Advertisement

Short telomeres: from dyskeratosis congenita to sporadic aplastic anemia and malignancy

      Telomeres are DNA-protein structures that form a protective cap on chromosome ends. As such, they prevent the natural ends of linear chromosomes from being subjected to DNA repair activities that would result in telomere fusion, degradation, or recombination. Both the DNA and protein components of the telomere are required for this essential function, because insufficient telomeric DNA length, loss of the terminal telomeric DNA structure, or deficiency of key telomere-associated factors may elicit a DNA damage response and result in cellular senescence or apoptosis. In the setting of failed checkpoint mechanisms, such DNA-protein defects can also lead to genomic instability through telomere fusions or recombination. Thus, as shown in both model systems and in humans, defects in telomere biology are implicated in cellular and organismal aging as well as in tumorigenesis. Bone marrow failure and malignancy are 2 life-threatening disease manifestations in the inherited telomere biology disorder dyskeratosis congenita. We provide an overview of basic telomere structure and maintenance. We outline the telomere biology defects observed in dyskeratosis congenita, focusing on recent discoveries in this field. Last, we review the evidence of how telomere biology may impact sporadic aplastic anemia and the risk for various cancers.

      Abbreviations:

      AML (acute myeloid leukemia), bp (base pairs), CLL (chronic lymphocytic leukemia), CST (CTC1/STN1/TEN1), CTC1 (conserved telomere maintenance component 1), DC (dyskeratosis congenita), FA (Fanconi anemia), FISH (fluorescence in situ hybridization), MDS (myelodysplastic syndrome), O/E (odds over expected ratio), POT1 (protection of telomeres 1), Q-PCR (quantitative polymerase chain reaction), RAP1 (repressor/activator protein 1), RTEL1 (regulator of telomere elongation helicase 1), STN1 (suppressor of cdc13-1), TEN1 (telomeric pathway with STN1), TERC (telomerase RNA component), TERT (telomerase reverse transcriptase), TIN2 (TRF1-interacting protein 2), TINF2 (TERF1 (TRF1)-interacting nuclear factor 2), TPP1 (TIN2-interacting protein 1), TRF1 (telomeric repeat factor 1), TRF2 (telomeric repeat factor 2)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Moyzis R.K.
        • Buckingham J.M.
        • Cram L.S.
        • et al.
        A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes.
        Proc Natl Acad Sci U S A. 1988; 85: 6622-6626
        • de Lange T.
        Shelterin: the protein complex that shapes and safeguards human telomeres.
        Genes Dev. 2005; 19: 2100-2110
        • Stewart J.A.
        • Chaiken M.F.
        • Wang F.
        • Price C.M.
        Maintaining the end: roles of telomere proteins in end-protection, telomere replication and length regulation.
        Mutat Res. 2012; 730: 12-19
        • Griffith J.D.
        • Comeau L.
        • Rosenfield S.
        • et al.
        Mammalian telomeres end in a large duplex loop.
        Cell. 1999; 97: 503-514
        • de Lange T.
        • Shiue L.
        • Myers R.M.
        • et al.
        Structure and variability of human chromosome ends.
        Mol Cell Biol. 1990; 10: 518-527
        • Yamaguchi H.
        • Calado R.T.
        • Ly H.
        • et al.
        Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia.
        N Engl J Med. 2005; 352: 1413-1424
        • Makarov V.L.
        • Hirose Y.
        • Langmore J.P.
        Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening.
        Cell. 1997; 88: 657-666
        • Vaziri H.
        • Dragowska W.
        • Allsopp R.C.
        • Thomas T.E.
        • Harley C.B.
        • Lansdorp P.M.
        Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age.
        Proc Natl Acad Sci U S A. 1994; 91: 9857-9860
        • Harley C.B.
        • Futcher A.B.
        • Greider C.W.
        Telomeres shorten during ageing of human fibroblasts.
        Nature. 1990; 345: 458-460
        • Podlevsky J.D.
        • Chen J.J.
