Advertisement

Zebrafish as a model system for mitochondrial biology and diseases

Published:September 23, 2013DOI:https://doi.org/10.1016/j.trsl.2013.08.008
      Animal models for studying human disease are essential to the continuing evolution of medicine. Rodent models are attractive for the obvious similarities in development and genetic makeup compared with humans, but have cost and technical limitations. The zebrafish (Danio rerio) represents an ideal alternative vertebrate model of human disease because of its high conservation of genetic information and physiological processes, inexpensive maintenance, and optical clarity facilitating direct observation. This review highlights recent advances in understanding genetic disease states associated with the dynamic organelle, the mitochondrion, using the zebrafish. Mitochondrial diseases that have been replicated in the zebrafish include those affecting the nervous and cardiovascular systems, as well as red blood cell function. Gene silencing techniques, including morpholino knockdown and transcription activator-like (TAL)-effector endonucleases, have been exploited to demonstrate how loss of function can induce human disease-like states in zebrafish. Moreover, modeling mitochondrial diseases has been facilitated greatly by the creation of transgenic fish with fluorescently labeled mitochondria for in vivo visualization of these structures. In addition, behavioral assays have been developed to examine changes in motor activity and sensory responses, particularly in larval stages. Zebrafish are poised to advance our understanding of the pathogenesis of human mitochondrial diseases beyond the current state of knowledge and provide a key tool in the development of novel therapeutic approaches to treat these conditions.

      Abbreviations:

      2,5-DHBA (2,5-dihydroxybenzoic acid), ALS (amyotrophic lateral sclerosis), ATP (adenosine triphosphate), Bcl-2 (B-cell lymphoma 2), CMT2 (Charcot-Marie-Tooth 2), CNS (central nervous system), coA (coenzyme A), COX (cytochrome c oxidase), DA (dopaminergic), dpf (days post-fertilization), EGFP (enhanced green fluorescent protein), ETFDH (electron transfer flavoprotein dehydrogenase), HIF1α (hypoxia-induced factor 1α), hpf (hours post-fertilization), HSC (hematopoietic stem cell), IMM (inner mitochondrial membrane), IMS (intermembrane space), KBP (KIF1-binding protein), LRRK2 (leucine-rich repeat kinase 2), MADD (multiple acyl-CoA dehydrogenase deficiency), MD (mitochondrial disease), MDS (myelodysplastic syndromes), MFN (Mitofusin), MFRN (mitoferrin), mRNA (messenger RNA), mtDNA (mitochondrial DNA), OMM (outer mitochondrial membrane), OPA1 (optic atrophy 1), oxphos (oxidative phosphorylation), PD (Parkinson's disease), PP2Cm (protein phosphatase 2C family member), ROS (reactive oxygen species), SA (sideroblastic anemia), SOD1 (superoxide dismutase 1), VCF (velocardiofacial)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lane N.
        • Martin W.
        The energetics of genome complexity.
        Nature. 2010; 467: 929-934
        • Nunnari J.
        • Suomalainen A.
        Mitochondria: in sickness and in health.
        Cell. 2012; 148: 1145-1159
        • Anderson S.
        • Bankier A.T.
        • Barrell B.G.
        • et al.
        Sequence and organization of the human mitochondrial genome.
        Nature. 1981; 290: 457-465
        • Pagliarini D.J.
        • Calvo S.E.
        • Chang B.
        • et al.
        A mitochondrial protein compendium elucidates complex I disease biology.
        Cell. 2008; 134: 112-123
        • Elmore S.
        Apoptosis: a review of programmed cell death.
        Toxicol Pathol. 2007; 35: 495-516
        • Turrens J.F.
        Mitochondrial formation of reactive oxygen species.
        J Physiol. 2003; 552: 335-344
        • Murphy M.P.
        How mitochondria produce reactive oxygen species.
        Biochem J. 2009; 417: 1-13
        • Pedersen P.L.
        Mitochondria in relation to cancer metastasis: introduction to a mini-review series.
        J Bioenerg Biomembr. 2012; 44: 615-617
        • Frederick R.L.
        • Shaw J.M.
        Moving mitochondria: establishing distribution of an essential organelle.
        Traffic. 2007; 8: 1668-1675
        • Saxton W.M.
        • Hollenbeck P.J.
        The axonal transport of mitochondria.
        J Cell Sci. 2012; 125: 2095-2104
        • Chan D.C.
