Advertisement

Translating genome engineering to better clinical outcomes

  • Jakub Tolar
    Correspondence
    Reprint requests: Jakub Tolar, MD, PhD, Stem Cell Institute and Pediatric Blood and Marrow Transplantation, University of Minnesota, 420 Delaware St SE, MMC 366, Minneapolis, MN 55455
    Affiliations
    Stem Cell Institute and Pediatric Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minn
    Search for articles by this author
Published:February 18, 2013DOI:https://doi.org/10.1016/j.trsl.2013.01.004
      The goal of medicine is to alleviate needless suffering from injury and disease. Even though human affliction is no different whether brought about by rare or by widespread disease, the attention of experts and societal commitment may differ. Thus, it is important to stress that gene therapy approaches are applicable both to orphan diseases and to the diseases that cause much of the morbidity and mortality in the world.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Matalova A.
        Published primary sources to Gregor Mendel’s biography. Mendelianum of the Moravian Museum, Brno.
        Folia Mendeliana. 1981; 16: 239-251
        • Schrödinger E.
        What is life? And other scientific essays.
        Doubleday, Garden City1956
        • Lo Ten Foe J.R.
        • Kwee M.L.
        • Rooimans M.A.
        • et al.
        Somatic mosaicism in Fanconi anemia: molecular basis and clinical significance.
        Eur J Hum Genet. 1997; 5: 137-148
        • Stephan V.
        • Wahn V.
        • Le Deist F.
        • et al.
        Atypical X-linked severe combined immunodeficiency due to possible spontaneous reversion of the genetic defect in T cells.
        N Engl J Med. 1996; 335: 1563-1567
        • Jonkman M.F.
        • Scheffer H.
        • Stulp R.
        • et al.
        Revertant mosaicism in epidermolysis bullosa caused by mitotic gene conversion.
        Cell. 1997; 88: 543-551
        • Ellis N.A.
        • Lennon D.J.
        • Proytcheva M.
        • Alhadeff B.
        • Henderson E.E.
        • German J.
        Somatic intragenic recombination within the mutated locus BLM can correct the high sister-chromatid exchange phenotype of Bloom syndrome cells.
        Am J Hum Genet. 1995; 57: 1019-1027
        • Hirschhorn R.
        • Yang D.R.
        • Puck J.M.
        • Huie M.L.
        • Jiang C.K.
        • Kurlandsky L.E.
        Spontaneous in vivo reversion to normal of an inherited mutation in a patient with adenosine deaminase deficiency.
        Nat Genet. 1996; 13: 290-295
        • Ariga T.
        • Yamada M.
        • Sakiyama Y.
        • Tatsuzawa O.
        A case of Wiskott-Aldrich syndrome with dual mutations in exon 10 of the WASP gene: an additional de novo one-base insertion, which restores frame shift due to an inherent one-base deletion, detected in the major population of the patient's peripheral blood lymphocytes.
        Blood. 1998; 92: 699-701
        • Gregory Jr., J.J.
        • Wagner J.E.
        • Verlander P.C.
        • et al.
        Somatic mosaicism in Fanconi anemia: evidence of genotypic reversion in lymphohematopoietic stem cells.
        Proc Natl Acad Sci U S A. 2001; 98: 2532-2537
        • Gross M.
        • Hanenberg H.
        • Lobitz S.
        • et al.
        Reverse mosaicism in Fanconi anemia: natural gene therapy via molecular self-correction.
        Cytogenet Genome Res. 2002; 98: 126-135
        • Darling T.N.
        • Yee C.
        • Bauer J.W.
        • Hintner H.
        • Yancey K.B.
        Revertant mosaicism: partial correction of a germ-line mutation in COL17A1 by a frame-restoring mutation.
        J Clin Invest. 1999; 103: 1371-1377
        • Schuilenga-Hut P.H.
        • Scheffer H.
        • Pas H.H.
        • Nijenhuis M.
        • Buys C.H.
        • Jonkman M.F.
        Partial revertant mosaicism of keratin 14 in a patient with recessive epidermolysis bullosa simplex.