        It all comes together at the ends: telomerase structure, function, and biogenesis.
        Mutat Res. 2012; 730: 3-11
        • Weinrich S.L.
        • Pruzan R.
        • Ma L.
        • et al.
        Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT.
        Nat Genet. 1997; 17: 498-502
        • Mitchell J.R.
        • Wood E.
        • Collins K.
        A telomerase component is defective in the human disease dyskeratosis congenita.
        Nature. 1999; 402: 551-555
        • Pogacic V.
        • Dragon F.
        • Filipowicz W.
        Human H/ACA small nucleolar RNPs and telomerase share evolutionarily conserved proteins NHP2 and NOP10.
        Mol Cell Biol. 2000; 20: 9028-9040
        • Trahan C.
        • Martel C.
        • Dragon F.
        Effects of dyskeratosis congenita mutations in dyskerin, NHP2 and NOP10 on assembly of H/ACA pre-RNPs.
        Hum Mol Genet. 2010; 19: 825-836
        • Venteicher A.S.
        • Abreu E.B.
        • Meng Z.
        • et al.
        A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis.
        Science. 2009; 323: 644-648
        • Nandakumar J.
        • Bell C.F.
        • Weidenfeld I.
        • Zaug A.J.
        • Leinwand L.A.
        • Cech T.R.
        The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity.
        Nature. 2012; 492: 285-289
        • Sexton A.N.
        • Youmans D.T.
        • Collins K.
        Specificity requirements for human telomere protein interaction with telomerase holoenzyme.
        J Biol Chem. 2012; 287: 34455-34464
        • Zhong F.L.
        • Batista L.F.
        • Freund A.
        • Pech M.F.
        • Venteicher A.S.
        • Artandi S.E.
        TPP1 OB-fold domain controls telomere maintenance by recruiting telomerase to chromosome ends.
        Cell. 2012; 150: 481-494
        • Wu P.
        • Takai H.
        • de Lange T.
        Telomeric 3′overhangs derive from resection by Exo1 and Apollo and fill-in by POT1b-associated CST.
        Cell. 2012; 150: 39-52
        • Wu P.
        • van Overbeek M.
        • Rooney S.
        • de Lange T.
        Apollo contributes to G overhang maintenance and protects leading-end telomeres.
        Mol Cell. 2010; 39: 606-617
        • Sfeir A.
        • Kosiyatrakul S.T.
        • Hockemeyer D.
        • et al.
        Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication.
        Cell. 2009; 138: 90-103
        • Vannier J.B.
        • Pavicic-Kaltenbrunner V.
        • Petalcorin M.I.
        • Ding H.
        • Boulton S.J.
        RTEL1 dismantles t loops and counteracts telomeric G4-DNA to maintain telomere integrity.
        Cell. 2012; 149: 795-806
        • Kim N.W.
        • Piatyszek M.A.
        • Prowse K.R.
        • et al.
        Specific association of human telomerase activity with immortal cells and cancer.
        Science. 1994; 266: 2011-2015
        • Wright W.E.
        • Piatyszek M.A.
        • Rainey W.E.
        • Byrd W.
        • Shay J.W.
        Telomerase activity in human germline and embryonic tissues and cells.
        Dev Genet. 1996; 18: 173-179
        • Harrington L.
        Haploinsufficiency and telomere length homeostasis.
        Mutat Res. 2012; 730: 37-42
        • Meyerson M.
        • Counter C.M.
        • Eaton E.N.
        • et al.
        hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization.
        Cell. 1997; 90: 785-795
        • Nakamura T.M.
        • Morin G.B.
        • Chapman K.B.
        • et al.
        Telomerase catalytic subunit homologs from fission yeast and human.
        Science. 1997; 277: 955-959
        • d'Adda di Fagagna F.
        • Reaper P.M.
        • Clay-Farrace L.
        • et al.
        A DNA damage checkpoint response in telomere-initiated senescence.
        Nature. 2003; 426: 194-198
        • Herbig U.
        • Jobling W.A.
        • Chen B.P.
