Advertisement

Telomeres in lung disease

Published:April 24, 2013DOI:https://doi.org/10.1016/j.trsl.2013.04.001
      Telomeres are DNA-protein structures that cap the ends of chromosomes; telomerase is the enzyme that ensures their integrity. Telomere biology has recently been implicated in the pathogenesis of a variety of lung diseases, including idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease/emphysema, and lung cancer. This review highlights recent discoveries pertaining to the role of telomere biology in lung disease.

      Abbreviations:

      COPD (chronic obstructive pulmonary disease), IPF (idiopathic pulmonary fibrosis), TERC (telomerase RNA component), TERT (telomerase reverse transcriptase)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Blackburn E.H.
        Telomeres and telomerase: the means to the end [Nobel lecture].
        Angew Chem Int Ed Engl. 2010; 49: 7405-7421
        • Greider C.W.
        Telomerase discovery: the excitement of putting together pieces of the puzzle [Nobel lecture].
        Angew Chem Int Ed Engl. 2010; 49: 7422-7439
        • Szostak J.W.
        DNA ends: just the beginning [Nobel lecture].
        Angew Chem Int Ed Engl. 2010; 49: 7386-7404
        • Moyzis R.K.
        • Buckingham J.M.
        • Cram L.S.
        • et al.
        A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes.
        Proc Natl Acad Sci U S A. 1988; 85: 6622-6626
        • Blackburn E.H.
        • Gall J.G.
        A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena.
        J Mol Biol. 1978; 120: 33-53
        • Szostak J.W.
        • Blackburn E.H.
        Cloning yeast telomeres on linear plasmid vectors.
        Cell. 1982; 29: 245-255
        • Ohki R.
        • Tsurimoto T.
        • Ishikawa F.
        In vitro reconstitution of the end replication problem.
        Mol Cell Biol. 2001; 21: 5753-5766
        • McClintock B.
        The stability of broken ends of chromosomes in Zea mays.
        Genetics. 1941; 26: 234-282
        • Armanios M.
        • Blackburn E.H.
        The telomere syndromes.
        Nat Rev Genet. 2012; 13: 693-704
        • Young N.S.
        Telomere biology and telomere diseases: implications for practice and research.
        Hematol Am Soc Hematol Educ Program. 2010; 2010: 30-35
        • Calado R.
        • Young N.
        Telomeres in disease.
        F1000 Med Rep. 2012; 4: 8
        • Calado R.T.
        • Young N.S.
        Telomere diseases.
        N Engl J Med. 2009; 361: 2353-2365
        • Armanios M.
        Syndromes of telomere shortening.
        Annu Rev Genomics Hum Genet. 2009; 10: 45-61
        • Aubert G.
        • Lansdorp P.M.
        Telomeres and aging.
        Physiol Rev. 2008; 88: 557-579
        • Muller H.J.
        The remaking of chromosomes.
        Collecting Net. 1938; XIII: 182-195
        • Nakamura T.M.
        • Morin G.B.
        • Chapman K.B.
        • et al.
        Telomerase catalytic subunit homologs from fission yeast and human.
        Science. 1997; 277: 955-959
        • Meyerson M.
        • Counter C.M.
        • Eaton E.N.
        • et al.
        hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization.
        Cell. 1997; 90: 785-795
        • Kilian A.
        • Bowtell D.D.
        • Abud H.E.
        • et al.
        Isolation of a candidate human telomerase catalytic subunit gene, which reveals complex splicing patterns in different cell types.
        Hum Mol Genet. 1997; 6: 2011-2019
        • Harrington L.
        • Zhou W.
        • McPhail T.
        • et al.
        Human telomerase contains evolutionarily conserved catalytic and structural subunits.
        Genes Dev. 1997; 11: 3109-3115
        • Weinrich S.L.
        • Pruzan R.
        • Ma L.
        • et al.
        Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT.
        Nat Genet. 1997; 17: 498-502
        • Feng J.
        • Funk W.D.
        • Wang S.S.
        • et al.
        The RNA component of human telomerase.
        Science. 1995; 269: 1236-1241
        • Greider C.W.
        • Blackburn E.H.
        A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis.
        Nature. 1989; 337: 331-337
        • Collins K.
        • Kobayashi R.
        • Greider C.W.
        Purification of Tetrahymena telomerase and cloning of genes encoding the two protein components of the enzyme.