        Fusion and fission: interlinked processes critical for mitochondrial health.
        Annu Rev Genet. 2012; 46: 265-287
        • Galloway C.A.
        • Yoon Y.
        Mitochondrial morphology in metabolic diseases.
        Antioxid Redox Sign. 2012; 00: 1-16
        • Schon E.A.
        • DiMauro S.
        • Hirano M.
        Human mitochondrial DNA: roles of inherited and somatic mutations.
        Nat Rev Genet. 2012; 13: 878-890
        • Streisinger G.
        • Walker C.
        • Dower N.
        • Knauber D.
        • Singer F.
        Production of clones of homozygous diploid zebrafish (Brachydanio rerio).
        Nature. 1981; 291: 293-296
        • Broughton R.E.
        • Milam J.E.
        • Roe B.A.
        The complete sequence of the zebrafish (Danio rerio) mitochondrial genome and evolutionary patterns in vertebrate mitochondrial DNA.
        Genome Res. 2001; 11: 1958-1967
        • Kim M.J.
        • Kang K.H.
        • Kim C.-H.
        • Choi S.-Y.
        Real-time imaging of mitochondria in transgenic zebrafish expressing mitochondrially targeted GFP.
        Biotechniques. 2008; 45: 331-334
        • Plucińska G.
        • Paquet D.
        • Hruscha A.
        • et al.
        In vivo imaging of disease-related mitochondrial dynamics in a vertebrate model system.
        J Neurol. 2012; 32: 16203-16212
        • Song Y.
        • Selak M.A.
        • Watson C.T.
        • et al.
        Mechanisms underlying metabolic and neural defects in zebrafish and human multiple acyl-CoA dehydrogenase deficiency (MADD).
        PLoS One. 2009; 4: e8329
        • Flinn L.
        • Mortiboys H.
        • Volkmann K.
        • Köster R.W.
        • Ingham P.W.
        • Bandmann O.
        Complex I deficiency and dopaminergic neuronal cell loss in parkin-deficient zebrafish (Danio rerio).
        Brain. 2009; 132: 1613-1623
        • Nilsson R.
        • Schultz I.J.
        • Pierce E.L.
        • et al.
        Discovery of genes essential for heme biosynthesis through large-scale gene expression analysis.
        Cell Metab. 2009; 10: 119-130
        • Cho Y.S.
        • Jung H.J.
        • Seok S.H.
        • Payumo A.Y.
        • Chen J.K.
        • Kwon H.J.
        Functional inhibition of UQCRB suppresses angiogenesis in zebrafish.
        Biochem Biophys Res Commun. 2013; 433: 396-400
        • Lyons D.A.
        • Naylor S.G.
        • Mercurio S.
        • Dominguez C.
        • Talbot W.S.
        KBP is essential for axonal structure, outgrowth and maintenance in zebrafish, providing insight into the cellular basis of Goldberg-Shprintzen syndrome.
        Development. 2008; 135: 599-608
        • Anichtchik O.
        • Diekmann H.
        • Fleming A.
        • Roach A.
        • Goldsmith P.
        • Rubinsztein D.C.
        Loss of PINK1 function affects development and results in neurodegeneration in zebrafish.
        J Neurosci. 2008; 28: 8199-8207
        • Friedrich T.
        • Lambert A.M.
        • Masino M.A.
        • Downes G.B.
        Mutation of zebrafish dihydrolipoamide branched-chain transacylase E2 results in motor dysfunction and models maple syrup urine disease.
        Dis Models Mech. 2012; 5: 248-258
        • Schwarz T.L.
        Mitochondrial trafficking in neurons.
        Cold Spring Harb Perspect Biol. 2013; 5: a011304
        • Pallanck L.J.
        Culling sick mitochondria from the herd.
        J Cell Biol. 2010; 191: 1225-1227
        • Otera H.
        • Ishihara N.
        • Mihara K.
        New insights into the function and regulation of mitochondrial fission.
        Biochim Biophys Acta. 2013; 1833: 1256-1268
        • Lin L.-Y.
        • Horng J.-L.
        • Kunkel J.G.
        • Hwang P.-P.
        Proton pump-rich cell secretes acid in skin of zebrafish larvae.
        Am J Physiol Cell Physiol. 2006; 290: C371-C378
        • Dowling J.J.
        • Arbogast S.
        • Hur J.
        • et al.
