Biology of telomeres: importance in etiology of esophageal cancer and as therapeutic target

Published:October 03, 2013DOI:
      The purpose of this review is to highlight the importance of telomeres, the mechanisms implicated in their maintenance, and their role in the etiology as well as the treatment of human esophageal cancer. We will also discuss the role of telomeres in the maintenance and preservation of genomic integrity, the consequences of telomere dysfunction, and the various factors that may affect telomere health in esophageal tissue predisposing it to oncogenesis. There has been growing evidence that telomeres, which can be affected by various intrinsic and extrinsic factors, contribute to genomic instability, oncogenesis, as well as proliferation of cancer cells. Telomeres are the protective DNA-protein complexes at chromosome ends. Telomeric DNA undergoes progressive shortening with age leading to cellular senescence and/or apoptosis. If senescence/apoptosis is prevented as a consequence of specific genomic changes, continued proliferation leads to very short (ie, dysfunctional) telomeres that can potentially cause genomic instability, thus, increasing the risk for activation of telomere maintenance mechanisms and oncogenesis. Like many other cancers, esophageal cancer cells have short telomeres and elevated telomerase, the enzyme that maintains telomeres in most cancer cells. Homologous recombination, which is implicated in the alternate pathway of telomere elongation, is also elevated in Barrett’s-associated esophageal adenocarcinoma. Evidence from our laboratory indicates that both telomerase and homologous recombination contribute to telomere maintenance, DNA repair, and the ongoing survival of esophageal cancer cells. This indicates that telomere maintenance mechanisms may potentially be targeted to make esophageal cancer cells static. The rate at which telomeres in healthy cells shorten is determined by a number of intrinsic and extrinsic factors, including those associated with lifestyle. Avoidance of factors that may directly or indirectly injure esophageal tissue including its telomeric and other genomic DNA can not only reduce the risk of development of esophageal cancer but may also have positive impact on overall health and lifespan.


      HR (homologous recombination), BAC (Barrett's esophageal adenocarcinoma), ALT (alternative lengthening of telomeres), DSB (DNA double strand breaks), ITRs (interspersed telomeric repeats), QFISH (quantitative fluorescent in situ hybridization), hTERT (catalytic subunit of telomerase), hTR (RNA component of telomerase), LCM (laser capture microdissection)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Matulic M.
        • Sopta M.
        • Rubelj I.
        Telomere dynamics: the means to an end.
        Cell Prolif. 2007; 40: 462-474
        • Griffith J.D.
        • Comeau L.
        • Rosenfield S.
        • et al.
        Mammalian telomeres end in a large duplex loop.
        Cell. 1999; 97: 503-514
        • Day J.P.
        • Marder B.A.
        • Morgan W.F.
        Telomeres and their possible role in chromosome stabilization.
        Environ Mol Mutagen. 1993; 22: 245-249
        • Cong Y.S.
        • Wright W.E.
        • Shay J.W.
        Human telomerase and its regulation.
        Microbiol Mol Biol Rev. 2002; 66: 407-425
        • Harley C.B.
        • Futcher A.B.
        • Greider C.W.
        Telomeres shorten during ageing of human fibroblasts.
        Nature. 1990; 345: 458-460
        • Shammas M.A.
        • Shmookler Reis R.J.
        • Li C.
        • et al.
        Telomerase inhibition and cell growth arrest following telomestatin treatment in multiple myeloma.
        Clin Cancer Res. 2004; 10: 770-776
        • Shammas M.A.
        • Koley H.
        • Batchu R.B.
        • et al.
        Telomerase inhibition by siRNA causes senescence and apoptosis in Barrett's adenocarcinoma cells: mechanism and therapeutic potential.
        Mol Cancer. 2005; 4: 24
        • Shammas M.A.
        • Koley H.
        • Beer D.G.
        • Li C.
        • Goyal R.K.
        • Munshi N.C.
