Advertisement

Telomeres and cardiovascular disease risk: an update 2013

      Leukocyte telomere length (LTL) has been regarded as a potential marker of biologic aging because it usually shortens in a predictable way with age. Recently, a growing interest in cardiovascular aging has led to a number of new epidemiologic studies investigating LTL in various disease conditions. Some methodological problems exist because there are different methods available to determine LTL, and standardization is much needed. For example, in the majority of studies, patients with early-onset coronary heart disease have been shown to have shorter LTL. In addition, patients with diabetes mellitus complications tend to have shorter LTL than control subjects. On the other hand, increased left ventricular hypertrophy or mass is associated with longer LTL, and studies investigating hypertension have reported both shorter and longer LTL than found in normotensive control subjects. There is, therefore, a need for longitudinal studies to elucidate these complicated relationships further, to provide estimations of telomere attrition rates, and to overcome analytical problems when only cross-sectional studies are used. The understanding of cardiovascular aging and telomere biology may open up new avenues for interventions, such as stem cell therapy or agents that could retard this aging process over and beyond conventional risk factor control.

      Abbreviations:

      CAD (coronary artery disease), CHD (coronary heart disease), CVD (cardiovascular disease), EF (ejection fraction), FH (familiar hypercholesterolemia), HR (hazard ratio), IHD (ischemic heart disease), LTL (leukocyte telomere length), LVH (left ventricular hypertrophy), LVMI (left ventricular mass index), MI (myocardial infarction), q-PCR (quantitative polymerase chain reaction), RTL (relative telomere length), TBP (telomere binding protein)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Longhese M.P.
        • Anbalagan S.
        • Martina M.
        • Bonetti D.
        The role of shelterin in maintaining telomere integrity.
        Front Biosci. 2012; 17: 1715-1728
        • Mangino M.
        • Hwang S.J.
        • Spector T.D.
        • et al.
        Genome-wide meta-analysis points to CTC1 and ZNF676 as genes regulating telomere homeostasis in humans.
        Hum Mol Genet. 2012; 21: 5385-5394
        • Larsson L.G.
        Oncogene- and tumor suppressor gene-mediated suppression of cellular senescence.
        Semin Cancer Biol. 2011; 21: 367-376
        • Dunshea G.
        • Duffield D.
        • Gales N.
        • Hindell M.
        • Wells R.S.
        • Jarman S.N.
        Telomeres as age markers in vertebrate molecular ecology.
        Mol Ecol Resour. 2011; 11: 225-235
        • Sanders J.L.
        • Fitzpatrick A.L.
        • Boudreau R.M.
        • et al.
        Leukocyte telomere length is associated with noninvasively measured age-related disease: the Cardiovascular Health Study.
        J Gerontol A Biol Sci Med Sci. 2012; 67: 409-416
        • Naka K.
        • Muraguchi T.
        • Hoshii T.
        • Hirao A.
        Regulation of reactive oxygen species and genomic stability in hematopoietic stem cells.
        Antiox Redox Signal. 2008; 10: 1883-1894
        • Valdes A.M.
        • Andrew T.
        • Gardner J.P.
        • et al.
        Obesity, cigarette smoking, and telomere length in women.
        Lancet. 2005; 366: 662-664
        • Aviv A.
        • Hunt S.C.
        • Lin J.
        • Cao X.
        • Kimura M.
        • Blackburn E.
        Impartial comparative analysis of measurement of leukocyte telomere length/DNA content by Southern blots and qPCR.
        Nucl Acids Res. 2011; 39: e134
        • Wilson W.R.
        • Herbert K.E.
        • Mistry Y.
        • et al.
        Blood leucocyte telomere DNA content predicts vascular telomere DNA content in humans with and without vascular disease.
        Eur Heart J. 2008; 29: 2689-2694
        • Butler M.G.
        • Tilburt J.
        • DeVries A.
        • et al.
        Comparison of chromosome telomere integrity in multiple tissues from subjects at different ages.
        Cancer Genet Cytogenet. 1998; 105: 138-144
        • Huzen J.
        • Peeters W.
        • de Boer R.A.
        • et al.