        Oxidative stress and successful antioxidant treatment in models of RYR1-related myopathy.
        Brain. 2012; 135: 1115-1127
        • Lawson N.D.
        • Wolfe S.A.
        Forward and reverse genetic approaches for the analysis of vertebrate development in the zebrafish.
        Dev Cell. 2011; 21: 48-64
        • Wienholds E.
        • Van Eeden F.
        • Kosters M.
        • Mudde J.
        • Plasterk R.H.A.
        • Cuppen E.
        Efficient target-selected mutagenesis in zebrafish.
        Genome Res. 2003; 13: 2700-2707
        • Nasevicius A.
        • Ekker S.C.
        Effective targeted gene “knockdown” in zebrafish.
        Nat Genet. 2000; 26: 216-220
        • Doyon Y.
        • McCammon J.M.
        • Miller J.C.
        • et al.
        Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases.
        Nat Biotechnol. 2008; 26: 702-708
        • Huang P.
        • Xiao A.
        • Zhou M.
        • Zhu Z.
        • Lin S.
        • Zhang B.
        Heritable gene targeting in zebrafish using customized TALENs.
        Nat Biotechnol. 2011; 29: 699-700
        • Hwang W.Y.
        • Fu Y.
        • Reyon D.
        • et al.
        Efficient genome editing in zebrafish using a CRISPR-Cas system.
        Nat Biotechnol. 2013; 31: 227-229
        • Soroldoni D.
        • Hogan B.M.
        • Oates A.C.
        Simple and efficient transgenesis with meganuclease constructs in zebrafish.
        Methods Mol Biol. 2009; 546: 117-130
        • Kwan K.M.
        • Fujimoto E.
        • Grabher C.
        • et al.
        The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs.
        Dev Dynam. 2007; 236: 3088-3099
        • Suster M.L.
        • Abe G.
        • Schouw A.
        • Kawakami K.
        Transposon-mediated BAC transgenesis in zebrafish.
        Nat Protoc. 2011; 6: 1998-2021
        • Sager J.J.
        • Bai Q.
        • Burton E.A.
        Transgenic zebrafish models of neurodegenerative diseases.
        Brain Struct Funct. 2010; 214: 285-302
        • Rink E.
        • Wullimann M.F.
        The teleostean (zebrafish) dopaminergic system ascending to the subpallium (striatum) is located in the basal diencephalon (posterior tuberculum).
        Brain Res. 2001; 889: 316-330
        • Rink E.
        • Wullimann M.F.
        Connections of the ventral telencephalon (subpallium) in the zebrafish (Danio rerio).
        Brain Res. 2004; 1011: 206-220
        • Xi Y.
        • Yu M.
        • Godoy R.
        • Hatch G.
        • Poitras L.
        • Ekker M.
        Transgenic zebrafish expressing green fluorescent protein in dopaminergic neurons of the ventral diencephalon.
        Dev Dynam. 2011; 240: 2539-2547
        • Sallinen V.
        • Kolehmainen J.
        • Priyadarshini M.
        • Toleikyte G.
        • Chen Y.-C.
        • Panula P.
        Dopaminergic cell damage and vulnerability to MPTP in Pink1 knockdown zebrafish.
        Neurobiol Dis. 2010; 40: 93-101
        • Dexter D.T.
        • Jenner P.
        Parkinson disease: from pathology to molecular disease mechanisms.
        Free Radical Bio Med. 2013; : 1-13
        • Schapira A.H.V.
        Mitochondrial pathology in Parkinson's disease.
        Mt Sinai J Med. 2011; 78: 872-881
        • Mortiboys H.
        • Thomas K.J.
        • Koopman W.J.H.
        • et al.
        Mitochondrial function and morphology are impaired in parkin mutant fibroblasts.
        Ann Neurol. 2008; 64: 555-565
        • Grünewald A.
        • Voges L.
        • Rakovic A.
        • et al.
        Mutant parkin impairs mitochondrial function and morphology in human fibroblasts.
        PLoS One. 2010; 5: e12962
        • Yokota T.
        • Sugawara K.
        • Ito K.
        • Takahashi R.
        • Ariga H.
        • Mizusawa H.
        Down regulation of DJ-1 enhances cell death by oxidative stress, ER stress, and proteasome inhibition.
        Biochem Biophys Res Commun. 2003; 312: 1342-1348
        • Smith W.W.
        • Pei Z.
        • Jiang H.
        • et al.
        Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration.
        Proc Natl Acad Sci U S A. 2005; 2: 18676-18681
        • Bretaud S.
        • Allen C.
        • Ingham P.W.
        • Bandmann O.
        p53-Dependent neuronal cell death in a DJ-1-deficient zebrafish model of Parkinson's disease.
        J Neurochem. 2007; 100: 1626-1635
        • Baulac S.
        • Lu H.
        • Strahle J.
        • et al.
        Increased DJ-1 expression under oxidative stress and in Alzheimer's disease brains.
        Mol Neurodegen. 2009; 4: 12
        • Xi Y.
        • Ryan J.
        • Noble S.
        • Yu M.
        • Yilbas A.E.
        • Ekker M.
        Impaired dopaminergic neuron development and locomotor function in zebrafish with loss of pink1 function.
        Eur J Neurosci. 2010; 31: 623-633
        • Sheng D.
        • Qu D.
        • Kwok K.H.H.
        • et al.
        Deletion of the WD40 domain of LRRK2 in zebrafish causes parkinsonism-like loss of neurons and locomotive defect.
        PLoS Genet. 2010; 6: e1000914
        • Fett M.E.
        • Pilsl A.
        • Paquet D.
        • et al.
        Parkin is protective against proteotoxic stress in a transgenic zebrafish model.
        PLoS One. 2010; 5: e11783
        • Ren G.
        • Xin S.
        • Li S.
        • Zhong H.
        • Lin S.
        Disruption of LRRK2 does not cause specific loss of dopaminergic neurons in zebrafish.
        PLoS One. 2011; 6: e20630
        • Priyadarshini M.
        • Tuimala J.
        • Chen Y.C.
        • Panula P.
        A zebrafish model of PINK1 deficiency reveals key pathway dysfunction including HIF signaling.
        Neurobiol Dis. 2013; 54: 127-138
        • Tiranti V.
        • Hoertnagel K.
        • Carrozzo R.
        • et al.
        Mutations of SURF-1 in Leigh disease associated with cytochrome c oxidase deficiency.
        Am J Hum Genet. 1998; 63: 1609-1621
        • Baden K.N.
        • Murray J.
        • Capaldi R.A.
        • Guillemin K.
        Early developmental pathology due to cytochrome c oxidase deficiency is revealed by a new zebrafish model.
        J Biol Chem. 2007; 282: 34839-34849
        • Zelenchuk T.A.
        • Bruses J.L.
        In vivo labeling of zebrafish motor neurons using an mnx1 enhancer and Gal4/UAS.
        Genesis. 2011; 49: 546-554
        • Vettori A.
        • Bergamin G.
        • Moro E.
        • et al.
        Developmental defects and neuromuscular alterations due to Mitofusin 2 gene (MFN2) silencing in zebrafish: a new model for Charcot-Marie-Tooth type 2A neuropathy.
        Neuromuscular Disord. 2011; 21: 58-67
        • Züchner S.
        • Mersiyanova I.V.
        • Muglia M.
        • et al.
        Mutations in the mitochondrial GTPase Mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A.
        Nat Genet. 2004; 36: 449-451
        • Chen H.
        • Detmer S.A.
        • Ewald A.J.
        • Griffin E.E.
        • Fraser S.E.
        • Chan D.C.
        Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development.
        J Cell Biol. 2003; 160: 189-200
        • Wozniak M.J.
        • Melzer M.
        • Dorner C.
        • Haring H.-U.
        • Lammers R.
        The novel protein KBP regulates mitochondria localization by interaction with a kinesin-like protein.
        BMC Cell Biol. 2005; 6: 35
        • Okado-Matsumoto A.
        • Fridovich I.
        Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu, Zn-SOD in mitochondria.
        J Biol Chem. 2001; 276: 38388-38393
        • Dupuis L.
        • Gonzalez de Aguilar J.-L.
        • Oudart H.
        • De Tapia M.
        • Barbeito L.
        • Loeffler J.-P.
        Mitochondria in amyotrophic lateral sclerosis: a trigger and a target.
        Neurodegen Dis. 2004; 1: 245-254
        • Ramesh T.
        • Lyon A.N.
        • Pineda R.H.
        • et al.
        A genetic model of amyotrophic lateral sclerosis in zebrafish displays phenotypic hallmarks of motoneuron disease.
        Dis Models Mech. 2010; 3: 652-662
        • Lemmens R.