        Growth arrest, apoptosis, and telomere shortening of Barrett's-associated adenocarcinoma cells by a telomerase inhibitor.
        Gastroenterology. 2004; 126: 1337-1346
        • Shammas M.A.
        • Qazi A.
        • Batchu R.B.
        • et al.
        Telomere maintenance in laser capture microdissection-purified Barrett's adenocarcinoma cells and effect of telomerase inhibition in vivo.
        Clin Cancer Res. 2008; 14: 4971-4980
        • Shammas M.A.
        • Koley H.
        • Bertheau R.C.
        • et al.
        Telomerase inhibitor GRN163L inhibits myeloma cell growth in vitro and in vivo.
        Leukemia. 2008; 22: 1410-1418
        • Shammas M.A.
        • Reis R.J.
        • Li C.
        • et al.
        Telomerase inhibition and cell growth arrest after telomestatin treatment in multiple myeloma.
        Clin Cancer Res. 2004; 10: 770-776
        • Harley C.B.
        Telomere loss: mitotic clock or genetic time bomb?.
        Mutat Res. 1991; 256: 271-282
        • Shammas M.A.
        Telomeres, lifestyle, cancer, and aging.
        Curr Opin Clin Nutr Metab Care. 2011; 14: 28-34
        • Begus-Nahrmann Y.
        • Hartmann D.
        • Kraus J.
        • et al.
        Transient telomere dysfunction induces chromosomal instability and promotes carcinogenesis.
        J Clin Invest. 2012; 122: 2283-2288
        • Cawthon R.M.
        • Smith K.R.
        • O'Brien E.
        • Sivatchenko A.
        • Kerber R.A.
        Association between telomere length in blood and mortality in people aged 60 years or older.
        Lancet. 2003; 361: 393-395
        • Farzaneh-Far R.
        • Cawthon R.M.
        • Na B.
        • Browner W.S.
        • Schiller N.B.
        • Whooley M.A.
        Prognostic value of leukocyte telomere length in patients with stable coronary artery disease: data from the Heart and Soul Study.
        Arterioscler Thromb Vasc Biol. 2008; 28: 1379-1384
        • McClintock B.
        The stability of broken ends of chromosomes in Zea Mays.
        Genetics. 1941; 26: 234-282
        • Gong J.G.
        • Costanzo A.
        • Yang H.Q.
        • et al.
        The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage.
        Nature. 1999; 399: 806-809
        • Shin J.S.
        • Hong A.
        • Solomon M.J.
        • Lee C.S.
        The role of telomeres and telomerase in the pathology of human cancer and aging.
        Pathology. 2006; 38: 103-113
        • Stiewe T.
        • Putzer B.M.
        p73 in apoptosis.
        Apoptosis. 2001; 6: 447-452
        • Hayflick L.
        The cellular basis for biological aging.
        in: Finch C.E. Hayflick L. Handbook of the biology of aging. Van Nostrand Reinhold Co, NY1977: 159-186
        • Brouilette S.
        • Singh R.K.
        • Thompson J.R.
        • Goodall A.H.
        • Samani N.J.
        White cell telomere length and risk of premature myocardial infarction.
        Arterioscler Thromb Vasc Biol. 2003; 23: 842-846
        • Valdes A.M.
        • Andrew T.
        • Gardner J.P.
        • et al.
        Obesity, cigarette smoking, and telomere length in women.
        Lancet. 2005; 366: 662-664
        • Aubert G.
        • Lansdorp P.M.
        Telomeres and aging.
        Physiol Rev. 2008; 88: 557-579
        • Jiang H.
        • Schiffer E.
        • Song Z.
        • et al.
        Proteins induced by telomere dysfunction and DNA damage represent biomarkers of human aging and disease.
        Proc Natl Acad Sci U S A. 2008; 105: 11299-11304
      1. Song Z, von Figura G, Liu Y, et al. Lifestyle impacts on the aging-associated expression of biomarkers of DNA damage and telomere dysfunction in human blood. Aging Cell 9:607–15.