        Circulating leukocyte and carotid atherosclerotic plaque telomere length: interrelation, association with plaque characteristics, and restenosis after endarterectomy.
        Arterioscler Thromb Vasc Biol. 2011; 31: 1219-1225
        • Demissie S.
        • Levy D.
        • Benjamin E.J.
        • et al.
        Insulin resistance, oxidative stress, hypertension, and leukocyte telomere length in men from the Framingham Heart Study.
        Aging Cell. 2006; 5: 325-330
        • Astrup A.S.
        • Tarnow L.
        • Jorsal A.
        • et al.
        Telomere length predicts all-cause mortality in patients with type 1 diabetes.
        Diabetologia. 2010; 53: 45-48
        • Murillo-Ortiz B.
        • Albarrán-Tamayo F.
        • Arenas-Aranda D.
        • et al.
        Telomere length and type 2 diabetes in males: a premature aging syndrome.
        Aging Male. 2012; 15: 54-58
        • Saliques S.
        • Zeller M.
        • Lorin J.
        • et al.
        Telomere length and cardiovascular disease.
        Arch Cardiovasc Dis. 2010; 103: 454-459
        • Fyhrquist F.
        • Saijonmaa O.
        • Strandberg T.
        The roles of senescence and telomere shortening in cardiovascular disease.
        Nat Rev Cardiol. 2013; 10: 274-283
        • O'Donnell C.J.
        • Demissie S.
        • Kimura M.
        • et al.
        Leukocyte telomere length and carotid artery intimal medial thickness: the Framingham Heart Study.
        Arterioscler Thromb Vasc Biol. 2008; 28: 1165-1171
        • Ding H.
        • Chen C.
        • Shaffer J.R.
        • et al.
        Telomere length and risk of stroke in Chinese.
        Stroke. 2012; 43: 658-663
        • Atturu G.
        • Brouilette S.
        • Samani N.J.
        • London N.J.
        • Sayers R.D.
        • Bown M.J.
        Short leukocyte telomere length is associated with abdominal aortic aneurysm (AAA).
        Eur J Vasc Endovasc Surg. 2010; 39: 559-564
        • Nordfjäll K.
        • Eliasson M.
        • Stegmayr B.
        • Lundin S.
        • Roos G.
        • Nilsson P.M.
        Increased abdominal obesity, adverse psychosocial factors and shorter telomere length in subjects reporting early ageing; the MONICA Northern Sweden Study.
        Scand J Public Health. 2008; 36: 744-752
        • Epel E.S.
        • Blackburn E.H.
        • Lin J.
        • et al.
        Accelerated telomere shortening in response to life stress.
        Proc Natl Acad Sci U S A. 2004; 101: 17312-17315
        • Nilsson P.M.
        • Boutouyrie P.
        • Laurent S.
        Vascular aging: a tale of EVA and ADAM in cardiovascular risk assessment and prevention.
        Hypertension. 2009; 54: 3-10
        • Jeanclos E.
        • Schork N.J.
        • Kyvik K.O.
        • Kimura M.
        • Skurnick J.H.
        • Aviv A.
        Telomere length inversely correlates with pulse pressure and is highly familial.
        Hypertension. 2000; 36: 195-200
        • Aviv A.
        • Chen W.
        • Gardner J.P.
        • et al.
        Leukocyte telomere dynamics: longitudinal findings among young adults in the Bogalusa Heart Study.
        Am J Epidemiol. 2009; 169: 323-329
        • Chen W.
        • Kimura M.
        • Kim S.
        • et al.
        Longitudinal versus cross-sectional evaluations of leukocyte telomere length dynamics: age-dependent telomere shortening is the rule.
        J Gerontol A Biol Sci Med Sci. 2011; 66: 312-319
        • Fyhrquist F.
        • Silventoinen K.
        • Saijonmaa O.
        • et al.
        Telomere length and cardiovascular risk in hypertensive patients with left ventricular hypertrophy: the LIFE study.
        J Hum Hypertens. 2011; 25: 711-718
        • Brouilette S.W.
        • Moore J.S.
        • McMahon A.D.
        • et al.
        Telomere length, risk of coronary heart disease, and statin treatment in the West of Scotland Primary Prevention Study: a nested case-control study.