        • Van Hoecke A.
        • Hersmus N.
        • et al.
        Overexpression of mutant superoxide dismutase 1 causes a motor axonopathy in the zebrafish.
        Hum Mol Genet. 2007; 16: 2359-2365
        • Wong P.C.
        • Pardo C.A.
        • Borchelt D.R.
        • et al.
        An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria.
        Neuron. 1995; 14: 1105-1116
        • Topp J.D.
        • Gray N.W.
        • Gerard R.D.
        • Horazdovsky B.F.
        Alsin is a Rab5 and Rac1 guanine nucleotide exchange factor.
        J Biol Chem. 2004; 279: 24612-24623
        • Millecamps S.
        • Gentil B.J.
        • Gros-Louis F.
        • Rouleau G.
        • Julien J.-P.
        Alsin is partially associated with centrosome in human cells.
        Biochim Biophys Acta. 2005; 1745: 84-100
        • Panzeri C.
        • De Palma C.
        • Martinuzzi A.
        • et al.
        The first ALS2 missense mutation associated with JPLS reveals new aspects of alsin biological function.
        Brain. 2006; 129: 1710-1719
        • Hadano S.
        • Otomo A.
        • Kunita R.
        • et al.
        Loss of ALS2/Alsin exacerbates motor dysfunction in a SOD1-expressing mouse ALS model by disturbing endolysosomal trafficking.
        PLoS One. 2010; 5: e9805
        • Gros-Louis F.
        • Kriz J.
        • Kabashi E.
        • et al.
        Als2 mRNA splicing variants detected in KO mice rescue severe motor dysfunction phenotype in Als2 knock-down zebrafish.
        Hum Mol Genet. 2008; 17: 2691-2702
        • Granato M.
        • Van Eeden F.J.
        • Schach U.
        • et al.
        Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva.
        Development. 1996; 123: 399-413
        • Kamei S.
        • Chen-Kuo-Chang M.
        • Cazevieille C.
        • et al.
        Expression of the Opa1 mitochondrial protein in retinal ganglion cells: its downregulation causes aggregation of the mitochondrial network.
        Invest Ophthal Vis Sci. 2005; 46: 4288-4294
        • Olichon A.
        • Emorine L.J.
        • Descoins E.
        • et al.
        The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space.
        FEBS Lett. 2002; 523: 171-176
        • Huizing M.
        • Dorward H.
        • Ly L.
        • et al.
        OPA3, mutated in 3-methylglutaconic aciduria type III, encodes two transcripts targeted primarily to mitochondria.
        Mol Genet Metab. 2010; 100: 149-154
        • Rahn J.J.
        • Stackley K.D.
        • Chan S.S.L.
        Opa1 is required for proper mitochondrial metabolism in early development.
        PLoS One. 2013; 8: e59218
        • Pei W.
        • Kratz L.E.
        • Bernardini I.
        • et al.
        A model of Costeff syndrome reveals metabolic and protective functions of mitochondrial OPA3.
        Development. 2010; 137: 2587-2596
        • Gunay-Aygun M.
        3-Methylglutaconic aciduria: a common biochemical marker in various syndromes with diverse clinical features.
        Mol Genet Metab. 2005; 84: 1-3
        • Burgess H.A.
        • Johnson S.L.
        • Granato M.
        Unidirectional startle responses and disrupted left-right coordination of motor behaviors in robo3 mutant zebrafish.
        Genes Brain Behav. 2009; 8: 500-511
        • Neuhauss S.C.F.
        Behavioral genetic approaches to visual system development and function in zebrafish.
        J Neurobiol. 2003; 54: 148-160
        • Whitfield T.T.
        • Granato M.
        • Van Eeden F.J.
        • et al.
        Mutations affecting development of the zebrafish inner ear and lateral line.
        Development. 1996; 123: 241-254
        • Von Ameln S.
        • Wang G.
        • Boulouiz R.
        • et al.
        A mutation in PNPT1, encoding mitochondrial-RNA-import protein PNPase, causes hereditary hearing loss.
        Am J Hum Genet. 2012; 91: 919-927
        • Craven S.E.
        • French D.
        • Ye W.
        • De Sauvage F.
        • Rosenthal A.
        Loss of Hspa9b in zebrafish recapitulates the ineffective hematopoiesis of the myelodysplastic syndrome.
        Blood. 2005; 105: 3528-3534
        • Fontenay M.
        • Cathelin S.