        Cell. 1995; 81: 677-686
        • Cohen S.B.
        • Graham M.E.
        • Lovrecz G.O.
        • Bache N.
        • Robinson P.J.
        • Reddel R.R.
        Protein composition of catalytically active human telomerase from immortal cells.
        Science. 2007; 315: 1850-1853
        • Fu D.
        • Collins K.
        Purification of human telomerase complexes identifies factors involved in telomerase biogenesis and telomere length regulation.
        Mol Cell. 2007; 28: 773-785
        • Collins K.
        • Mitchell J.R.
        Telomerase in the human organism.
        Oncogene. 2002; 21: 564-579
        • Hayflick L.
        The limited in vitro lifetime of human diploid cell strains.
        Exp Cell Res. 1965; 37: 614-636
        • Olovnikov A.M.
        A theory of marginotomy: the incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon.
        J Theor Biol. 1973; 41: 181-190
        • Stewart J.A.
        • Chaiken M.F.
        • Wang F.
        • Price C.M.
        Maintaining the end: roles of telomere proteins in end-protection, telomere replication and length regulation.
        Mutat Res. 2012; 730: 12-19
        • Lung F.W.
        • Fan P.L.
        • Chen N.C.
        • Shu B.C.
        Telomeric length varies with age and polymorphisms of the MAOA gene promoter in peripheral blood cells obtained from a community in Taiwan.
        Psychiatr Genet. 2005; 15: 31-35
        • Cronkhite J.T.
        • Xing C.
        • Raghu G.
        • et al.
        Telomere shortening in familial and sporadic pulmonary fibrosis.
        Am J Respir Crit Care Med. 2008; 178: 729-737
        • Hastie N.D.
        • Dempster M.
        • Dunlop M.G.
        • Thompson A.M.
        • Green D.K.
        • Allshire R.C.
        Telomere reduction in human colorectal carcinoma and with ageing.
        Nature. 1990; 346: 866-868
        • Lindsey J.
        • McGill N.I.
        • Lindsey L.A.
        • Green D.K.
        • Cooke H.J.
        In vivo loss of telomeric repeats with age in humans.
        Mutat Res. 1991; 256: 45-48
        • Takubo K.
        • Nakamura K.
        • Izumiyama N.
        • et al.
        Telomere shortening with aging in human esophageal mucosa.
        Age. 1999; 22: 95-99
        • Allsopp R.C.
        • Vaziri H.
        • Patterson C.
        • et al.
        Telomere length predicts replicative capacity of human fibroblasts.
        Proc Natl Acad Sci U S A. 1992; 89: 10114-10118
        • Vaziri H.
        • Dragowska W.
        • Allsopp R.C.
        • Thomas T.E.
        • Harley C.B.
        • Lansdorp P.M.
        Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age.
        Proc Natl Acad Sci U S A. 1994; 91: 9857-9860
        • Valdes A.M.
        • Andrew T.
        • Gardner J.P.
        • et al.
        Obesity, cigarette smoking, and telomere length in women.
        Lancet. 2005; 366: 662-664
        • Eisenberg D.T.
        • Salpea K.D.
        • Kuzawa C.W.
        • Hayes M.G.
        • Humphries S.E.
        Substantial variation in qPCR measured mean blood telomere lengths in young men from eleven European countries.
        Am J Hum Biol. 2011; 23: 228-231
        • Hunt S.C.
        • Chen W.
        • Gardner J.P.
        • et al.
        Leukocyte telomeres are longer in African Americans than in whites: the National Heart, Lung, and Blood Institute Family Heart Study and the Bogalusa Heart Study.
        Aging Cell. 2008; 7: 451-458
        • Hemann M.T.
        • Strong M.A.
        • Hao L.Y.
        • Greider C.W.
        The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability.
        Cell. 2001; 107: 67-77
        • King Jr., T.E.
        • Pardo A.
        • Selman M.
        Idiopathic pulmonary fibrosis.
        Lancet. 2011; 378: 1949-1961
        • Meltzer E.B.
        • Noble P.W.
        Idiopathic pulmonary fibrosis.
        Orphanet J Rare Dis. 2008; 3: 8
        • Raghu G.
        • Collard H.R.
        • Egan J.J.
        • et al.
        An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management.