        • Chen D.J.
        • Sedivy J.M.
        Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a).
        Mol Cell. 2004; 14: 501-513
        • Bodnar A.G.
        • Ouellette M.
        • Frolkis M.
        • et al.
        Extension of life-span by introduction of telomerase into normal human cells.
        Science. 1998; 279: 349-352
        • Vaziri H.
        • Benchimol S.
        Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span.
        Curr Biol. 1998; 8: 279-282
        • Sfeir A.
        • de Lange T.
        Removal of shelterin reveals the telomere end-protection problem.
        Science. 2012; 336: 593-597
        • Chen L.Y.
        • Redon S.
        • Lingner J.
        The human CST complex is a terminator of telomerase activity.
        Nature. 2012; 488: 540-544
        • Stewart J.A.
        • Wang F.
        • Chaiken M.F.
        • et al.
        Human CST promotes telomere duplex replication and general replication restart after fork stalling.
        EMBO J. 2012; 31: 3537-3549
        • Wang F.
        • Stewart J.A.
        • Kasbek C.
        • Zhao Y.
        • Wright W.E.
        • Price C.M.
        Human CST has independent functions during telomere duplex replication and C-strand fill-in.
        Cell Rep. 2012; 2: 1096-1103
        • Mangino M.
        • Hwang S.J.
        • Spector T.D.
        • et al.
        Genome-wide meta-analysis points to CTC1 and ZNF676 as genes regulating telomere homeostasis in humans.
        Hum Mol Genet. 2012; 21: 5385-5394
        • Gu P.
        • Min J.N.
        • Wang Y.
        • et al.
        CTC1 deletion results in defective telomere replication, leading to catastrophic telomere loss and stem cell exhaustion.
        EMBO J. 2012; 31: 2309-2321
        • Miyake Y.
        • Nakamura M.
        • Nabetani A.
        • et al.
        RPA-like mammalian Ctc1-Stn1-Ten1 complex binds to single-stranded DNA and protects telomeres independently of the Pot1 pathway.
        Mol Cell. 2009; 36: 193-206
        • Surovtseva Y.V.
        • Churikov D.
        • Boltz K.A.
        • et al.
        Conserved telomere maintenance component 1 interacts with STN1 and maintains chromosome ends in higher eukaryotes.
        Mol Cell. 2009; 36: 207-218
        • Aubert G.
        • Hills M.
        • Lansdorp P.M.
        Telomere length measurement: caveats and a critical assessment of the available technologies and tools.
        Mutat Res. 2012; 730: 59-67
        • Baerlocher G.M.
        • Vulto I.
        • de Jong G.
        • Lansdorp P.M.
        Flow cytometry and FISH to measure the average length of telomeres (flow FISH).
        Nat Protoc. 2006; 1: 2365-2376
        • Cawthon R.M.
        Telomere measurement by quantitative PCR.
        Nucl Acids Res. 2002; 30: e47
        • Knight S.
        • Vulliamy T.
        • Copplestone A.
        • Gluckman E.
        • Mason P.
        • Dokal I.
        Dyskeratosis Congenita (DC) Registry: identification of new features of DC.
        Br J Haematol. 1998; 103: 990-996
        • Savage S.A.
        • Alter B.P.
        Dyskeratosis congenita.
        Hematol Oncol Clin North Am. 2009; 23: 215-231
        • Armanios M.
        Syndromes of telomere shortening.
        Annu Rev Genomics Hum Genet. 2009; 10: 45-61
        • Savage S.A.
        • Giri N.
        • Baerlocher G.M.
        • Orr N.
        • Lansdorp P.M.
        • Alter B.P.
        TINF2, a component of the shelterin telomere protection complex, is mutated in dyskeratosis congenita.
        Am J Hum Genet. 2008; 82: 501-509
        • Knight S.W.
        • Heiss N.S.
        • Vulliamy T.J.
        • et al.
        Unexplained aplastic anaemia, immunodeficiency, and cerebellar hypoplasia (Hoyeraal-Hreidarsson syndrome) due to mutations in the dyskeratosis congenita gene, DKC1.
