Zebrafish models of dyslipidemia: relevance to atherosclerosis and angiogenesis

Published:October 04, 2013DOI:
      Lipid and lipoprotein metabolism in zebrafish and in humans are remarkably similar. Zebrafish express all major nuclear receptors, lipid transporters, apolipoproteins and enzymes involved in lipoprotein metabolism. Unlike mice, zebrafish express cetp and the Cetp activity is detected in zebrafish plasma. Feeding zebrafish a high cholesterol diet, without any genetic intervention, results in significant hypercholesterolemia and robust lipoprotein oxidation, making zebrafish an attractive animal model to study mechanisms relevant to early development of human atherosclerosis. These studies are facilitated by the optical transparency of zebrafish larvae and the availability of transgenic zebrafish expressing fluorescent proteins in endothelial cells and macrophages. Thus, vascular processes can be monitored in live animals. In this review article, we discuss recent advances in using dyslipidemic zebrafish in atherosclerosis-related studies. We also summarize recent work connecting lipid metabolism with regulation of angiogenesis, the work that considerably benefited from using the zebrafish model. These studies uncovered the role of aibp, abca1, abcg1, mtp, apoB, and apoC2 in regulation of angiogenesis in zebrafish and paved the way for future studies in mammals, which may suggest new therapeutic approaches to modulation of excessive or diminished angiogenesis contributing to the pathogenesis of human disease.


      AIBP (apoA-I binding protein), CE (cholesterol ester), CETP (cholesterol ester transfer protein), DsRed (red fluorescent protein from Discosoma sp.), EC (endothelial cells), EGFP (enhanced green fluorescent protein), HCD (high cholesterol diet), HDL (high-density lipoprotein), LDL (low-density lipoprotein), LPL (lipoprotein lipase), MDA (malondialdehyde), OxCE (oxidized CE), OxPC (oxidized phosphatidylcholine), PLA2 (phospholipase A2), SeA (segmental artery), SIV (subintestinal vein), VLDL (very low-density lipoprotein)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Santoriello C.
        • Zon L.I.
        Hooked! Modeling human disease in zebrafish.
        J Clin Invest. 2012; 122: 2337-2343
        • Babin P.J.
        • Thisse C.
        • Durliat M.
        • Andre M.
        • Akimenko M.A.
        • Thisse B.
        Both apolipoprotein E and A-I genes are present in a nonmammalian vertebrate and are highly expressed during embryonic development.
        Proc Natl Acad Sci U S A. 1997; 94: 8622-8627
        • Stoletov K.
        • Fang L.
        • Choi S.H.
        • et al.
        Vascular lipid accumulation, lipoprotein oxidation, and macrophage lipid uptake in hypercholesterolemic zebrafish.
        Circ Res. 2009; 104: 952-960
        • Avraham-Davidi I.
        • Ely Y.
        • Pham V.N.
        • et al.
        ApoB-containing lipoproteins regulate angiogenesis by modulating expression of VEGF receptor 1.
        Nat Med. 2012; 18: 967-973
        • Fang L.
        • Harkewicz R.
        • Hartvigsen K.
        • et al.
        Oxidized cholesteryl esters and phospholipids in zebrafish larvae fed a high cholesterol diet: macrophage binding and activation.
        J Biol Chem. 2010; 285: 32343-32351
        • Schlegel A.
        • Stainier D.Y.
        Microsomal triglyceride transfer protein is required for yolk lipid utilization and absorption of dietary lipids in zebrafish larvae.
        Biochemistry. 2006; 45: 15179-15187
        • Babin P.J.
        • Vernier J.M.
        Plasma lipoproteins in fish.
        J Lipid Res. 1989; 30: 467-489
        • Jin S.
        • Cho K.H.
        Water extracts of cinnamon and clove exhibits potent inhibition of protein glycation and anti-atherosclerotic activity in vitro and in vivo hypolipidemic activity in zebrafish.
        Food Chem Toxicol. 2011; 49: 1521-1529
        • Kim J.Y.
        • Seo J.
        • Cho K.H.
        Aspartame-fed zebrafish exhibit acute deaths with swimming defects and saccharin-fed zebrafish have elevation of cholesteryl ester transfer protein activity in hypercholesterolemia.