        Lancet. 2007; 369: 107-114
        • Stehouwer C.D.
        • Henry R.M.
        • Ferreira I.
        Arterial stiffness in diabetes and the metabolic syndrome: a pathway to cardiovascular disease.
        Diabetologia. 2008; 51: 527-539
        • De Meyer T.
        • Rietzschel E.R.
        • De Buyzere M.L.
        • Van Criekinge W.
        • Bekaert S.
        Telomere length and cardiovascular aging: the means to the ends?.
        Ageing Res Rev. 2011; 10: 297-303
        • Huzen J.
        • de Boer R.A.
        • van Veldhuisen D.J.
        • van Gilst W.H.
        • van der Harst P.
        The emerging role of telomere biology in cardiovascular disease.
        Front Biosci. 2010; 15: 35-45
        • Samani N.J.
        • Boultby R.
        • Butler R.
        • Thompson J.R.
        • Goodall A.H.
        Telomere shortening in atherosclerosis.
        Lancet. 2001; 358: 472-473
        • Brouilette S.
        • Singh R.K.
        • Thompson J.R.
        • Goodall A.H.
        • Samani N.J.
        White cell telomere length and risk of premature myocardial infarction.
        Arterioscler Thromb Vasc Biol. 2003; 23: 842-846
        • Zee R.Y.
        • Michaud S.E.
        • Germer S.
        • Ridker P.M.
        Association of shorter mean telomere length with risk of incident myocardial infarction: a prospective, nested case-control approach.
        Clin Chim Acta. 2009; 403: 139-141
        • Nzietchueng R.
        • Elfarra M.
        • Nloga J.
        • et al.
        Telomere length in vascular tissues from patients with atherosclerotic disease.
        J Nutr Health Aging. 2011; 15: 153-156
        • Maubaret C.G.
        • Salpea K.D.
        • Jain A.
        • et al.
        Telomeres are shorter in myocardial infarction patients compared to healthy subjects: correlation with environmental risk factors.
        J Mol Med (Berl). 2010; 88: 785-794
        • Russo A.
        • Palumbo L.
        • Fornengo C.
        • et al.
        Telomere length variation in juvenile acute myocardial infarction.
        PLoS One. 2012; 7: e49206
        • Weischer M.
        • Bojesen S.E.
        • Cawthon R.M.
        • Freiberg J.J.
        • Tybjærg-Hansen A.
        • Nordestgaard B.G.
        Short telomere length, myocardial infarction, ischemic heart disease, and early death.
        Arterioscler Thromb Vasc Biol. 2012; 32: 822-829
        • Perez-Rivera J.A.
        • Pabon-Osuna P.
        • Cieza-Borrella C.
        • Martin-Herrero F.
        • Gonzalez-Porras J.R.
        • Gonzalez-Sarmiento R.
        Prognostic value of telomere length in acute coronary syndrome.
        Mech Ageing Dev. 2012; 133: 695-697
        • Kroenke C.H.
        • Pletcher M.J.
        • Lin J.
        • et al.
        Telomerase, telomere length, and coronary artery calcium in black and white men in the CARDIA study.
        Atherosclerosis. 2012; 220: 506-512
        • Calvert P.A.
        • Liew T.V.
        • Gorenne I.
        • et al.
        Leukocyte telomere length is associated with high-risk plaques on virtual histology intravascular ultrasound and increased proinflammatory activity.
        Arterioscler Thromb Vasc Biol. 2011; 31: 2157-2164
        • Vasan R.S.
        • Demissie S.
        • Kimura M.
        • et al.
        Association of leukocyte telomere length with echocardiographic left ventricular mass: the Framingham heart study.
        Circulation. 2009; 120: 1195-1202
        • Kuznetsova T.
        • Codd V.
        • Brouilette S.
        • et al.
        Association between left ventricular mass and telomere length in a population study.
        Am J Epidemiol. 2010; 172: 440-450
        • Leosdottir M.
        • Willenheimer R.
        • Plehn J.
        • et al.
        Myocardial structure and function by echocardiography in relation to glucometabolic status in elderly subjects from 2 population-based cohorts: a cross-sectional study.
        Am Heart J. 2010; 159: 414-420
        • Cawthon R.M.