        Am J Respir Crit Care Med. 2011; 183: 788-824
        • Nalysnyk L.
        • Cid-Ruzafa J.
        • Rotella P.
        • Esser D.
        Incidence and prevalence of idiopathic pulmonary fibrosis: review of the literature.
        Eur Respir Rev. 2012; 21: 355-361
        • Coultas D.B.
        • Zumwalt R.E.
        • Black W.C.
        • Sobonya R.E.
        The epidemiology of interstitial lung diseases.
        Am J Respir Crit Care Med. 1994; 150: 967-972
        • Fernandez Perez E.R.
        • Daniels C.E.
        • Schroeder D.R.
        • et al.
        Incidence, prevalence, and clinical course of idiopathic pulmonary fibrosis: a population-based study.
        Chest. 2010; 137: 129-137
        • Raghu G.
        • Weycker D.
        • Edelsberg J.
        • Bradford W.Z.
        • Oster G.
        Incidence and prevalence of idiopathic pulmonary fibrosis.
        Am J Respir Crit Care Med. 2006; 174: 810-816
        • Nathan S.D.
        • Shlobin O.A.
        • Weir N.
        • et al.
        Long-term course and prognosis of idiopathic pulmonary fibrosis in the new millennium.
        Chest. 2011; 140: 221-229
        • Cole H.
        • Rauschkolb J.
        • Toomey J.
        Dyskeratosis congenita with pigmentation, dystrophia unguis and leukokeratosis oris.
        Arch Dermatol Syphilol. 1930; 21: 71-95
        • Zinsser F.
        Atrophia cutis reticularis cum pigmentatione, dystrophia unguium et leukokeratosis oris.
        Ikonogr Dermatol (Hyoto). 1910; 5: 219-223
        • Engman M.
        A unique case of reticular pigmentation of the skin with atrophy.
        Arch Dermatol Syphilol. 1926; 13: 685-687
        • Walne A.J.
        • Dokal I.
        Dyskeratosis congenita: a historical perspective.
        Mech Ageing Dev. 2008; 129: 48-59
        • Davidson H.R.
        • Connor J.M.
        Dyskeratosis congenita.
        J Med Genet. 1988; 25: 843-846
        • Bodalski J.
        • Defecinska E.
        • Judkiewicz L.
        • Pacanowska M.
        Fanconi’s anaemia and dyskeratosis congenita as a syndrome.
        Dermatologica. 1963; 127: 330-342
        • Bryan H.G.
        • Nixon R.K.
        Dyskeratosis congenita and familial pancytopenia.
        JAMA. 1965; 192: 203-208
        • Imokawa S.
        • Sato A.
        • Toyoshima M.
        • et al.
        Dyskeratosis congenita showing usual interstitial pneumonia.
        Intern Med. 1994; 33: 226-230
        • Verra F.
        • Kouzan S.
        • Saiag P.
        • Bignon J.
        • de Cremoux H.
        Bronchoalveolar disease in dyskeratosis congenita.
        Eur Respir J. 1992; 5: 497-499
        • Langston A.A.
        • Sanders J.E.
        • Deeg H.J.
        • et al.
        Allogeneic marrow transplantation for aplastic anaemia associated with dyskeratosis congenita.
        Br J Haematol. 1996; 92: 758-765
        • Yabe M.
        • Yabe H.
        • Hattori K.
        • et al.
        Fatal interstitial pulmonary disease in a patient with dyskeratosis congenita after allogeneic bone marrow transplantation.
        Bone Marrow Transplant. 1997; 19: 389-392
        • Giri N.
        • Lee R.
        • Faro A.
        • et al.
        Lung transplantation for pulmonary fibrosis in dyskeratosis congenita: case report and systematic literature review.
        BMC Blood Disord. 2011; 11: 3
        • Mitchell J.R.
        • Wood E.
        • Collins K.
        A telomerase component is defective in the human disease dyskeratosis congenita.
        Nature. 1999; 402: 551-555
        • Heiss N.S.
        • Knight S.W.
        • Vulliamy T.J.
        • et al.
        X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions.
        Nat Genet. 1998; 19: 32-38
        • Vulliamy T.J.
        • Walne A.
        • Baskaradas A.
        • Mason P.J.
        • Marrone A.
        • Dokal I.
        Mutations in the reverse transcriptase component of telomerase (TERT) in patients with bone marrow failure.