        Br J Haematol. 1999; 107: 335-339
        • Revesz T.
        • Fletcher S.
        • al-Gazali L.I.
        • DeBuse P.
        Bilateral retinopathy, aplastic anaemia, and central nervous system abnormalities: a new syndrome?.
        J Med Genet. 1992; 29: 673-675
        • Kajtar P.
        • Mehes K.
        Bilateral Coats retinopathy associated with aplastic anaemia and mild dyskeratotic signs.
        Am J Med Genet. 1994; 49: 374-377
        • Hoyeraal H.M.
        • Lamvik J.
        • Moe P.J.
        Congenital hypoplastic thrombocytopenia and cerebral malformations in two brothers.
        Acta Paediatr Scand. 1970; 59: 185-191
        • Hreidarsson S.
        • Kristjansson K.
        • Johannesson G.
        • Johannsson J.H.
        A syndrome of progressive pancytopenia with microcephaly, cerebellar hypoplasia and growth failure.
        Acta Paediatr Scand. 1988; 77: 773-775
        • Ohga S.
        • Kai T.
        • Honda K.
        • Nakayama H.
        • Inamitsu T.
        • Ueda K.
        What are the essential symptoms in the Hoyeraal-Hreidarsson syndrome?.
        Eur J Pediatr. 1997; 156: 80-81
        • Alter B.P.
        • Baerlocher G.M.
        • Savage S.A.
        • et al.
        Very short telomere length by flow fluorescence in situ hybridization identifies patients with dyskeratosis congenita.
        Blood. 2007; 110: 1439-1447
        • Vulliamy T.
        • Marrone A.
        • Goldman F.
        • et al.
        The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita.
        Nature. 2001; 413: 432-435
        • Armanios M.
        • Chen J.L.
        • Chang Y.P.
        • et al.
        Haploinsufficiency of telomerase reverse transcriptase leads to anticipation in autosomal dominant dyskeratosis congenita.
        Proc Natl Acad Sci U S A. 2005; 102: 15960-15964
        • Vulliamy T.J.
        • Walne A.
        • Baskaradas A.
        • Mason P.J.
        • Marrone A.
        • Dokal I.
        Mutations in the reverse transcriptase component of telomerase (TERT) in patients with bone marrow failure.
        Blood Cells Mol Dis. 2005; 34: 257-263
        • Walne A.J.
        • Vulliamy T.
        • Marrone A.
        • et al.
        Genetic heterogeneity in autosomal recessive dyskeratosis congenita with one subtype due to mutations in the telomerase-associated protein NOP10.
        Hum Mol Genet. 2007; 16: 1619-1629
        • Vulliamy T.
        • Beswick R.
        • Kirwan M.
        • et al.
        Mutations in the telomerase component NHP2 cause the premature ageing syndrome dyskeratosis congenita.
        Proc Natl Acad Sci U S A. 2008; 105: 8073-8078
        • Zhong F.
        • Savage S.A.
        • Shkreli M.
        • et al.
        Disruption of telomerase trafficking by TCAB1 mutation causes dyskeratosis congenita.
        Genes Dev. 2011; 25: 11-16
        • Nelson N.D.
        • Bertuch A.A.
        Dyskeratosis congenita as a disorder of telomere maintenance.
        Mutat Res. 2012; 730: 43-51
        • Keller R.B.
        • Gagne K.E.
        • Usmani G.N.
        • et al.
        CTC1 mutations in a patient with dyskeratosis congenita.
        Pediatr Blood Cancer. 2012; 59: 311-314
        • Ballew B.J.
        • Yeager M.
        • Jacobs K.
        • et al.
        Germline mutations of regulator of telomere elongation helicase 1, RTEL1, in dyskeratosis congenita.
        Hum Genet. 2013; 32: 473-480
        • Walne A.J.
        • Vulliamy T.
        • Beswick R.
        • Kirwan M.
        • Dokal I.