        Telomere measurement by quantitative PCR.
        Nucl Acids Res. 2002; 30: e47
        • Fyhrquist F.
        • Eriksson A.
        • Saijonmaa O.
        • et al.
        Telomere length is associated with ACE I/D polymorphism in hypertensive patients with left ventricular hypertrophy.
        J Renin Angiotensin Aldosterone Syst. 2012; ([Epub ahead of print])
        • Huber M.
        • Treszl A.
        • Wehland M.
        • et al.
        Genetic variants implicated in telomere length associated with left ventricular function in patients with hypertension and cardiac organ damage.
        J Mol Med (Berl). 2012; 90: 1059-1067
        • Nilsson P.M.
        • Dahlman D.
        • Roos G.
        • Nordfjäll K.
        • Melander O.
        Telomere attrition over fifteen years is associated with clinical markers of cardiovascular ageing in middle-aged subjects: the Malmo Diet and Cancer Study, Sweden [abstract].
        J Hypertens. 2011; 29 (e475)
        • Burnett-Hartman A.N.
        • Fitzpatrick A.L.
        • Kronmal R.A.
        • et al.
        Telomere-associated polymorphisms correlate with cardiovascular disease mortality in Caucasian women: the Cardiovascular Health Study.
        Mech Ageing Dev. 2012; 133: 275-281
        • Soerensen M.
        • Thinggaard M.
        • Nygaard M.
        • et al.
        Genetic variation in TERT and TERC and human leukocyte telomere length and longevity: a cross-sectional and longitudinal analysis.
        Aging Cell. 2012; 11: 223-227
        • Zvereva M.I.
        • Shcherbakova D.M.
        • Dontsova O.A.
        Telomerase: structure, functions, and activity regulation.
        Biochemistry (Mosc). 2010; 75: 1563-1583
        • Hills M.
        • Lansdorp P.M.
        Short telomeres resulting from heritable mutations in the telomerase reverse transcriptase gene predispose for a variety of malignancies.
        Ann N Y Acad Sci. 2009; 1176: 178-190
        • De Meyer T.
        • Van Daele C.M.
        • De Buyzere M.L.
        • et al.
        No shorter telomeres in subjects with a family history of cardiovascular disease in the Asklepios study.
        Arterioscler Thromb Vasc Biol. 2012; 32: 3076-3081
        • Wong L.S.
        • Huzen J.
        • de Boer R.A.
        • van Gilst W.H.
        • van Veldhuisen D.J.
        • van der Harst P.
        Telomere length of circulating leukocyte subpopulations and buccal cells in patients with ischemic heart failure and their offspring.
        PLoS One. 2011; 6: e23118
        • Martin-Ruiz C.
        • Jagger C.
        • Kingston A.
        • et al.
        Assessment of a large panel of candidate biomarkers of ageing in the Newcastle 85+ study.
        Mech Ageing Dev. 2011; 132: 496-502
        • Wang J.C.
        • Bennett M.
        Aging and atherosclerosis: mechanisms, functional consequences and potential therapeutics for cellular senescence.
        Circ Res. 2012; 111: 245-259
        • Krauss J.
        • Farzaneh-Far R.
        • Puterman E.
        • et al.
        Physical fitness and telomere length in patients with coronary heart disease: findings from the Heart and Soul Study.
        PLoS One. 2011; 6: e26983
        • Ornish D.
        • Lin J.
        • Daubenmier J.
        • et al.
        Increased telomerase activity and comprehensive lifestyle changes: a pilot study.
        Lancet Oncol. 2008; 9: 1048-1057
        • Burgess S.
        • Butterworth A.
        • Malarstig A.
        • Thompson S.G.
        Use of Mendelian randomisation to assess potential benefit of clinical intervention.
        BMJ. 2012; 345: e7325
        • O'Rourke M.F.
        • Safar M.E.
        • Dzau V.
        The Cardiovascular Continuum extended: aging effects on the aorta and microvasculature.
        Vasc Med. 2010; 15: 461-468
        • Codd V.
        • Nelson C.P.
        • Albrecht E.
        • et al.
        Identification of seven loci affecting mean telomere length and their association with disease.
        Nat Genet. 2013; 45 (427e1–2): 422-427