        • Benetti R.
        • Garcia-Cao M.
        • Blasco M.A.
        Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres.
        Nat Genet. 2007; 39: 243-250
        • Celli G.B.
        • de Lange T.
        DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion.
        Nat Cell Biol. 2005; 7: 712-718
        • Cherkas L.F.
        • Hunkin J.L.
        • Kato B.S.
        • et al.
        The association between physical activity in leisure time and leukocyte telomere length.
        Arch Intern Med. 2008; 168: 154-158
        • Munoz P.
        • Blanco R.
        • Flores J.M.
        • Blasco M.A.
        XPF nuclease-dependent telomere loss and increased DNA damage in mice overexpressing TRF2 result in premature aging and cancer.
        Nat Genet. 2005; 37: 1063-1071
        • Nawrot T.S.
        • Staessen J.A.
        • Gardner J.P.
        • Aviv A.
        Telomere length and possible link to X chromosome.
        Lancet. 2004; 363: 507-510
        • Nordfjall K.
        • Eliasson M.
        • Stegmayr B.
        • Melander O.
        • Nilsson P.
        • Roos G.
        Telomere length is associated with obesity parameters but with a gender difference.
        Obesity (Silver Spring). 2008; 16: 2682-2689
        • Steinert S.
        • Shay J.W.
        • Wright W.E.
        Modification of subtelomeric DNA.
        Mol Cell Biol. 2004; 24: 4571-4580
        • Brouilette S.W.
        • Moore J.S.
        • McMahon A.D.
        • et al.
        Telomere length, risk of coronary heart disease, and statin treatment in the West of Scotland Primary Prevention Study: a nested case-control study.
        Lancet. 2007; 369: 107-114
        • Fitzpatrick A.L.
        • Kronmal R.A.
        • Gardner J.P.
        • et al.
        Leukocyte telomere length and cardiovascular disease in the cardiovascular health study.
        Am J Epidemiol. 2007; 165: 14-21
        • McGrath M.
        • Wong J.Y.
        • Michaud D.
        • Hunter D.J.
        • De Vivo I.
        Telomere length, cigarette smoking, and bladder cancer risk in men and women.
        Cancer Epidemiol Biomarkers Prev. 2007; 16: 815-819
        • Sampson M.J.
        • Winterbone M.S.
        • Hughes J.C.
        • Dozio N.
        • Hughes D.A.
        Monocyte telomere shortening and oxidative DNA damage in type 2 diabetes.
        Diabetes Care. 2006; 29: 283-289
        • Valdes A.M.
        • Richards J.B.
        • Gardner J.P.
        • et al.
        Telomere length in leukocytes correlates with bone mineral density and is shorter in women with osteoporosis.
        Osteoporos Int. 2007; 18: 1203-1210
        • van der Harst P.
        • van der Steege G.
        • de Boer R.A.
        • et al.
        Telomere length of circulating leukocytes is decreased in patients with chronic heart failure.
        J Am Coll Cardiol. 2007; 49: 1459-1464
        • Wu X.
        • Amos C.I.
        • Zhu Y.
        • et al.
        Telomere dysfunction: a potential cancer predisposition factor.
        J Natl Cancer Inst. 2003; 95: 1211-1218
        • Zee R.Y.
        • Michaud S.E.
        • Germer S.
        • Ridker P.M.
        Association of shorter mean telomere length with risk of incident myocardial infarction: a prospective, nested case-control approach.
        Clin Chim Acta. 2009; 403: 139-141
        • Broccoli D.
        • Young J.W.
        • de Lange T.
        Telomerase activity in normal and malignant hematopoietic cells.
        Proc Natl Acad Sci U S A. 1995; 92: 9082-9086
        • Tzukerman M.
        • Selig S.
        • Skorecki K.
        Telomeres and telomerase in human health and disease.
        J Pediatr Endocrinol Metab. 2002; 15: 229-240
        • Counter C.M.