        Food Chem Toxicol. 2011; 49: 2899-2905
        • Poirier S.
        • Prat A.
        • Marcinkiewicz E.
        • et al.
        Implication of the proprotein convertase NARC-1/PCSK9 in the development of the nervous system.
        J Neurochem. 2006; 98: 838-850
        • Hugo S.E.
        • Cruz-Garcia L.
        • Karanth S.
        • Anderson R.M.
        • Stainier D.Y.
        • Schlegel A.
        A monocarboxylate transporter required for hepatocyte secretion of ketone bodies during fasting.
        Genes Dev. 2012; 26: 282-293
        • Venkatachalam A.B.
        • Sawler D.L.
        • Wright J.M.
        Tissue-specific transcriptional modulation of fatty acid-binding protein genes, fabp2, fabp3 and fabp6, by fatty acids and the peroxisome proliferator, clofibrate, in zebrafish (Danio rerio).
        Gene. 2013; 520: 14-21
        • Sukardi H.
        • Zhang X.
        • Lui E.Y.
        • et al.
        Liver X receptor agonist T0901317 induced liver perturbation in zebrafish: histological, gene set enrichment and expression analyses.
        Biochim Biophys Acta. 2012; 1820: 33-43
        • Fang L.
        • Choi S.H.
        • Baek J.S.
        • et al.
        Control of angiogenesis by AIBP-mediated cholesterol efflux.
        Nature. 2013; 498: 118-122
        • Li G.
        • Zhang Q.J.
        • Ji Z.L.
        • Wang Y.Q.
        Origin and evolution of vertebrate ABCA genes: a story from amphioxus.
        Gene. 2007; 405: 88-95
        • Futter M.
        • Diekmann H.
        • Schoenmakers E.
        • Sadiq O.
        • Chatterjee K.
        • Rubinsztein D.C.
        Wild-type but not mutant huntingtint modulates the transcriptional activity of liver X receptors.
        J Med Genet. 2009; 46: 438-446
        • Walters J.W.
        • Anderson J.L.
        • Bittman R.
        • Pack M.
        • Farber S.A.
        Visualization of lipid metabolism in the zebrafish intestine reveals a relationship between NPC1L1-mediated cholesterol uptake and dietary fatty acid.
        Chem Biol. 2012; 19: 913-925
        • Clifton J.D.
        • Lucumi E.
        • Myers M.C.
        • et al.
        Identification of novel inhibitors of dietary lipid absorption using zebrafish.
        PLoS One. 2010; 5: e12386
        • Baek J.S.
        • Fang L.
        • Li A.C.
        • Miller Y.I.
        Ezetimibe and simvastatin reduce cholesterol levels in zebrafish larvae fed a high-cholesterol diet.
        Cholesterol. 2012; 2012: 564705
        • Ho S.Y.
        • Lorent K.
        • Pack M.
        • Farber S.A.
        Zebrafish fat-free is required for intestinal lipid absorption and Golgi apparatus structure.
        Cell Metab. 2006; 3: 289-300
        • Liu H.Y.
        • Lee N.
        • Tsai T.Y.
        • Ho S.Y.
        Zebrafish fat-free, a novel Arf effector, regulates phospholipase D to mediate lipid and glucose metabolism.
        Biochim Biophys Acta. 2010; 1801: 1330-1340
        • Navab M.
        • Reddy S.T.
        • Van Lenten B.J.
        • et al.
        High-density lipoprotein and 4F peptide reduce systemic inflammation by modulating intestinal oxidized lipid metabolism: novel hypotheses and review of literature.
        Arterioscler Thromb Vasc Biol. 2012; 32: 2553-2560
        • Tang W.H.
        • Wang Z.
        • Levison B.S.
        • et al.
        Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk.
        N Engl J Med. 2013; 368: 1575-1584
        • Fang L.
        • Green S.R.
        • Baek J.S.
        • et al.
        In vivo visualization and attenuation of oxidized lipid accumulation in hypercholesterolemic zebrafish.
        J Clin Invest. 2011; 121: 4861-4869
        • Hall C.
        • Flores M.V.
        • Storm T.
        • Crosier K.
        • Crosier P.
        The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish.
        BMC Dev Biol. 2007; 7: 42
        • Ellett F.
        • Pase L.