        Blood Cells Mol Dis. 2005; 34: 257-263
        • Vulliamy T.
        • Marrone A.
        • Goldman F.
        • et al.
        The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita.
        Nature. 2001; 413: 432-435
        • Savage S.A.
        • Stewart B.J.
        • Weksler B.B.
        • et al.
        Mutations in the reverse transcriptase component of telomerase (TERT) in patients with bone marrow failure.
        Blood Cells Mol Dis. 2006; 37: 134-136
        • Vulliamy T.
        • Marrone A.
        • Szydlo R.
        • Walne A.
        • Mason P.J.
        • Dokal I.
        Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC.
        Nat Genet. 2004; 36: 447-449
        • Knight S.W.
        • Vulliamy T.J.
        • Morgan B.
        • Devriendt K.
        • Mason P.J.
        • Dokal I.
        Identification of novel DKC1 mutations in patients with dyskeratosis congenita: implications for pathophysiology and diagnosis.
        Hum Genet. 2001; 108: 299-303
        • Armanios M.
        • Chen J.L.
        • Chang Y.P.
        • et al.
        Haploinsufficiency of telomerase reverse transcriptase leads to anticipation in autosomal dominant dyskeratosis congenita.
        Proc Natl Acad Sci U S A. 2005; 102: 15960-15964
        • Yamaguchi H.
        • Calado R.T.
        • Ly H.
        • et al.
        Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia.
        N Engl J Med. 2005; 352: 1413-1424
        • Savage S.A.
        • Alter B.P.
        Dyskeratosis congenita.
        Hematol Oncol Clin North Am. 2009; 23: 215-231
        • Knight S.
        • Vulliamy T.
        • Copplestone A.
        • Gluckman E.
        • Mason P.
        • Dokal I.
        Dyskeratosis Congenita (DC) Registry: identification of new features of DC.
        Br J Haematol. 1998; 103: 990-996
        • Armanios M.Y.
        • Chen J.J.
        • Cogan J.D.
        • et al.
        Telomerase mutations in families with idiopathic pulmonary fibrosis.
        N Engl J Med. 2007; 356: 1317-1326
        • Tsakiri K.D.
        • Cronkhite J.T.
        • Kuan P.J.
        • et al.
        Adult-onset pulmonary fibrosis caused by mutations in telomerase.
        Proc Natl Acad Sci U S A. 2007; 104: 7552-7557
        • Mushiroda T.
        • Wattanapokayakit S.
        • Takahashi A.
        • et al.
        A genome-wide association study identifies an association of a common variant in TERT with susceptibility to idiopathic pulmonary fibrosis.
        J Med Genet. 2008; 45: 654-656
        • Fernandez B.A.
        • Fox G.
        • Bhatia R.
        • et al.
        A Newfoundland cohort of familial and sporadic idiopathic pulmonary fibrosis patients: clinical and genetic features.
        Respir Res. 2012; 13: 64
        • Alder J.K.
        • Chen J.J.
        • Lancaster L.
        • et al.
        Short telomeres are a risk factor for idiopathic pulmonary fibrosis.
        Proc Natl Acad Sci U S A. 2008; 105: 13051-13056
        • Marrone A.
        • Stevens D.
        • Vulliamy T.
        • Dokal I.
        • Mason P.J.
        Heterozygous telomerase RNA mutations found in dyskeratosis congenita and aplastic anemia reduce telomerase activity via haploinsufficiency.
        Blood. 2004; 104: 3936-3942
        • Marrone A.
        • Sokhal P.
        • Walne A.
        • et al.
        Functional characterization of novel telomerase RNA (TERC) mutations in patients with diverse clinical and pathological presentations.
        Haematologica. 2007; 92: 1013-1020
        • Du H.Y.
        • Pumbo E.
        • Manley P.
        • et al.
        Complex inheritance pattern of dyskeratosis congenita in two families with 2 different mutations in the telomerase reverse transcriptase gene.
        Blood. 2008; 111: 1128-1130
        • Gansner J.M.
        • Rosas I.O.
        • Ebert B.L.
        Pulmonary fibrosis, bone marrow failure, and telomerase mutation.
        N Engl J Med. 2012; 366: 1551-1553
        • Diaz de Leon A.
        • Cronkhite J.T.
        • Katzenstein A.L.
        • et al.