        TINF2 mutations result in very short telomeres: analysis of a large cohort of patients with dyskeratosis congenita and related bone marrow failure syndromes.
        Blood. 2008; 112: 3594-3600
        • Sasa G.
        • Ribes-Zamora A.
        • Nelson N.
        • Bertuch A.
        Three novel truncating TINF2 mutations causing severe dyskeratosis congenita in early childhood.
        Clin Genet. 2012; 81: 470-478
        • Canudas S.
        • Houghtaling B.R.
        • Bhanot M.
        • et al.
        A role for heterochromatin protein 1gamma at human telomeres.
        Gene Dev. 2011; 25: 1807-1819
        • Houghtaling B.R.
        • Canudas S.
        • Smith S.
        A role for sister telomere cohesion in telomere elongation by telomerase.
        Cell Cycle. 2012; 11: 19-25
        • Chiang Y.J.
        • Kim S.H.
        • Tessarollo L.
        • Campisi J.
        • Hodes R.J.
        Telomere-associated protein TIN2 is essential for early embryonic development through a telomerase-independent pathway.
        Mol Cell Biol. 2004; 24: 6631-6634
        • Anderson B.H.
        • Kasher P.R.
        • Mayer J.
        • et al.
        Mutations in CTC1, encoding conserved telomere maintenance component 1, cause Coats plus.
        Nat Genet. 2012; 44: 338-342
        • Polvi A.
        • Linnankivi T.
        • Kivela T.
        • et al.
        Mutations in CTC1, encoding the CTS telomere maintenance complex component 1, cause cerebroretinal microangiopathy with calcifications and cysts.
        Am J Hum Genet. 2012; 90: 540-549
        • Crow Y.J.
        • McMenamin J.
        • Haenggeli C.A.
        • et al.
        Coats' plus: a progressive familial syndrome of bilateral Coats' disease, characteristic cerebral calcification, leukoencephalopathy, slow pre- and post-natal linear growth and defects of bone marrow and integument.
        Neuropediatrics. 2004; 35: 10-19
        • Walne A.
        • Bhagat T.
        • Kirwan M.
        • et al.
        Mutations in the telomere capping complex in bone marrow failure and related syndromes.
        Haematologica. 2012; 98: 334-338
        • Beier F.
        • Foronda M.
        • Martinez P.
        • Blasco M.A.
        Conditional TRF1 knockout in the hematopoietic compartment leads to bone marrow failure and recapitulates clinical features of dyskeratosis congenita.
        Blood. 2012; 120: 2990-3000
        • Savage S.A.
        • Calado R.T.
        • Xin Z.T.
        • Ly H.
        • Young N.S.
        • Chanock S.J.
        Genetic variation in telomeric repeat binding factors 1 and 2 in aplastic anemia.
        Exp Hematol. 2006; 34: 664-671
        • Savage S.A.
        • Giri N.
        • Jessop L.
        • et al.
        Sequence analysis of the shelterin telomere protection complex genes in dyskeratosis congenita.
        J Med Genet. 2011; 48: 285-288
        • Jongmans M.C.
        • Verwiel E.T.
        • Heijdra Y.
        • et al.
        Revertant somatic mosaicism by mitotic recombination in dyskeratosis congenita.
        Am J Hum Genet. 2012; 90: 426-433
        • Maciejewski J.P.
        • Selleri C.
        • Sato T.
        • Anderson S.
        • Young N.S.
        A severe and consistent deficit in marrow and circulating primitive hematopoietic cells (long-term culture-initiating cells) in acquired aplastic anemia.
        Blood. 1996; 88: 1983-1991
        • Maciejewski J.P.
        • Anderson S.
        • Katevas P.
        • Young N.S.
        Phenotypic and functional analysis of bone marrow progenitor cell compartment in bone marrow failure.
        Br J Haematol. 1994; 87: 227-234
        • Goldman F.D.
        • Aubert G.
        • Klingelhutz A.J.
        • et al.
        Characterization of primitive hematopoietic cells from patients with dyskeratosis congenita.