        • Avilion A.A.
        • LeFeuvre C.E.
        • et al.
        Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity.
        Embo J. 1992; 11: 1921-1929
        • Kim N.W.
        • Piatyszek M.A.
        • Prowse K.R.
        • et al.
        Specific association of human telomerase activity with immortal cells and cancer.
        Science. 1994; 266 ([see comments]): 2011-2015
        • Lord R.V.
        • Salonga D.
        • Danenberg K.D.
        • et al.
        Telomerase reverse transcriptase expression is increased early in the Barrett's metaplasia, dysplasia, adenocarcinoma sequence.
        J Gastrointest Surg. 2000; 4: 135-142
        • Blackburn E.H.
        Annu Rev Biochem. 1992; 61: 113-129
        • Dunham M.A.
        • Neumann A.A.
        • Fasching C.L.
        • Reddel R.R.
        Telomere maintenance by recombination in human cells.[see comment].
        Nat Genet. 2000; 26: 447-450
        • Chin L.
        • Artandi S.E.
        • Shen Q.
        • et al.
        p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis.
        Cell. 1999; 97: 527-538
        • De Lange T.
        Telomere-related genome instability in cancer.
        Cold Spring Harb Symp Quant Biol. 2005; 70: 197-204
        • Frias C.
        • Pampalona J.
        • Genesca A.
        • Tusell L.
        Telomere dysfunction and genome instability.
        Front Biosci. 2012; 17: 2181-2196
        • Meeker A.K.
        Telomeres and telomerase in prostatic intraepithelial neoplasia and prostate cancer biology.
        Urol Oncol. 2006; 24: 122-130
        • Dokal I.
        • Vulliamy T.
        • Mason P.
        • Bessler M.
        Clinical utility gene card for: dyskeratosis congenita.
        Eur JHum Genet. 2011;
        • Vulliamy T.
        • Marrone A.
        • Goldman F.
        • et al.
        The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita.
        Nature. 2001; 413: 432-435
        • Nergadze S.G.
        • Rocchi M.
        • Azzalin C.M.
        • Mondello C.
        • Giulotto E.
        Insertion of telomeric repeats at intrachromosomal break sites during primate evolution.
        Genome Res. 2004; 14: 1704-1710
        • Boule J.B.
        • Vega L.R.
        • Zakian V.A.
        The yeast Pif1p helicase removes telomerase from telomeric DNA.
        Nature. 2005; 438: 57-61
        • Makovets S.
        • Blackburn E.H.
        DNA damage signalling prevents deleterious telomere addition at DNA breaks.
        Nat Cell Biol. 2009; 11: 1383-1386
        • Finley J.C.
        • Reid B.J.
        • Odze R.D.
        • et al.
        Chromosomal instability in Barrett's esophagus is related to telomere shortening.
        Cancer Epidemiol Biomarkers Prev. 2006; 15: 1451-1457
        • Zheng Y.L.
        • Hu N.
        • Sun Q.
        • Wang C.
        • Taylor P.R.
        Telomere attrition in cancer cells and telomere length in tumor stroma cells predict chromosome instability in esophageal squamous cell carcinoma: a genome-wide analysis.
        Cancer Res. 2009; 69: 1604-1614
        • Meeker A.K.
        • Hicks J.L.
        • Iacobuzio-Donahue C.A.
        • et al.
        Telomere length abnormalities occur early in the initiation of epithelial carcinogenesis.
        Clin Cancer Res. 2004; 10: 3317-3326
        • Risques R.A.
        • Vaughan T.L.
        • Li X.
        • et al.
        Leukocyte telomere length predicts cancer risk in Barrett's esophagus.
        Cancer Epidemiol Biomarkers Prev. 2007; 16: 2649-2655
        • Xing J.
        • Ajani J.A.
        • Chen M.
        • et al.
