Advertisement

Telomere biology and translational research

  • Philip J. Mason
    Correspondence
    Reprint requests: Prof. Philip J. Mason, Division of Hematology, Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Suite 302, Philadelphia, PA 19104
    Affiliations
    Division of Hematology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
    Search for articles by this author
  • Nieves Perdigones
    Affiliations
    Division of Hematology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
    Search for articles by this author
Published:September 25, 2013DOI:https://doi.org/10.1016/j.trsl.2013.08.009
      The appreciation that there might be something special about chromosome ends began in the 1930s through 2 independent observations. Herman Muller,
      • Muller H.J.
      The remaking of chromosomes.
      working with fruit flies, noticed that x rays caused chromosome breakages and that the broken ends subsequently fused with each other. He noticed that the real ends of chromosomes never took part in these fusion events, and he concluded chromosome ends were sealed in some way. At about the same time, Barbara McClintock
      • McClintock B.
      The behavior in successive nuclear divisions of a chromosome broken at meiosis.
      observed in maize that dicentric chromosomes (chromosomes with 2 centromeres) broke at mitosis and that the broken ends fused with each other. Again, the natural chromosome ends were not involved. She also noticed that the fusion events did not happen in embryonic cells; the broken ends here were “healed” somehow.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Muller H.J.
        The remaking of chromosomes.
        Collecting Net. 1938; 8: 182-195
        • McClintock B.
        The behavior in successive nuclear divisions of a chromosome broken at meiosis.
        Proc Natl Acad Sci U S A. 1939; 25: 405-416
        • Hayflick L.
        • Moorhead P.S.
        The serial cultivation of human diploid cell strains.
        Exp Cell Res. 1961; 25: 585-621
        • Watson J.D.
        Origin of concatemeric T7 DNA.
        Nat New Biol. 1972; 239: 197-201
        • Olovnikov A.M.
        [Principle of marginotomy in template synthesis of polynucleotides].
        Dokl Akad Nauk SSSR. 1971; 201: 1496-1499
        • Olovnikov A.M.
        A theory of marginotomy: the incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon.
        J Theor Biol. 1973; 41: 181-190
        • Blackburn E.H.
        • Gall J.G.
        A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena.
        J Mol Biol. 1978; 120: 33-53
        • Kirk K.E.
        • Blackburn E.H.
        An unusual sequence arrangement in the telomeres of the germ-line micronucleus in Tetrahymena thermophila.
        Genes Dev. 1995; 9: 59-71
        • Szostak J.W.
        • Blackburn E.H.
        Cloning yeast telomeres on linear plasmid vectors.
        Cell. 1982; 29: 245-255
        • Shampay J.
        • Szostak J.W.
        • Blackburn E.H.
        DNA sequences of telomeres maintained in yeast.
        Nature. 1984; 310: 154-157
        • Greider C.W.
        • Blackburn E.H.
        Identification of a specific telomere terminal transferase activity in Tetrahymena extracts.
        Cell. 1985; 43: 405-413
        • Greider C.W.
        • Blackburn E.H.
        A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis.
        Nature. 1989; 337: 331-337
        • Yu G.L.
        • Bradley J.D.
        • Attardi L.D.
        • Blackburn E.H.
        In vivo alteration of telomere sequences and senescence caused by mutated Tetrahymena telomerase RNAs.
        Nature. 1990; 344: 126-132
        • Lundblad V.
        • Blackburn E.H.
        RNA-dependent polymerase motifs in EST1: tentative identification of a protein component of an essential yeast telomerase.
        Cell. 1990; 60: 529-530
        • Counter C.M.
        • Meyerson M.
        • Eaton E.N.
        • Weinberg R.A.
        The catalytic subunit of yeast telomerase.
        Proc Natl Acad Sci U S A. 1997; 94: 9202-9207
        • Harley C.B.
        • Futcher A.B.
        • Greider C.W.
        Telomeres shorten during ageing of human fibroblasts.
        Nature. 1990; 345: 458-460
        • Counter C.M.
        • Avilion A.A.
        • LeFeuvre C.E.
        • et al.
        Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity.
        EMBO J. 1992; 11: 1921-1929
        • Bodnar A.G.
        • Ouellette M.
        • Frolkis M.
        • et al.
        Extension of life-span by introduction of telomerase into normal human cells.
        Science. 1998; 279: 349-352
        • Kim N.W.
        • Piatyszek M.A.
        • Prowse K.R.
        • et al.
        Specific association of human telomerase activity with immortal cells and cancer.
        Science. 1994; 266: 2011-2015
        • Bryan T.M.
        • Englezou A.
        • Dalla-Pozza L.
        • Dunham M.A.
        • Reddel R.R.
        Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines.
        Nat Med. 1997; 3: 1271-1274
        • Artandi S.E.
        • Chang S.