        Blood. 2008; 111: 4523-4531
        • Young N.S.
        • Calado R.T.
        • Scheinberg P.
        Current concepts in the pathophysiology and treatment of aplastic anemia.
        Blood. 2006; 108: 2509-2519
        • Yamaguchi H.
        • Baerlocher G.M.
        • Lansdorp P.M.
        • et al.
        Mutations of the human telomerase RNA gene (TERC) in aplastic anemia and myelodysplastic syndrome.
        Blood. 2003; 102: 916-918
        • Young N.S.
        Bone marrow failure and the new telomere diseases: practice and research.
        Hematology. 2012; 17: S18-S21
        • Vulliamy T.
        • Marrone A.
        • Dokal I.
        • Mason P.J.
        Association between aplastic anaemia and mutations in telomerase RNA.
        Lancet. 2002; 359: 2168-2170
        • Fogarty P.F.
        • Yamaguchi H.
        • Wiestner A.
        • et al.
        Late presentation of dyskeratosis congenita as apparently acquired aplastic anaemia due to mutations in telomerase RNA.
        Lancet. 2003; 362: 1628-1630
        • Pulsipher M.A.
        • Young N.S.
        • Tolar J.
        • et al.
        Optimization of therapy for severe aplastic anemia based on clinical, biologic, and treatment response parameters: conclusions of an international working group on severe aplastic anemia convened by the Blood and Marrow Transplant Clinical Trials Network, March 2010.
        Biol Blood Marrow Transplant. 2011; 17: 291-299
        • Ball S.E.
        • Gibson F.M.
        • Rizzo S.
        • Tooze J.A.
        • Marsh J.C.
        • Gordon-Smith E.C.
        Progressive telomere shortening in aplastic anemia.
        Blood. 1998; 91: 3582-3592
        • Lee J.J.
        • Kook H.
        • Chung I.J.
        • et al.
        Telomere length changes in patients with aplastic anaemia.
        Br J Haematol. 2001; 112: 1025-1030
        • Brummendorf T.H.
        • Maciejewski J.P.
        • Mak J.
        • Young N.S.
        • Lansdorp P.M.
        Telomere length in leukocyte subpopulations of patients with aplastic anemia.
        Blood. 2001; 97: 895-900
        • Scheinberg P.
        • Cooper J.N.
        • Sloand E.M.
        • Wu C.O.
        • Calado R.T.
        • Young N.S.
        Association of telomere length of peripheral blood leukocytes with hematopoietic relapse, malignant transformation, and survival in severe aplastic anemia.
        JAMA. 2010; 304: 1358-1364
        • Calado R.T.
        • Cooper J.N.
        • Padilla-Nash H.M.
        • et al.
        Short telomeres result in chromosomal instability in hematopoietic cells and precede malignant evolution in human aplastic anemia.
        Leukemia. 2012; 26: 700-707
        • Leteurtre F.
        • Li X.
        • Guardiola P.
        • et al.
        Accelerated telomere shortening and telomerase activation in Fanconi's anaemia.
        Br J Haematol. 1999; 105: 883-893
        • Li X.
        • Leteurtre F.
        • Rocha V.
        • et al.
        Abnormal telomere metabolism in Fanconi's anaemia correlates with genomic instability and the probability of developing severe aplastic anaemia.
        Br J Haematol. 2003; 120: 836-845
        • Rhee D.B.
        • Wang Y.
        • Mizesko M.
        • Zhou F.
        • Haneline L.
        • Liu Y.
        FANCC suppresses short telomere-initiated telomere sister chromatid exchange.
        Hum Mol Genet. 2010; 19: 879-887
        • Adelfalk C.
        • Lorenz M.
        • Serra V.
        • von Zglinicki T.
        • Hirsch-Kauffmann M.
        • Schweiger M.
        Accelerated telomere shortening in Fanconi anemia fibroblasts: a longitudinal study.
        FEBS Lett. 2001; 506: 22-26
        • Pavesi E.
        • Avondo F.