        Constitutive short telomere length of chromosome 17p and 12q but not 11q and 2p is associated with an increased risk for esophageal cancer.
        Cancer Prev Res (Phila). 2009; 2: 459-465
        • Ghadirian P.
        • Vobecky J.
        • Vobecky J.S.
        Factors associated with cancer of the oesophagus: an overview.
        Cancer Detect Prev. 1988; 11: 225-234
        • Pal J.
        • Bertheau R.
        • Buon L.
        • et al.
        Genomic evolution in Barrett's adenocarcinoma cells: critical roles of elevated hsRAD51, homologous recombination and Alu sequences in the genome.
        Oncogene. 2011; 30: 3585-3598
        • Hollstein M.
        • Sidransky D.
        • Vogelstein B.
        • Harris C.C.
        p53 mutations in human cancers.
        Science. 1991; 253: 49-53
        • Babizhayev M.A.
        • Savel'yeva E.L.
        • Moskvina S.N.
        • Yegorov Y.E.
        Telomere length is a biomarker of cumulative oxidative stress, biologic age, and an independent predictor of survival and therapeutic treatment requirement associated with smoking behavior.
        Am J Ther. 2011; 18: e209-e226
        • Haas S.L.
        • Ye W.
        • Lohr J.M.
        Alcohol consumption and digestive tract cancer.
        Curr Opin Clin Nutr Metab Care. 2012; 15: 457-467
        • Cassidy A.
        • De Vivo I.
        • Liu Y.
        • et al.
        Associations between diet, lifestyle factors, and telomere length in women.
        Am J Clin Nutr. 2010; 91: 1273-1280
        • Poehlmann A.
        • Kuester D.
        • Malfertheiner P.
        • Guenther T.
        • Roessner A.
        Inflammation and Barrett's carcinogenesis.
        Pathol Res Pract. 2012; 208: 269-280
        • Farinati F.
        • Piciocchi M.
        • Lavezzo E.
        • Bortolami M.
        • Cardin R.
        Oxidative stress and inducible nitric oxide synthase induction in carcinogenesis.
        Dig Dis. 2010; 28: 579-584
      2. Lu R, Pal J, Buon L, et al. Targeting homologous recombination and telomerase in Barrett's adenocarcinoma: impact on telomere maintenance, genomic instability and tumor growth [e-pub ahead of print]. Oncogene 2013.

        • Wu X.
        • Smavadati S.
        • Nordfjall K.
        • et al.
        Telomerase antagonist imetelstat inhibits esophageal cancer cell growth and increases radiation-induced DNA breaks.
        Biochim Biophys Acta. 2012; 1823: 2130-2135
        • Morales C.P.
        • Lee E.L.
        • Shay J.W.
        In situ hybridization for the detection of telomerase RNA in the progression from Barrett's esophagus to esophageal adenocarcinoma.
        Cancer. 1998; 83: 652-659
        • Shammas M.A.
        • Shmookler Reis R.J.
        • Akiyama M.
        • et al.
        Telomerase inhibition and cell growth arrest by G-quadruplex interactive agent in multiple myeloma.
        Mol Cancer Therapeut. 2003; 2: 825-833
        • Akiyama M.
        • Hideshima T.
        • Shammas M.A.
        • et al.
        Effects of oligonucleotide N3'-->P5' thio-phosphoramidate (GRN163) targeting telomerase RNA in human multiple myeloma cells.
        Cancer Res. 2003; 63: 6187-6194
        • Xia S.J.
        • Shammas M.A.
        • Shmookler Reis R.J.
        Elevated recombination in immortal human cells is mediated by HsRAD51 recombinase.
        Mol Cell Biol. 1997; 17: 7151-7158
        • Shammas M.A.
        • Shmookler Reis R.J.
        • Koley H.
        • Batchu R.B.
        • Li C.
        • Munshi N.C.
        Dysfunctional homologous recombination mediates genomic instability and progression in myeloma.
        Blood. 2009; 113: 2290-2297