        Telomere lengths, pulmonary fibrosis and telomerase (TERT) mutations.
        PLoS One. 2010; 5: e10680
        • Parry E.M.
        • Alder J.K.
        • Qi X.
        • Chen J.J.
        • Armanios M.
        Syndrome complex of bone marrow failure and pulmonary fibrosis predicts germline defects in telomerase.
        Blood. 2011; 117: 5607-5611
        • Calado R.T.
        • Regal J.A.
        • Kleiner D.E.
        • et al.
        A spectrum of severe familial liver disorders associate with telomerase mutations.
        PLoS One. 2009; 4: e7926
        • Chambers D.C.
        • Clarke B.E.
        • McGaughran J.
        • Garcia C.K.
        Lung fibrosis, premature graying, and macrocytosis.
        Am J Respir Crit Care Med. 2012; 186: e8-e9
        • Du H.Y.
        • Pumbo E.
        • Ivanovich J.
        • et al.
        TERC and TERT gene mutations in patients with bone marrow failure and the significance of telomere length measurements.
        Blood. 2009; 113: 309-316
        • Xin Z.T.
        • Beauchamp A.D.
        • Calado R.T.
        • et al.
        Functional characterization of natural telomerase mutations found in patients with hematologic disorders.
        Blood. 2007; 109: 524-532
        • El-Chemaly S.
        • Ziegler S.G.
        • Calado R.T.
        • et al.
        Natural history of pulmonary fibrosis in two subjects with the same telomerase mutation.
        Chest. 2011; 139: 1203-1209
        • Jongmans M.C.
        • Verwiel E.T.
        • Heijdra Y.
        • et al.
        Revertant somatic mosaicism by mitotic recombination in dyskeratosis congenita.
        Am J Hum Genet. 2012; 90: 426-433
        • Snider G.L.
        • Kleinerman J.
        • Thurlbeck W.M.
        • Bengali Z.H.
        The definition of emphysema: report of a National Heart, Lung, and Blood Institute, Division of Lung Diseases workshop.
        Am Rev Respir Dis. 1985; 132: 182-185
        • Borie R.
        • Crestani B.
        • Bichat H.
        Prevalence of telomere shortening in familial and sporadic pulmonary fibrosis is increased in men.
        Am J Respir Crit Care Med. 2009; 179: 1073
        • Bitterman P.B.
        • Rennard S.I.
        • Keogh B.A.
        • Wewers M.D.
        • Adelberg S.
        • Crystal R.G.
        Familial idiopathic pulmonary fibrosis: evidence of lung inflammation in unaffected family members.
        N Engl J Med. 1986; 314: 1343-1347
        • Raghu G.
        • Anstrom K.J.
        • King Jr., T.E.
        • Lasky J.A.
        • Martinez F.J.
        Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis.
        N Engl J Med. 2012; 366: 1968-1977
        • Adamali H.I.
        • Maher T.M.
        Current and novel drug therapies for idiopathic pulmonary fibrosis.
        Drug Des Devel Ther. 2012; 6: 261-271
        • Christie J.D.
        • Edwards L.B.
        • Kucheryavaya A.Y.
        • et al.
        The Registry of the International Society for Heart and Lung Transplantation: 29th adult lung and heart-lung transplant report: 2012.
        J Heart Lung Transplant. 2012; 31: 1073-1086
        • Weiss E.S.
        • Allen J.G.
        • Merlo C.A.
        • Conte J.V.
        • Shah A.S.
        Survival after single versus bilateral lung transplantation for high-risk patients with pulmonary fibrosis.
        Ann Thorac Surg. 2009; 88 (discussion 25–6): 1616-1625
        • George T.J.
        • Arnaoutakis G.J.
        • Shah A.S.
        Lung transplant in idiopathic pulmonary fibrosis.
        Arch Surg. 2011; 146: 1204-1209
        • Peffault de Latour R.
        • Calado R.T.
        • Busson M.
        • et al.
        Age-adjusted recipient pretransplantation telomere length and treatment-related mortality after hematopoietic stem cell transplantation.
        Blood. 2012; 120: 3353-3359
        • Celli B.R.
        • MacNee W.
        Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper.
        Eur Respir J. 2004; 23: 932-946
      1. Chronic obstructive pulmonary disease among adults: United States, 2011.
        MMWR Morb Mortal Wkly Rep. 2012; 61: 938-943
        • Lee J.