        J Invest Dermatol. 2002; 118: 626-630
        • Pasmooij A.M.
        • Garcia M.
        • Escamez M.J.
        • et al.
        Revertant mosaicism due to a second-site mutation in COL7A1 in a patient with recessive dystrophic epidermolysis bullosa.
        J Invest Dermatol. 2010; 130: 2407-2411
        • Mankad A.
        • Taniguchi T.
        • Cox B.
        • et al.
        Natural gene therapy in monozygotic twins with Fanconi anemia.
        Blood. 2006; 107: 3084-3090
        • Hirschhorn R.
        In vivo reversion to normal of inherited mutations in humans.
        J Med Genet. 2003; 40: 721-728
      1. Choate KA, Lu Y, Zhou J, et al. Mitotic recombination in patients with ichthyosis causes reversion of dominant mutations in KRT10. Science 2010;330:94–7.

        • Pasmooij A.M.
        • Jonkman M.F.
        • Uitto J.
        Revertant mosaicism in heritable skin diseases: mechanisms of natural gene therapy.
        Discov Med. 2012; 14: 167-179
        • Lai-Cheong J.E.
        • McGrath J.A.
        • Uitto J.
        Revertant mosaicism in skin: natural gene therapy.
        Trends Mol Med. 2011; 17: 140-148
        • Lorenz E.
        • Uphoff D.
        • Reid T.R.
        • Shelton E.
        Modification of irradiation injury in mice and guinea pigs by bone marrow injections.
        J Natl Cancer Inst. 1951; 12: 197-201
        • Billingham R.E.
        • Brent L.
        • Medawar P.B.
        Actively acquired tolerance of foreign cells.
        Nature. 1953; 172: 603-606
        • Thomas E.D.
        • Lochte Jr., H.L.
        • Lu W.C.
        • Ferrebee J.W.
        Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy.
        N Engl J Med. 1957; 257: 491-496
        • Medawar P.B.
        Memoir of a thinking radish: an autobiography.
        Oxford University Press, New York1986
        • Appelbaum F.R.
        Hematopoietic-cell transplantation at 50.
        N Engl J Med. 2007; 357: 1472-1475
        • Fratantoni J.C.
        • Hall C.W.
        • Neufeld E.F.
        Hurler and Hunter syndromes: mutual correction of the defect in cultured fibroblasts.
        Science. 1968; 162: 570-572
        • Gatti R.A.
        • Meuwissen H.J.
        • Allen H.D.
        • Hong R.
        • Good R.A.
        Immunological reconstitution of sex-linked lymphopenic immunological deficiency.
        Lancet. 1968; 2: 1366-1369
        • Meuwissen H.J.
        • Gatti R.A.
        • Terasaki P.I.
        • Hong R.
        • Good R.A.
        Treatment of lymphopenic hypogammaglobulinemia and bone-marrow aplasia by transplantation of allogeneic marrow. Crucial role of histocompatibility matching.
        N Engl J Med. 1969; 281: 691-697
        • Mynarek M.
        • Tolar J.
        • Albert M.H.
        • et al.
        Allogeneic hematopoietic SCT for alpha-mannosidosis: an analysis of 17 patients.
        Bone Marrow Transplant. 2012; 47: 352-359
        • Dietz A.C.
        • Orchard P.J.
        • Baker K.S.
        • et al.
        Disease-specific hematopoietic cell transplantation: nonmyeloablative conditioning regimen for dyskeratosis congenita.
        Bone Marrow Transplant. 2011; 46: 98-104
        • Orchard P.J.
        • Tolar J.
        Transplant outcomes in leukodystrophies.
        Semin Hematol. 2010; 47: 70-78
        • MacMillan M.L.
        • Auerbach A.D.
        • Davies S.M.
        • et al.
        Haematopoietic cell transplantation in patients with Fanconi anaemia using alternate donors: results of a total body irradiation dose escalation trial.
        Br J Haematol. 2000; 109: 121-129
        • Tolar J.
        • Teitelbaum S.L.
        • Orchard P.J.
        Osteopetrosis.