        • Amiot M.
        • Gyan E.
        • Solary E.
        Mitochondria in hematopoiesis and hematological diseases.
        Oncogene. 2006; 25: 4757-4767
        • Feng H.
        • Stachura D.L.
        • White R.M.
        • et al.
        T-lymphoblastic lymphoma cells express high levels of BCL2, S1P1, and ICAM1, leading to a blockade of tumor cell intravasation.
        Cancer Cell. 2010; 18: 353-366
        • Kamiya T.
        • Manabe A.
        Congenital dyserythropoietic anemia.
        Int J Hematol. 2010; 92: 432-438
        • McGowan K.A.
        • Mason P.J.
        Animal models of Diamond Blackfan anemia.
        Semin Hematol. 2012; 48: 106-116
        • Lobo G.P.
        • Isken A.
        • Hoff S.
        • Babino D.
        • Von Lintig J.
        BCDO2 acts as a carotenoid scavenger and gatekeeper for the mitochondrial apoptotic pathway.
        Development. 2012; 139: 2966-2977
        • Devireddy L.R.
        • Hart D.O.
        • Goetz D.
        • Green M.R.
        A mammalian siderophore synthesized by an enzyme with a bacterial homologue involved in enterobactin production.
        Cell. 2010; 141: 1006-1017
        • Shaw G.C.
        • Cope J.J.
        • Li L.
        • et al.
        Mitoferrin is essential for erythroid iron assimilation.
        Nature. 2006; 440: 96-100
        • Wang Y.
        • Langer N.B.
        • Shaw G.C.
        • et al.
        Abnormal mitoferrin-1 expression in patients with erythropoietic protoporphyria.
        Exp Hematol. 2011; 39: 784-794
        • Guernsey D.L.
        • Jiang H.
        • Campagna D.R.
        • et al.
        Mutations in mitochondrial carrier family gene SLC25A38 cause nonsyndromic autosomal recessive congenital sideroblastic anemia.
        Nat Genet. 2009; 41: 651-653
        • Brownlie A.
        • Donovan A.
        • Pratt S.J.
        • et al.
        Positional cloning of the zebrafish sauternes gene: a model for congenital sideroblastic anaemia.
        Nat Genet. 1998; 20: 244-250
        • Wingert R.A.
        • Galloway J.L.
        • Barut B.
        • et al.
        Deficiency of glutaredoxin 5 reveals Fe-S clusters are required for vertebrate haem synthesis.
        Nature. 2005; 436: 1035-1039
        • Shah D.I.
        • Takahashi-Makise N.
        • Cooney J.D.
        • et al.
        Mitochondrial Atpif1 regulates haem synthesis in developing erythroblasts.
        Nature. 2012; 491: 608-612
        • Childs S.
        • Weinstein B.M.
        • Mohideen M.-A.P.K.
        • Donohue S.
        • Bonkovsky H.
        • Fishman M.C.
        Zebrafish dracula encodes ferrochelatase and its mutation provides a model for erythropoietic protoporphyria.
        Curr Biol. 2000; 10: 1001-1004
        • Dooley K.A.
        • Fraenkel P.G.
        • Langer N.B.
        • et al.
        montalcino, a zebrafish model for variegate porphyria.
        Exp Hematol. 2008; 36: 1132-1142
        • Willaert A.
        • Khatri S.
        • Callewaert B.L.
        • et al.
        GLUT10 is required for the development of the cardiovascular system and the notochord and connects mitochondrial function to TGFβ signaling.
        Hum Mol Genet. 2011; 21: 1248-1259
        • Khuchua Z.
        • Yue Z.
        • Batts L.
        • Strauss A.W.
        A zebrafish model of human Barth syndrome reveals the essential role of tafazzin in cardiac development and function.
        Circ Res. 2006; 99: 201-208
        • Lu G.
        • Ren S.
        • Korge P.
        • et al.
        A novel mitochondrial matrix serine/threonine protein phosphatase regulates the mitochondria permeability transition pore and is essential for cellular survival and development.
        Gene Dev. 2007; 21: 784-796
        • Catalina-Rodriguez O.
        • Kolukula V.K.
        • Tomita Y.
        • et al.
        The mitochondrial citrate transporter, CIC, is essential for mitochondrial homeostasis.
        Oncotarget. 2012; 3: 1220-1235
        • Sheftel A.
        • Stehling O.
        • Lill R.