        • Sandford A.J.
        • Connett J.E.
        • et al.
        The relationship between telomere length and mortality in chronic obstructive pulmonary disease (COPD).
        PLoS One. 2012; 7: e35567
        • Chilosi M.
        • Poletti V.
        • Rossi A.
        The pathogenesis of COPD and IPF: distinct horns of the same devil?.
        Respir Res. 2012; 13: 3
        • Ito K.
        • Barnes P.J.
        COPD as a disease of accelerated lung aging.
        Chest. 2009; 135: 173-180
        • Lee J.
        • Sandford A.
        • Man P.
        • Sin D.D.
        Is the aging process accelerated in chronic obstructive pulmonary disease?.
        Curr Opin Pulm Med. 2011; 17: 90-97
        • Tsuji T.
        • Aoshiba K.
        • Nagai A.
        Alveolar cell senescence in patients with pulmonary emphysema.
        Am J Respir Crit Care Med. 2006; 174: 886-893
        • Tsuji T.
        • Aoshiba K.
        • Nagai A.
        Alveolar cell senescence exacerbates pulmonary inflammation in patients with chronic obstructive pulmonary disease.
        Respiration. 2010; 80: 59-70
        • Mui T.S.
        • Man J.M.
        • McElhaney J.E.
        • et al.
        Telomere length and chronic obstructive pulmonary disease: evidence of accelerated aging.
        J Am Geriatr Soc. 2009; 57: 2372-2374
        • MacNee W.
        Accelerated lung aging: a novel pathogenic mechanism of chronic obstructive pulmonary disease (COPD).
        Biochem Soc Trans. 2009; 37: 819-823
        • Savale L.
        • Chaouat A.
        • Bastuji-Garin S.
        • et al.
        Shortened telomeres in circulating leukocytes of patients with chronic obstructive pulmonary disease.
        Am J Respir Crit Care Med. 2009; 179: 566-571
        • Houben J.M.
        • Mercken E.M.
        • Ketelslegers H.B.
        • et al.
        Telomere shortening in chronic obstructive pulmonary disease.
        Respir Med. 2009; 103: 230-236
        • Amsellem V.
        • Gary-Bobo G.
        • Marcos E.
        • et al.
        Telomere dysfunction causes sustained inflammation in chronic obstructive pulmonary disease.
        Am J Respir Crit Care Med. 2011; 184: 1358-1366
        • Rode L.
        • Bojesen S.E.
        • Weischer M.
        • Vestbo J.
        • Nordestgaard B.G.
        Short telomere length, lung function and chronic obstructive pulmonary disease in 46,396 individuals.
        Thorax. 2012; 68: 429-435
        • Morla M.
        • Busquets X.
        • Pons J.
        • Sauleda J.
        • MacNee W.
        • Agusti A.G.
        Telomere shortening in smokers with and without COPD.
        Eur Respir J. 2006; 27: 525-528
        • Nawrot T.S.
        • Staessen J.A.
        • Holvoet P.
        • et al.
        Telomere length and its associations with oxidized-LDL, carotid artery distensibility and smoking.
        Front Biosci (Elite Ed). 2010; 2: 1164-1168
        • Shen M.
        • Cawthon R.
        • Rothman N.
        • et al.
        A prospective study of telomere length measured by monochrome multiplex quantitative PCR and risk of lung cancer.
        Lung Cancer. 2011; 73: 133-137
        • Strandberg T.E.
        • Saijonmaa O.
        • Tilvis R.S.
        • et al.
        Association of telomere length in older men with mortality and midlife body mass index and smoking.
        J Gerontol A Biol Sci Med Sci. 2011; 66: 815-820
        • Kong X.
        • Cho M.H.
        • Anderson W.
        • et al.
        Genome-wide association study identifies BICD1 as a susceptibility gene for emphysema.
        Am J Respir Crit Care Med. 2011; 183: 43-49
        • Mangino M.
        • Brouilette S.
        • Braund P.
        • et al.
        A regulatory SNP of the BICD1 gene contributes to telomere length variation in humans.
        Hum Mol Genet. 2008; 17: 2518-2523
        • Alder J.K.
        • Guo N.
        • Kembou F.
        • et al.
        Telomere length is a determinant of emphysema susceptibility.
        Am J Respir Crit Care Med. 2011; 184: 904-912
        • Siegel R.