        • Hayman J.W.
        • Andrianopoulos A.
        • Lieschke G.J.
        mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish.
        Blood. 2011; 117: e49-e56
        • Yoon Y.
        • Yoon J.
        • Jang M.Y.
        • et al.
        High cholesterol diet induces IL-1beta expression in adult but not larval aebrafish.
        PLoS One. 2013; 8: e66970
        • Xie X.
        • Tan J.
        • Wei D.
        • et al.
        In vitro and in vivo investigations on the effects of low-density lipoprotein concentration polarization and haemodynamics on atherosclerotic localization in rabbit and zebrafish.
        J R Soc Interface. 2013; 10: 20121053
        • Farber S.A.
        • Pack M.
        • Ho S.Y.
        • et al.
        Genetic analysis of digestive physiology using fluorescent phospholipid reporters.
        Science. 2001; 292: 1385-1388
        • Miller Y.I.
        • Choi S.H.
        • Wiesner P.
        • et al.
        Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity.
        Circ Res. 2011; 108: 235-248
        • Glass C.K.
        • Witztum J.L.
        Atherosclerosis, the road ahead.
        Cell. 2001; 104: 503-516
        • Harkewicz R.
        • Hartvigsen K.
        • Almazan F.
        • Dennis E.A.
        • Witztum J.L.
        • Miller Y.I.
        Cholesteryl ester hydroperoxides are biologically active components of minimally oxidized low density lipoprotein.
        J Biol Chem. 2008; 283: 10241-10251
        • Hutchins P.M.
        • Moore E.E.
        • Murphy R.C.
        Electrospray MS/MS reveals extensive and nonspecific oxidation of cholesterol esters in human peripheral vascular lesions.
        J Lipid Res. 2011; 52: 2070-2083
        • Choi S.H.
        • Harkewicz R.
        • Lee J.H.
        • et al.
        Lipoprotein accumulation in macrophages via toll-like receptor-4-dependent fluid phase uptake.
        Circ Res. 2009; 104: 1355-1363
        • Miller Y.I.
        • Choi S.H.
        • Fang L.
        • Harkewicz R.
        Toll-like receptor-4 and lipoprotein accumulation in macrophages.
        Trends Cardiovasc Med. 2009; 19: 227-232
        • Subbanagounder G.
        • Wong J.W.
        • Lee H.
        • et al.
        Epoxyisoprostane and epoxycyclopentenone phospholipids regulate monocyte chemotactic protein-1 and interleukin-8 synthesis. Formation of these oxidized phospholipids in response to interleukin-1beta.
        J Biol Chem. 2002; 277: 7271-7281
        • Berliner J.A.
        • Watson A.D.
        A role for oxidized phospholipids in atherosclerosis.
        N Engl J Med. 2005; 353: 9-11
        • Cherepanova O.A.
        • Pidkovka N.A.
        • Sarmento O.F.
        • et al.
        Oxidized phospholipids induce type VIII collagen expression and vascular smooth muscle cell migration.
        Circ Res. 2009; 104: 609-618
        • Bochkov V.N.
        • Mechtcheriakova D.
        • Lucerna M.
        • et al.
        Oxidized phospholipids stimulate tissue factor expression in human endothelial cells via activation of ERK/EGR-1 and Ca(++)/NFAT.
        Blood. 2002; 99: 199-206
        • Kadl A.
        • Meher A.K.
        • Sharma P.R.
        • et al.
        Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2.
        Circ Res. 2010; 107: 737-746
        • Shaw P.X.
        • Horkko S.
        • Tsimikas S.
        • et al.
        Human-derived anti-oxidized LDL autoantibody blocks uptake of oxidized LDL by macrophages and localizes to atherosclerotic lesions in vivo.
        Arterioscler Thromb Vasc Biol. 2001; 21: 1333-1339
        • Briley-Saebo K.C.
        • Nguyen T.H.
        • Saeboe A.M.
        • et al.
        In vivo detection of oxidation-specific epitopes in atherosclerotic lesions using biocompatible manganese molecular magnetic imaging probes.
        J Am Coll Cardiol. 2012; 59: 616-626
        • Tsimikas S.
        • Miyanohara A.
        • Hartvigsen K.
        • et al.