        N Engl J Med. 2004; 351: 2839-2849
        • Orchard P.J.
        • Blazar B.R.
        • Wagner J.
        • Charnas L.
        • Krivit W.
        • Tolar J.
        Hematopoietic cell therapy for metabolic disease.
        J Pediatr. 2007; 151: 340-346
        • Wagner J.E.
        • Ishida-Yamamoto A.
        • McGrath J.A.
        • et al.
        Bone marrow transplantation for recessive dystrophic epidermolysis bullosa.
        N Engl J Med. 2010; 363: 629-639
        • Tolar J.
        • Mehta P.A.
        • Walters M.C.
        Hematopoietic cell transplantation for nonmalignant disorders.
        Biol Blood Marrow Transplant. 2012; 18: S166-S171
        • Cavazzana-Calvo M.
        • Lagresle C.
        • Hacein-Bey-Abina S.
        • Fischer A.
        Gene therapy for severe combined immunodeficiency.
        Annu Rev Med. 2005; 56: 585-602
        • Rivat C.
        • Santilli G.
        • Gaspar H.B.
        • Thrasher A.J.
        Gene therapy for primary immunodeficiencies.
        Hum Gene Ther. 2012; 23: 668-675
        • Kay M.A.
        State-of-the-art gene-based therapies: the road ahead.
        Nat Rev Genet. 2011; 12: 316-328
        • Maguire A.M.
        • Simonelli F.
        • Pierce E.A.
        • et al.
        Safety and efficacy of gene transfer for Leber's congenital amaurosis.
        N Engl J Med. 2008; 358: 2240-2248
        • Jacobson S.G.
        • Cideciyan A.V.
        • Ratnakaram R.
        • et al.
        Gene therapy for leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years.
        Arch Ophthalmol. 2012; 130: 9-24
        • Bennett J.
        • Ashtari M.
        • Wellman J.
        • et al.
        AAV2 gene therapy readministration in three adults with congenital blindness.
        Sci Transl Med. 2012; 4 (120ra15)
        • Hufnagel R.B.
        • Ahmed Z.M.
        • Correa Z.M.
        • Sisk R.A.
        Gene therapy for Leber congenital amaurosis: advances and future directions.
        Graefes Arch Clin Exp Ophthalmol. 2012; 250: 1117-1128
        • Dawkins R.
        The selfish gene.
        Oxford University Press, New York1976
        • Hacein-Bey-Abina S.
        • Garrigue A.
        • Wang G.P.
        • et al.
        Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1.
        J Clin Invest. 2008; 118: 3132-3142
        • Moiani A.
        • Paleari Y.
        • Sartori D.
        • et al.
        Lentiviral vector integration in the human genome induces alternative splicing and generates aberrant transcripts.
        J Clin Invest. 2012; 122: 1653-1666
        • Cavazza A.
        • Moiani A.
        • Mavilio F.
        Mechanisms of retroviral integration and mutagenesis.
        Hum Gene Ther. 2013; 24: 119-131
        • Berg P.
        • Baltimore D.
        • Brenner S.
        • Roblin R.O.
        • Singer M.F.
        Summary statement of the Asilomar conference on recombinant DNA molecules.
        Proc Natl Acad Sci U S A. 1975; 72: 1981-1984
        • Brenner S.
        • Wolpert L.
        • Friedberg E.C.
        • Lawrence E.
        A life in science.
        Rev. edn. BioMed Central, London2001
        • United States
        Office of scientific research and development. Bush V. Science, the endless frontier. A report to the President.
        U.S. Government Printing Office, Washington, DC1945
        • Califano A.
        • Butte A.J.
        • Friend S.
        • Ideker T.
        • Schadt E.
        Leveraging models of cell regulation and GWAS data in integrative network-based association studies.
        Nat Genet. 2012; 44: 841-847
        • Handel E.M.
        • Cathomen T.
        Zinc-finger nuclease based genome surgery: it’s all about specificity.
        Curr Gene Ther. 2011; 11: 28-37
        • Bogdanove A.J.
        • Voytas D.F.