        • Naishadham D.
        • Jemal A.
        Cancer statistics, 2012.
        CA Cancer J Clin. 2012; 62: 10-29
        • Lantuejoul S.
        • Soria J.C.
        • Moro-Sibilot D.
        • et al.
        Differential expression of telomerase reverse transcriptase (hTERT) in lung tumours.
        Br J Cancer. 2004; 90: 1222-1229
        • Lantuejoul S.
        • Salon C.
        • Soria J.C.
        • Brambilla E.
        Telomerase expression in lung preneoplasia and neoplasia.
        Int J Cancer. 2007; 120: 1835-1841
        • Harley C.B.
        Telomerase is not an oncogene.
        Oncogene. 2002; 21: 494-502
        • Morales C.P.
        • Holt S.E.
        • Ouellette M.
        • et al.
        Absence of cancer-associated changes in human fibroblasts immortalized with telomerase.
        Nat Genet. 1999; 21: 115-118
        • Alter B.P.
        • Giri N.
        • Savage S.A.
        • Rosenberg P.S.
        Cancer in dyskeratosis congenita.
        Blood. 2009; 113: 6549-6557
        • McKay J.D.
        • Hung R.J.
        • Gaborieau V.
        • et al.
        Lung cancer susceptibility locus at 5p15.33.
        Nat Genet. 2008; 40: 1404-1406
        • Lan Q.
        • Hsiung C.A.
        • Matsuo K.
        • et al.
        Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia.
        Nat Genet. 2012; 44: 1330-1335
        • Hsiung C.A.
        • Lan Q.
        • Hong Y.C.
        • et al.
        The 5p15.33 locus is associated with risk of lung adenocarcinoma in never-smoking females in Asia.
        PLoS Genet. 2010; 6 (:e1001051)
        • Landi M.T.
        • Chatterjee N.
        • Yu K.
        • et al.
        A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma.
        Am J Hum Genet. 2009; 85: 679-691
        • Miki D.
        • Kubo M.
        • Takahashi A.
        • et al.
        Variation in TP63 is associated with lung adenocarcinoma susceptibility in Japanese and Korean populations.
        Nat Genet. 2010; 42: 893-896
        • Hu Z.
        • Wu C.
        • Shi Y.
        • et al.
        A genome-wide association study identifies two new lung cancer susceptibility loci at 13q12.12 and 22q12.2 in Han Chinese.
        Nat Genet. 2011; 43: 792-796
        • Truong T.
        • Hung R.J.
        • Amos C.I.
        • et al.
        Replication of lung cancer susceptibility loci at chromosomes 15q25, 5p15, and 6p21: a pooled analysis from the International Lung Cancer Consortium.
        J Natl Cancer Inst. 2010; 102: 959-971
        • James M.A.
        • Wen W.
        • Wang Y.
        • et al.
        Functional characterization of CLPTM1L as a lung cancer risk candidate gene in the 5p15.33 locus.
        PLoS One. 2012; 7: e36116
        • Jang J.S.
        • Choi Y.Y.
        • Lee W.K.
        • et al.
        Telomere length and the risk of lung cancer.
        Cancer Sci. 2008; 99: 1385-1389
        • Wu X.
        • Amos C.I.
        • Zhu Y.
        • et al.
        Telomere dysfunction: a potential cancer predisposition factor.
        J Natl Cancer Inst. 2003; 95: 1211-1218
        • Hosgood III, H.D.
        • Cawthon R.
        • He X.
        • Chanock S.
        • Lan Q.
        Genetic variation in telomere maintenance genes, telomere length, and lung cancer susceptibility.
        Lung Cancer. 2009; 66: 157-161
        • Jeon H.S.
        • Choi Y.Y.
        • Choi J.E.
        • et al.
        Telomere length of tumor tissues and survival in patients with early stage non-small cell lung cancer.
        Mol Carcinog. 2012; https://doi.org/10.1002/mc.21972
        • Frias C.
        • Garcia-Aranda C.
        • De Juan C.
        • et al.
        Telomere shortening is associated with poor prognosis and telomerase activity correlates with DNA repair impairment in non-small cell lung cancer.
        Lung Cancer. 2008; 60: 416-425
        • Hirashima T.
        • Komiya T.
        • Nitta T.
        • et al.
