. 2009; 361: 161-169
        • Vervoordeldonk M.J.
        • Aalbers C.J.
        • Tak P.P.
        Interferon beta for rheumatoid arthritis: new clothes for an old kid on the block.
        Ann Rheum Dis. 2009; 68: 157-158
      1. Randomised double-blind placebo-controlled study of interferon beta-1a in relapsing/remitting multiple sclerosis. PRISMS (Prevention of Relapses and Disability by Interferon beta-1a Subcutaneously in Multiple Sclerosis) Study Group.
        Lancet. 1998; 352: 1498-1504
        • van Holten J.
        • Pavelka K.
        • Vencovsky J.
        • et al.
        A multicentre, randomised, double blind, placebo controlled phase II study of subcutaneous interferon beta-1a in the treatment of patients with active rheumatoid arthritis.
        Ann Rheum Dis. 2005; 64: 64-69
        • van Holten J.
        • Reedquist K.
        • Sattonet-Roche P.
        • et al.
        Treatment with recombinant interferon-beta reduces inflammation and slows cartilage destruction in the collagen-induced arthritis model of rheumatoid arthritis.
        Arthritis Res Ther. 2004; 6: R239-R249
        • Tak P.P.
        • Hart B.A.
        • Kraan M.C.
        • Jonker M.
        • Smeets T.J.
        • Breedveld F.C.
        The effects of interferon beta treatment on arthritis.
        Rheumatology (Oxford). 1999; 38: 362-369
        • Triantaphyllopoulos K.A.
        • Williams R.O.
        • Tailor H.
        • Chernajovsky Y.
        Amelioration of collagen-induced arthritis and suppression of interferon-gamma, interleukin-12, and tumor necrosis factor alpha production by interferon-beta gene therapy.
        Arthritis Rheum. 1999; 42: 90-99
        • Adriaansen J.
        • Fallaux F.J.
        • de Cortie C.J.
        • Vervoordeldonk M.J.
        • Tak P.P.
        Local delivery of beta interferon using an adeno-associated virus type 5 effectively inhibits adjuvant arthritis in rats.
        J Gen Virol. 2007; 88: 1717-1721
        • Evans C.H.
        • Ghivizzani S.C.
        • Robbins P.D.
        Orthopedic gene therapy–lost in translation?.
        J Cell Physiol. 2012; 227: 416-420
        • Sheridan C.
        Gene therapy finds its niche.
        Nat Biotechnol. 2011; 29: 121-128
        • Whalen J.
        Gene-therapy approval marks major milestone.
        Wall Street Journal. November 3, 2012; : B3