        • Lee S.L.
        • et al.
        Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice.
        Nature. 2000; 406: 641-645
        • Healy K.C.
        Telomere dynamics and telomerase activation in tumor progression: prospects for prognosis and therapy.
        Oncol Res. 1995; 7: 121-130
        • Heiss N.S.
        • Knight S.W.
        • Vulliamy T.J.
        • et al.
        X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions.
        Nat Genet. 1998; 19: 32-38
        • Mitchell J.R.
        • Wood E.
        • Collins K.
        A telomerase component is defective in the human disease dyskeratosis congenita.
        Nature. 1999; 402: 551-555
        • Vulliamy T.
        • Marrone A.
        • Goldman F.
        • et al.
        The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita.
        Nature. 2001; 413: 432-435
        • Yamaguchi H.
        • Calado R.T.
        • Ly H.
        • et al.
        Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia.
        N Engl J Med. 2005; 352: 1413-1424
        • Gramatges M.M.
        • Bertuch A.A.
        Short telomeres: from dyskeratosis congenita to sporadic aplastic anemia and malignancy.
        Transl Res. 2013;
        • Vulliamy T.
        • Marrone A.
        • Szydlo R.
        • Walne A.
        • Mason P.J.
        • Dokal I.
        Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC.
        Nat Genet. 2004; 36: 447-449
        • Armanios M.
        • Blackburn E.H.
        The telomere syndromes.
        Nat Rev Genet. 2012; 13: 693-704
        • Cawthon R.M.
        • Smith K.R.
        • O'Brien E.
        • Sivatchenko A.
        • Kerber R.A.
        Association between telomere length in blood and mortality in people aged 60 years or older.
        Lancet. 2003; 361: 393-395
        • Hornsby P.J.
        Short telomeres: cause or consequence of aging?.
        Aging Cell. 2006; 5: 577-578
        • Epel E.S.
        • Blackburn E.H.
        • Lin J.
        • et al.
        Accelerated telomere shortening in response to life stress.
        Proc Natl Acad Sci U S A. 2004; 101: 17312-17315
        • Damjanovic A.K.
        • Yang Y.
        • Glaser R.
        • et al.
        Accelerated telomere erosion is associated with a declining immune function of caregivers of Alzheimer's disease patients.
        J Immunol. 2007; 179: 4249-4254
        • Valdes A.M.
        • Andrew T.
        • Gardner J.P.
        • et al.
        Obesity, cigarette smoking, and telomere length in women.
        Lancet. 2005; 366: 662-664
        • Kim S.
        • Parks C.G.
        • DeRoo L.A.
        • et al.
        Obesity and weight gain in adulthood and telomere length.
        Cancer Epidemiol Biomarkers Prev. 2009; 18: 816-820
        • Zhang X.
        • Lin S.
        • Funk W.E.
        • Hou L.
        Environmental and occupational exposure to chemicals and telomere length in human studies.
        Occup Environ Med. 2013;
        • Sun Q.
        • Shi L.
        • Prescott J.
        • et al.
        Healthy lifestyle and leukocyte telomere length in U.S. women.
        PLoS One. 2012; 7: e38374
        • Kim J.H.
        • Ko J.H.
        • Lee D.C.
        • Lim I.
        • Bang H.
        Habitual physical exercise has beneficial effects on telomere length in postmenopausal women.
        Menopause. 2012; 19: 1109-1115
        • Farzaneh-Far R.
        • Lin J.
        • Epel E.S.
        • Harris W.S.
        • Blackburn E.H.
        • Whooley M.A.
        Association of marine omega-3 fatty acid levels with telomeric aging in patients with coronary heart disease.
        JAMA. 2010; 303: 250-257
        • Shen J.
        • Gammon M.D.
        • Terry M.B.
        • et al.
        Telomere length, oxidative damage, antioxidants and breast cancer risk.
        Int J Cancer. 2009; 124: 1637-1643
        • Shalev I.
        • Entringer S.
        • Wadhwa P.D.
        • et al.
        Stress and telomere biology: a lifespan perspective.
        Psychoneuroendocrinology. 2013;
        • Wolkowitz O.M.
        • Mellon S.H.
        • Epel E.S.
        • et al.
        Leukocyte telomere length in major depression: correlations with chronicity, inflammation and oxidative stress: preliminary findings.
        PLoS One. 2011; 6: e17837
        • Masi S.
        • Salpea K.D.
        • Li K.
        • et al.
        Oxidative stress, chronic inflammation, and telomere length in patients with periodontitis.
        Free Radic Biol Med. 2011; 50: 730-735
        • Epel E.
        • Daubenmier J.
        • Moskowitz J.T.
        • Folkman S.
        • Blackburn E.
        Can meditation slow rate of cellular aging? Cognitive stress, mindfulness, and telomeres.