        Prognostic significance of telomeric repeat length alterations in pathological stage I-IIIA non-small cell lung cancer.
        Anticancer Res. 2000; 20: 2181-2187
        • Targowski T.
        • Jahnz-Rozyk K.
        • Szkoda T.
        • Plusa T.
        • From S.
        Telomerase activity in transthoracic fine-needle biopsy aspirates from non-small cell lung cancer as prognostic factor of patients’ survival.
        Lung Cancer. 2008; 61: 97-103
        • Wu T.C.
        • Lin P.
        • Hsu C.P.
        • et al.
        Loss of telomerase activity may be a potential favorable prognostic marker in lung carcinomas.
        Lung Cancer. 2003; 41: 163-169
        • Chen K.Y.
        • Lee L.N.
        • Yu C.J.
        • Lee Y.C.
        • Kuo S.H.
        • Yang P.C.
        Elevation of telomerase activity positively correlates to poor prognosis of patients with non-small cell lung cancer.
        Cancer Lett. 2006; 240: 148-156
        • Marchetti A.
        • Bertacca G.
        • Buttitta F.
        • et al.
        Telomerase activity as a prognostic indicator in stage I non-small cell lung cancer.
        Clin Cancer Res. 1999; 5: 2077-2081
        • Taga S.
        • Osaki T.
        • Ohgami A.
        • Imoto H.
        • Yasumoto K.
        Prognostic impact of telomerase activity in non-small cell lung cancers.
        Ann Surg. 1999; 230: 715-720
        • Zhu C.Q.
        • Cutz J.C.
        • Liu N.
        • et al.
        Amplification of telomerase (hTERT) gene is a poor prognostic marker in non-small-cell lung cancer.
        Br J Cancer. 2006; 94: 1452-1459
        • Fujita Y.
        • Fujikane T.
        • Fujiuchi S.
        • et al.
        The diagnostic and prognostic relevance of human telomerase reverse transcriptase mRNA expression detected in situ in patients with nonsmall cell lung carcinoma.
        Cancer. 2003; 98: 1008-1013
        • Gonzalez-Quevedo R.
        • Iniesta P.
        • Moran A.
        • et al.
        Cooperative role of telomerase activity and p16 expression in the prognosis of non-small-cell lung cancer.
        J Clin Oncol. 2002; 20: 254-262
        • Hsu C.P.
        • Miaw J.
        • Shai S.E.
        • Chen C.Y.
        Correlation between telomerase expression and terminal restriction fragment length ratio in non-small cell lung cancer: an adjusted measurement and its clinical significance.
        Eur J Cardiothorac Surg. 2004; 26: 425-431
        • Ruden M.
        • Puri N.
        Novel anticancer therapeutics targeting telomerase.
        Cancer Treat Rev. 2012;
        • Shay J.W.
        • Reddel R.R.
        • Wright W.E.
        Cancer: cancer and telomeres— an ALTernative to telomerase.
        Science. 2012; 336: 1388-1390
        • Heaphy C.M.
        • Subhawong A.P.
        • Hong S.M.
        • et al.
        Prevalence of the alternative lengthening of telomeres telomere maintenance mechanism in human cancer subtypes.
        Am J Pathol. 2011; 179: 1608-1615
        • Effros R.B.
        Telomere/telomerase dynamics within the human immune system: effect of chronic infection and stress.
        Exp Gerontol. 2011; 46: 135-140
        • Dagarag M.
        • Evazyan T.
        • Rao N.
        • Effros R.B.
        Genetic manipulation of telomerase in HIV-specific CD8+ T cells: enhanced antiviral functions accompany the increased proliferative potential and telomere length stabilization.
        J Immunol. 2004; 173: 6303-6311
        • Fauce S.R.
        • Jamieson B.D.
        • Chin A.C.
        • et al.
        Telomerase-based pharmacologic enhancement of antiviral function of human CD8+ T lymphocytes.
        J Immunol. 2008; 181: 7400-7406
        • Effros R.B.
        • Dagarag M.
        • Spaulding C.
        • Man J.
        The role of CD8+ T-cell replicative senescence in human aging.
        Immunol Rev. 2005; 205: 147-157
        • Guan J.Z.
        • Maeda T.
        • Sugano M.
        • et al.
        An analysis of telomere length in sarcoidosis.
        J Gerontol A Biol Sci Med Sci. 2007; 62: 1199-1203