        Iron-sulfur proteins in health and disease.
        Trends Endocrinol Metab. 2010; 21: 302-314
        • Camaschella C.
        • Campanella A.
        • De Falco L.
        • et al.
        The human counterpart of zebrafish shiraz shows sideroblastic-like microcytic anemia and iron overload.
        Blood. 2007; 110: 1353-1358
        • Gattermann N.
        • Wulfert M.
        • Junge B.
        • Germing U.
        • Haas R.
        • Hofhaus G.
        Ineffective hematopoiesis linked with a mitochondrial tRNA mutation (G3242A) in a patient with myelodysplastic syndrome.
        Blood. 2004; 103: 1499-1502
        • Shin M.G.
        • Kajigaya S.
        • Levin B.C.
        • Young N.S.
        Mitochondrial DNA mutations in patients with myelodysplastic syndromes.
        Blood. 2003; 101: 3118-3125
        • Dromparis P.
        • Michelakis E.D.
        Mitochondria in vascular health and disease.
        Annu Rev Physiol. 2013; : 95-126
        • Ellertsdóttir E.
        • Lenard A.
        • Blum Y.
        • et al.
        Vascular morphogenesis in the zebrafish embryo.
        Dev Biol. 2010; 341: 56-65
        • Tobia C.
        • Sena G.D.E.
        • Presta M.
        Zebrafish embryo, a tool to study tumor angiogenesis.
        Int J Dev Biol. 2011; 55: 505-509
        • Jung H.J.
        • Shim J.S.
        • Lee J.
        • et al.
        Terpestacin inhibits tumor angiogenesis by targeting UQCRB of mitochondrial complex III and suppressing hypoxia-induced reactive oxygen species production and cellular oxygen sensing.
        J Biol Chem. 2010; 285: 11584-11595
        • Lee Y.-C.
        • Huang H.-Y.
        • Chang C.-J.
        • Cheng C.-H.
        • Chen Y.-T.
        Mitochondrial GLUT10 facilitates dehydroascorbic acid import and protects cells against oxidative stress: mechanistic insight into arterial tortuosity syndrome.
        Hum Mol Genet. 2010; 19: 3721-3733
        • Stoffel M.
        • Karayiorgou M.
        • Espinosa R.
        • Beau M.M.
        The human mitochondrial citrate transporter gene (SLC20A3) maps to chromosome band 22q11 within a region implicated in DiGeorge syndrome, velo-cardio-facial syndrome and schizophrenia.
        Hum Genet. 1996; 98: 113-115
        • Heisterkamp N.
        • Mulder M.P.
        • Langeveld A.
        • et al.
        Localization of the human mitochondrial citrate transporter protein gene to chromosome 22Q11 in the DiGeorge syndrome critical region.
        Genomics. 1995; 29: 451-456
        • Bassett A.S.
        • Chow E.W.C.
        • AbdelMalik P.
        • Gheorghiu M.
        • Husted J.
        • Weksberg R.
        The schizophrenia phenotype in 22q11 deletion syndrome.
        Am J Psychiatry. 2003; 160: 1580-1586
        • Kaplan R.S.
        • Mayor J.A.
        • Woodv D.
        The mitochondrial tricarboxylate transport protein: cDNA cloning, primary structure, and comparison with other mitochondrial transport proteins.
        J Biol Chem. 1993; 268: 13682-13690
        • Oskarsdottir S.
        • Vujic M.
        • Fasth A.
        Incidence and prevalence of the 22q11 deletion syndrome: a population-based study in western Sweden.
        Arch Dis Child. 2004; 89: 148-151
        • Goodman S.I.
        • Binard R.J.
        • Woontner M.R.
        • Frerman F.E.
        Glutaric acidemia type II: gene structure and mutations of the electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO) gene.
        Mol Genet Metab. 2002; 77: 86-90
        • Goodman S.I.
        • McCabe E.R.B.
        • Fennessey P.V.
        • Mace J.W.
        Multiple acyl-CoA dehydrogenase deficiency (glutaric aciduria type II) with transient hypersarcosinemia and sarcosinuria: possible inherited deficiency of an electron transfer flavoprotein.
        Pediatr Res. 1980; 14: 12-17
        • Takanashi J.
        • Fujii K.
        • Sugita K.
        • Kohno Y.
        Neuroradiologic findings in glutaric aciduria type II.
        Pediatr Neurol. 1999; 20: 142-145