        TAL effectors: customizable proteins for DNA targeting.
        Science. 2011; 333: 1843-1846
        • Boztug K.
        • Schmidt M.
        • Schwarzer A.
        • et al.
        Stem-cell gene therapy for the Wiskott-Aldrich syndrome.
        N Engl J Med. 2010; 363: 1918-1927
        • Aiuti A.
        • Cattaneo F.
        • Galimberti S.
        • et al.
        Gene therapy for immunodeficiency due to adenosine deaminase deficiency.
        N Engl J Med. 2009; 360: 447-458
        • Naldini L.
        Ex vivo gene transfer and correction for cell-based therapies.
        Nat Rev Genet. 2011; 12: 301-315
        • Tolar J.
        • Adair J.E.
        • Antoniou M.
        • et al.
        Stem cell gene therapy for fanconi anemia:report from the 1st international Fanconi anemia gene therapy working group meeting.
        Mol Ther. 2011; 19: 1193-1198
        • Tolar J.
        • Becker P.S.
        • Clapp D.W.
        • et al.
        Gene therapy for Fanconi anemia: one step closer to the clinic.
        Hum Gene Ther. 2012; 23: 141-144
        • Miller N.
        Glybera and the future of gene therapy in the European Union.
        Nat Rev Drug Discov. 2012; 11: 419
        • Mavilio F.
        • Pellegrini G.
        • Ferrari S.
        • et al.
        Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells.
        Nat Med. 2006; 12: 1397-1402
        • Green H.
        Regeneration of the skin after grafting of epidermal cultures.
        Lab Invest. 1989; 60: 583-584
        • Briggs R.
        • King T.J.
        Transplantation of living nuclei from blastula cells into enucleated frogs' eggs.
        Proc Natl Acad Sci U S A. 1952; 38: 455-463
        • Gurdon J.B.
        The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles.
        J Embryol Exp Morphol. 1962; 10: 622-640
        • Gurdon J.B.
        • Uehlinger V.
        “Fertile” intestine nuclei.
        Nature. 1966; 210: 1240-1241
        • Campbell K.H.
        • McWhir J.
        • Ritchie W.A.
        • Wilmut I.
        Sheep cloned by nuclear transfer from a cultured cell line.
        Nature. 1996; 380: 64-66
        • Wilmut I.
        • Schnieke A.E.
        • McWhir J.
        • Kind A.J.
        • Campbell K.H.
        Viable offspring derived from fetal and adult mammalian cells.
        Nature. 1997; 385: 810-813
        • Evans M.
        Discovering pluripotency: 30 years of mouse embryonic stem cells.
        Nat Rev Mol Cell Biol. 2011; 12: 680-686
        • Thomson J.A.
        • Itskovitz-Eldor J.
        • Shapiro S.S.
        • et al.
        Embryonic stem cell lines derived from human blastocysts.
        Science. 1998; 282: 1145-1147
        • Takahashi K.
        • Yamanaka S.
        Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.
        Cell. 2006; 126: 663-676
        • Boitano A.E.
        • Wang J.
        • Romeo R.
        • et al.
        Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells.
        Science. 2010; 329: 1345-1348
        • Digiusto D.L.
        • Kiem H.P.
        Current translational and clinical practices in hematopoietic cell and gene therapy.
        Cytotherapy. 2012; 14: 775-790
        • Bernstein I.D.
        • Delaney C.
        Engineering stem cell expansion.
        Cell Stem Cell. 2012; 10: 113-114
        • Tolar J.
        • Grewal S.S.
        • Bjoraker K.J.
        • et al.
        Combination of enzyme replacement and hematopoietic stem cell transplantation as therapy for Hurler syndrome.
        Bone Marrow Transplant. 2008; 41: 531-535
        • Prockop D.J.
        Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms.
        Mol Ther. 2009; 17: 939-946
        • Goethe JWv
        • Constantine D.
        The sorrows of young Werther.
        Oxford University Press, New York2012
        • Wilson E.O.
        The social conquest of earth.
        1st ed. Liveright Publishing Corporation, New York2012