        Ann N Y Acad Sci. 2009; 1172: 34-53
        • Nilsson P.M.
        • Tufvesson H.
        • Leosdottir M.
        • Melander O.
        Telomeres and cardiovascular disease risk: an update 2013.
        Transl Res. 2013;
        • Mourkioti F.
        • Kustan J.
        • Kraft P.
        • et al.
        Role of telomere dysfunction in cardiac failure in Duchenne muscular dystrophy.
        Nat Cell Biol. 2013;
        • Chen L.Y.
        • Redon S.
        • Lingner J.
        The human CST complex is a terminator of telomerase activity.
        Nature. 2012; 488: 540-544
        • Walne A.J.
        • Vulliamy T.
        • Marrone A.
        • et al.
        Genetic heterogeneity in autosomal recessive dyskeratosis congenita with one subtype due to mutations in the telomerase-associated protein NOP10.
        Hum Mol Genet. 2007; 16: 1619-1629
        • Vulliamy T.
        • Beswick R.
        • Kirwan M.
        • et al.
        Mutations in the telomerase component NHP2 cause the premature ageing syndrome dyskeratosis congenita.
        Proc Natl Acad Sci U S A. 2008; 105: 8073-8078
        • Vulliamy T.J.
        • Walne A.
        • Baskaradas A.
        • Mason P.J.
        • Marrone A.
        • Dokal I.
        Mutations in the reverse transcriptase component of telomerase (TERT) in patients with bone marrow failure.
        Blood Cells Mol Dis. 2005; 34: 257-263
        • Walne A.J.
        • Vulliamy T.
        • Beswick R.
        • Kirwan M.
        • Dokal I.
        TINF2 mutations result in very short telomeres: analysis of a large cohort of patients with dyskeratosis congenita and related bone marrow failure syndromes.
        Blood. 2008; 112: 3594-3600
        • Savage S.A.
        • Giri N.
        • Baerlocher G.M.
        • Orr N.
        • Lansdorp P.M.
        • Alter B.P.
        TINF2, a component of the shelterin telomere protection complex, is mutated in dyskeratosis congenita.
        Am J Hum Genet. 2008; 82: 501-509
        • Zhong F.
        • Savage S.A.
        • Shkreli M.
        • et al.
        Disruption of telomerase trafficking by TCAB1 mutation causes dyskeratosis congenita.
        Genes Dev. 2011; 25: 11-16
        • Ballew B.J.
        • Yeager M.
        • Jacobs K.
        • et al.
        Germline mutations of regulator of telomere elongation helicase 1, RTEL1, in dyskeratosis congenita.
        Hum Genet. 2013; 132: 473-480
        • Keller R.B.
        • Gagne K.E.
        • Usmani G.N.
        • et al.
        CTC1 mutations in a patient with dyskeratosis congenita.
        Pediatr Blood Cancer. 2012; 59: 311-314
        • Walne A.J.
        • Bhagat T.
        • Kirwan M.
        • et al.
        Mutations in the telomere capping complex in bone marrow failure and related syndromes.
        Haematologica. 2013; 98: 334-338
        • Armanios M.
        • Chen J.L.
        • Chang Y.P.
        • et al.
        Haploinsufficiency of telomerase reverse transcriptase leads to anticipation in autosomal dominant dyskeratosis congenita.
        Proc Natl Acad Sci U S A. 2005; 102: 15960-15964
        • Alter B.P.
        • Giri N.
        • Savage S.A.
        • Rosenberg P.S.
        Cancer in dyskeratosis congenita.
        Blood. 2009; 113: 6549-6557
        • Calado R.T.
        • Brudno J.
        • Mehta P.
        • et al.
        Constitutional telomerase mutations are genetic risk factors for cirrhosis.
        Hepatology. 2011; 53: 1600-1607
        • Calado R.T.
        • Regal J.A.
        • Kleiner D.E.
        • et al.
        A spectrum of severe familial liver disorders associate with telomerase mutations.
        PLoS One. 2009; 4: e7926
        • Armanios M.Y.
        • Chen J.J.
        • Cogan J.D.
        • et al.
        Telomerase mutations in families with idiopathic pulmonary fibrosis.
        N Engl J Med. 2007; 356: 1317-1326
        • Tsakiri K.D.
        • Cronkhite J.T.
        • Kuan P.J.
        • et al.
        Adult-onset pulmonary fibrosis caused by mutations in telomerase.
        Proc Natl Acad Sci U S A. 2007; 104: 7552-7557
        • Gansner J.M.
        • Rosas I.O.
        Telomeres in lung disease.
        Transl Res. 2013;
        • Vuong L.G.
        • Hemmati P.G.
        • Neuburger S.
        • et al.
        Reduced-intensity conditioning using fludarabine and antithymocyte globulin alone allows stable engraftment in a patient with dyskeratosis congenita.