        • Aspesi A.
        • et al.
        Analysis of telomeres in peripheral blood cells from patients with bone marrow failure.
        Pediatr Blood Cancer. 2009; 53: 411-416
        • Streffer C.
        Strong association between cancer and genomic instability.
        Radiat Environ Biophys. 2010; 49: 125-131
        • Raynaud C.M.
        • Sabatier L.
        • Philipot O.
        • Olaussen K.A.
        • Soria J.C.
        Telomere length, telomeric proteins and genomic instability during the multistep carcinogenic process.
        Crit Rev Oncol Hematol. 2008; 66: 99-117
        • Alter B.P.
        • Giri N.
        • Savage S.A.
        • Rosenberg P.S.
        Cancer in dyskeratosis congenita.
        Blood. 2009; 113: 6549-6557
        • Jones C.H.
        • Pepper C.
        • Baird D.M.
        Telomere dysfunction and its role in haematological cancer.
        Br J Haematol. 2012; 156: 573-587
        • Roos G.
        • Krober A.
        • Grabowski P.
        • et al.
        Short telomeres are associated with genetic complexity, high-risk genomic aberrations, and short survival in chronic lymphocytic leukemia.
        Blood. 2008; 111: 2246-2252
        • Rampazzo E.
        • Bonaldi L.
        • Trentin L.
        • et al.
        Telomere length and telomerase levels delineate subgroups of B-cell chronic lymphocytic leukemia with different biological characteristics and clinical outcomes.
        Haematologica. 2012; 97: 56-63
        • Lin T.T.
        • Letsolo B.T.
        • Jones R.E.
        • et al.
        Telomere dysfunction and fusion during the progression of chronic lymphocytic leukemia: evidence for a telomere crisis.
        Blood. 2010; 116: 1899-1907
        • Calado R.T.
        • Regal J.A.
        • Hills M.
        • et al.
        Constitutional hypomorphic telomerase mutations in patients with acute myeloid leukemia.
        Proc Natl Acad Sci U S A. 2009; 106: 1187-1192
        • Hills M.
        • Lansdorp P.M.
        Short telomeres resulting from heritable mutations in the telomerase reverse transcriptase gene predispose for a variety of malignancies.
        Ann N Y Acad Sci. 2009; 1176: 178-190
        • Du H.Y.
        • Pumbo E.
        • Ivanovich J.
        • et al.
        TERC and TERT gene mutations in patients with bone marrow failure and the significance of telomere length measurements.
        Blood. 2009; 113: 309-316
        • Alder J.K.
        • Chen J.J.
        • Lancaster L.
        • et al.
        Short telomeres are a risk factor for idiopathic pulmonary fibrosis.
        Proc Natl Acad Sci U S A. 2008; 105: 13051-13056
        • Ramsay A.J.
        • Quesada V.
        • Foronda M.
        • et al.
        POT1 mutations cause telomere dysfunction in chronic lymphocytic leukemia.
        Nat Genet. 2013; 45: 526-530
        • Savage S.A.
        • Bertuch A.A.
        The genetics and clinical manifestations of telomere biology disorders.
        Genet Med. 2010; 12: 753-764
        • Wentzensen I.M.
        • Mirabello L.
        • Pfeiffer R.M.
        • Savage S.A.
        The association of telomere length and cancer: a meta-analysis.
        Cancer Epidemiol Biomarkers Prev. 2011; 20: 1238-1250
        • Ma H.
        • Zhou Z.
        • Wei S.
        • et al.
        Shortened telomere length is associated with increased risk of cancer: a meta-analysis.
        PLoS One. 2011; 6: e20466
        • Willeit P.
        • Willeit J.
        • Mayr A.
        • et al.
        Telomere length and risk of incident cancer and cancer mortality.
        JAMA. 2010; 304: 69-75
        • Shay J.
        • Wright W.
        • Werbin H.
        Loss of telomeric DNA during aging may predispose cells to cancer.
        Int J Oncol. 1993; 3 ([Review]): 559-563