        Human oxidation-specific antibodies reduce foam cell formation and atherosclerosis progression.
        J Am Coll Cardiol. 2011; 58: 1715-1727
        • van Dijk R.A.
        • Kolodgie F.
        • Ravandi A.
        • et al.
        Differential expression of oxidation-specific epitopes and apolipoprotein(a) in progressing and ruptured human coronary and carotid atherosclerotic lesions.
        J Lipid Res. 2012; 53: 2773-2790
        • Parthasarathy S.
        • Young S.G.
        • Witztum J.L.
        • Pittman R.C.
        • Steinberg D.
        Probucol inhibits oxidative modification of low density lipoprotein.
        J Clin Invest. 1986; 77: 641-644
        • Carew T.E.
        • Schwenke D.C.
        • Steinberg D.
        Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit.
        Proc Natl Acad Sci U S A. 1987; 84: 7725-7729
        • Kirkwood J.S.
        • Lebold K.M.
        • Miranda C.L.
        • et al.
        Vitamin C deficiency activates the purine nucleotide cycle in zebrafish.
        J Biol Chem. 2012; 287: 3833-3841
        • Christiaens V.
        • Lijnen H.R.
        Angiogenesis and development of adipose tissue.
        Mol Cell Endocrinol. 2010; 318: 2-9
        • Ho-Tin-Noe B.
        • Michel J.B.
        Initiation of angiogenesis in atherosclerosis: smooth muscle cells as mediators of the angiogenic response to atheroma formation.
        Trends Cardiovasc Med. 2011; 21: 183-187
        • Ferrara N.
        • Kerbel R.S.
        Angiogenesis as a therapeutic target.
        Nature. 2005; 438: 967-974
        • van der Laan A.M.
        • Piek J.J.
        • van Royen N.
        Targeting angiogenesis to restore the microcirculation after reperfused MI.
        Nat Rev Cardiol. 2009; 6: 515-523
        • Isogai S.
        • Horiguchi M.
        • Weinstein B.M.
        The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development.
        Dev Biol. 2001; 230: 278-301
        • Lawson N.D.
        • Weinstein B.M.
        In vivo imaging of embryonic vascular development using transgenic zebrafish.
        Dev Biol. 2002; 248: 307-318
        • Motoike T.
        • Loughna S.
        • Perens E.
        • et al.
        Universal GFP reporter for the study of vascular development.
        Genesis. 2000; 28: 75-81
        • Torres-Vazquez J.
        • Kamei M.
        • Weinstein B.M.
        Molecular distinction between arteries and veins.
        Cell Tissue Res. 2003; 314: 43-59
        • Fouquet B.
        • Weinstein B.M.
        • Serluca F.C.
        • Fishman M.C.
        Vessel patterning in the embryo of the zebrafish: guidance by notochord.
        Dev Biol. 1997; 183: 37-48
        • Liao W.
        • Bisgrove B.W.
        • Sawyer H.
        • et al.
        The zebrafish gene cloche acts upstream of a flk-1 homologue to regulate endothelial cell differentiation.
        Development. 1997; 124: 381-389
        • Gering M.
        • Rodaway A.R.
        • Gottgens B.
        • Patient R.K.
        • Green A.R.
        The SCL gene specifies haemangioblast development from early mesoderm.
        Embo J. 1998; 17: 4029-4045
        • Liao E.C.
        • Paw B.H.
        • Oates A.C.
        • Pratt S.J.
        • Postlethwait J.H.
        • Zon L.I.
        SCL/Tal-1 transcription factor acts downstream of cloche to specify hematopoietic and vascular progenitors in zebrafish.
        Genes Dev. 1998; 12: 621-626
        • Liang D.
        • Xu X.
        • Chin A.J.
        • et al.
        Cloning and characterization of vascular endothelial growth factor (VEGF) from zebrafish, Danio rerio.
        Biochim Biophys Acta. 1998; 1397: 14-20
        • Lyons M.S.
        • Bell B.
        • Stainier D.
        • Peters K.G.
        Isolation of the zebrafish homologues for the tie-1 and tie-2 endothelium-specific receptor tyrosine kinases.
        Dev Dyn. 1998; 212: 133-140
        • Lawson N.D.
        • Scheer N.
        • Pham V.N.
        • et al.