        Acta Haematol. 2010; 124: 200-203
        • Dietz A.C.
        • Orchard P.J.
        • Baker K.S.
        • et al.
        Disease-specific hematopoietic cell transplantation: nonmyeloablative conditioning regimen for dyskeratosis congenita.
        Bone Marrow Transplant. 2011; 46: 98-104
        • Savage S.A.
        • Alter B.P.
        Dyskeratosis congenita.
        Hematol Oncol Clin North Am. 2009; 23: 215-231
        • Kurz D.J.
        • Decary S.
        • Hong Y.
        • Trivier E.
        • Akhmedov A.
        • Erusalimsky J.D.
        Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells.
        J Cell Sci. 2004; 117: 2417-2426
        • Richter T.
        • von Zglinicki T.
        A continuous correlation between oxidative stress and telomere shortening in fibroblasts.
        Exp Gerontol. 2007; 42: 1039-1042
        • Wright W.E.
        • Shay J.W.
        The two-stage mechanism controlling cellular senescence and immortalization.
        Exp Gerontol. 1992; 27: 383-389
        • Capezzone M.
        • Cantara S.
        • Marchisotta S.
        • et al.
        Short telomeres, telomerase reverse transcriptase gene amplification, and increased telomerase activity in the blood of familial papillary thyroid cancer patients.
        J Clin Endocrinol Metab. 2008; 93: 3950-3957
        • Zhu C.Q.
        • Cutz J.C.
        • Liu N.
        • et al.
        Amplification of telomerase (hTERT) gene is a poor prognostic marker in non-small-cell lung cancer.
        Br J Cancer. 2006; 94: 1452-1459
        • Greenberg R.A.
        • O'Hagan R.C.
        • Deng H.
        • et al.
        Telomerase reverse transcriptase gene is a direct target of c-Myc but is not functionally equivalent in cellular transformation.
        Oncogene. 1999; 18: 1219-1226
        • Wang J.
        • Xie L.Y.
        • Allan S.
        • Beach D.
        • Hannon G.J.
        Myc activates telomerase.
        Genes Dev. 1998; 12: 1769-1774
        • Horn S.
        • Figl A.
        • Rachakonda P.S.
        • et al.
        TERT promoter mutations in familial and sporadic melanoma.
        Science. 2013; 339: 959-961
        • Huang F.W.
        • Hodis E.
        • Xu M.J.
        • Kryukov G.V.
        • Chin L.
        • Garraway L.A.
        Highly recurrent TERT promoter mutations in human melanoma.
        Science. 2013; 339: 957-959
        • Vinagre J.
        • Almeida A.
        • Populo H.
        • et al.
        Frequency of TERT promoter mutations in human cancers.
        Nat Commun. 2013; 4: 2185
        • Nault J.C.
        • Mallet M.
        • Pilati C.
        • et al.
        High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions.
        Nat Commun. 2013; 4: 2218
        • Mocellin S.
        • Pooley K.A.
        • Nitti D.
        Telomerase and the search for the end of cancer.
        Trends Mol Med. 2013; 19: 125-133
        • Pal J.
        • Munshi N.C.
        • Shammas M.A.
        Biology of telomeres: importance in etiology of esophageal cancer and as therapeutic target.
        Transl Res. 2013;
        • Lu R.
        • Pal J.
        • Buon L.
        • et al.
        Targeting homologous recombination and telomerase in Barrett's adenocarcinoma: impact on telomere maintenance, genomic instability and tumor growth.
        Oncogene. 2013;
        • Liu J.P.
        • Chen W.
        • Schwarer A.P.
        • Li H.
        Telomerase in cancer immunotherapy.
        Biochim Biophys Acta. 2010; 1805: 35-42
        • Joseph I.
        • Tressler R.
        • Bassett E.
        • et al.
        The telomerase inhibitor imetelstat depletes cancer stem cells in breast and pancreatic cancer cell lines.
        Cancer Res. 2010; 70: 9494-9504
        • Marian C.O.
        • Cho S.K.
        • McEllin B.M.
        • et al.
        The telomerase antagonist, imetelstat, efficiently targets glioblastoma tumor-initiating cells leading to decreased proliferation and tumor growth.
        Clin Cancer Res. 2010; 16: 154-163
        • Burger A.M.
        • Dai F.
        • Schultes C.M.
        • et al.
        The G-quadruplex-interactive molecule BRACO-19 inhibits tumor growth, consistent with telomere targeting and interference with telomerase function.
        Cancer Res. 2005; 65: 1489-1496
        • Miyazaki T.
        • Pan Y.
        • Joshi K.
        • et al.
        Telomestatin impairs glioma stem cell survival and growth through the disruption of telomeric G-quadruplex and inhibition of the proto-oncogene, c-Myb.
        Clin Cancer Res. 2012; 18: 1268-1280