        Notch signaling is required for arterial-venous differentiation during embryonic vascular development.
        Development. 2001; 128: 3675-3683
        • Kataoka H.
        • Ochi M.
        • Enomoto K.
        • Yamaguchi A.
        Cloning and embryonic expression patterns of the zebrafish Runt domain genes, runxa and runxb.
        Mech Dev. 2000; 98: 139-143
        • Pham V.N.
        • Roman B.L.
        • Weinstein B.M.
        Isolation and expression analysis of three zebrafish angiopoietin genes.
        Dev Dyn. 2001; 221: 470-474
        • Habeck H.
        • Odenthal J.
        • Walderich B.
        • Maischein H.
        • Schulte-Merker S.
        Analysis of a zebrafish VEGF receptor mutant reveals specific disruption of angiogenesis.
        Curr Biol. 2002; 12: 1405-1412
        • Torres-Vazquez J.
        • Gitler A.D.
        • Fraser S.D.
        • et al.
        Semaphorin-plexin signaling guides patterning of the developing vasculature.
        Dev Cell. 2004; 7: 117-123
        • Siekmann A.F.
        • Covassin L.
        • Lawson N.D.
        Modulation of VEGF signalling output by the Notch pathway.
        BioEssays: news and reviews in molecular, cellular and developmental biology. 2008; 30: 303-313
        • Krueger J.
        • Liu D.
        • Scholz K.
        • et al.
        Flt1 acts as a negative regulator of tip cell formation and branching morphogenesis in the zebrafish embryo.
        Development. 2011; 138: 2111-2120
        • Herbert S.P.
        • Cheung J.Y.
        • Stainier D.Y.
        Determination of endothelial stalk versus tip cell potential during angiogenesis by H2.0-like homeobox-1.
        Curr Biol. 2012; 22: 1789-1794
        • Marbaix A.Y.
        • Noel G.
        • Detroux A.M.
        • Vertommen D.
        • Van Schaftingen E.
        • Linster C.L.
        Extremely conserved ATP- or ADP-dependent enzymatic system for nicotinamide nucleotide repair.
        J Biol Chem. 2011; 286: 41246-41252
        • Shumilin I.A.
        • Cymborowski M.
        • Chertihin O.
        • et al.
        Identification of unknown protein function using metabolite cocktail screening.
        Structure. 2012; 20: 1715-1725
        • Miura S.
        • Fujino M.
        • Matsuo Y.
        • et al.
        High density lipoprotein-induced angiogenesis requires the activation of Ras/MAP kinase in human coronary artery endothelial cells.
        Arterioscler Thromb Vasc Biol. 2003; 23: 802-808
        • Tatematsu S.
        • Francis S.A.
        • Natarajan P.
        • et al.
        Endothelial lipase is a critical determinant of high-density lipoprotein-stimulated sphingosine 1-phosphate-dependent signaling in vascular endothelium.
        Arterioscler Thromb Vasc Biol. 2013;
        • Huang C.Y.
        • Lin F.Y.
        • Shih C.M.
        • et al.
        Moderate to high concentrations of high-density lipoprotein from healthy subjects paradoxically impair human endothelial progenitor cells and related angiogenesis by activating Rho-associated kinase pathways.
        Arterioscler Thromb Vasc Biol. 2012; 32: 2405-2417
        • Siekmann A.F.
        • Lawson N.D.
        Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries.
        Nature. 2007; 445: 781-784
        • Mendez A.J.
        • Lin G.
        • Wade D.P.
        • Lawn R.M.
        • Oram J.F.
        Membrane lipid domains distinct from cholesterol/sphingomyelin-rich rafts are involved in the ABCA1-mediated lipid secretory pathway.
        J Biol Chem. 2001; 276: 3158-3166
        • Choi J.
        • Mouillesseaux K.
        • Wang Z.
        • et al.
        Aplexone targets the HMG-CoA reductase pathway and differentially regulates arteriovenous angiogenesis.
        Development. 2011; 138: 1173-1181
        • Hanai J.
        • Cao P.
        • Tanksale P.
        • et al.
        The muscle-specific ubiquitin ligase atrogin-1/MAFbx mediates statin-induced muscle toxicity.
        J Clin Invest. 2007; 117: 3940-3951