Advertisement

Using zebrafish models to explore genetic and epigenetic impacts on evolutionary developmental origins of aging

  • Shuji Kishi
    Correspondence
    Reprint requests: Shuji Kishi, MD, PhD, Department of Metabolism & Aging, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, #3B3, Jupiter, FL 33458
    Affiliations
    Department of Metabolism & Aging, The Scripps Research Institute, Scripps Florida, Jupiter, Fla
    Search for articles by this author
Published:November 14, 2013DOI:https://doi.org/10.1016/j.trsl.2013.10.004
      Can we reset, reprogram, rejuvenate, or reverse the organismal aging process? Certain genetic manipulations could at least reset and reprogram epigenetic dynamics beyond phenotypic plasticity and elasticity in cells, which can be manipulated further into organisms. However, in a whole complex aging organism, how can we rejuvenate intrinsic resources and infrastructures in an intact and noninvasive manner? The incidence of diseases increases exponentially with age, accompanied by progressive deteriorations of physiological functions in organisms. Aging-associated diseases are sporadic but essentially inevitable complications arising from senescence. Senescence is often considered the antithesis of early development, but yet there may be factors and mechanisms in common between these 2 phenomena to rejuvenate over the dynamic process of aging. The association between early development and late-onset disease with advancing age is thought to come from a consequence of developmental plasticity, the phenomenon by which one genotype can give rise to a range of physiologically and/or morphologically adaptive states based on diverse epigenotypes in response to intrinsic or extrinsic environmental cues and genetic perturbations. We hypothesized that the future aging process can be predictive based on adaptivity during the early developmental period. Modulating the thresholds and windows of plasticity and its robustness by molecular genetic and chemical epigenetic approaches, we have successfully conducted experiments to isolate zebrafish mutants expressing apparently altered senescence phenotypes during their embryonic and/or larval stages (“embryonic/larval senescence”). Subsequently, at least some of these mutant animals were found to show a shortened life span, whereas others would be expected to live longer into adulthood. We anticipate that previously uncharacterized developmental genes may mediate the aging process and play a pivotal role in senescence. On the other hand, unexpected senescence-related genes might also be involved in the early developmental process and its regulation. The ease of manipulation using the zebrafish system allows us to conduct an exhaustive exploration of novel genes, genotypes, and epigenotypes that can be linked to the senescence phenotype, which facilitates searching for the evolutionary and developmental origins of aging in vertebrates.

      Abbreviations:

      SA-β-gal (Senescence-associated β-galactosidase), TERT (Telomerase reverse transcriptase)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hasty P.
        • Campisi J.
        • Hoeijmakers J.
        • van Steeg H.
        • Vijg J.
        Aging and genome maintenance: lessons from the mouse?.
        Science. 2003; 299: 1355-1359
        • Seifert A.W.
        • Voss S.R.
        Revisiting the relationship between regenerative ability and aging.
        BMC Biol. 2013; 11: 2
        • Carey J.R.
        • Liedo P.
        • Harshman L.
        • et al.
        Life history response of Mediterranean fruit flies to dietary restriction.
        Aging Cell. 2002; 1: 140-148
        • Liao C.Y.
        • Rikke B.A.
        • Johnson T.E.
        • Diaz V.
        • Nelson J.F.
        Genetic variation in the murine life span response to dietary restriction: from life extension to life shortening.
        Aging Cell. 2010; 9: 92-95
        • Cooper T.M.
        • Mockett R.J.
        • Sohal B.H.
        • Sohal R.S.
        • Orr W.C.
        Effect of caloric restriction on life span of the housefly, Musca domestica.
        FASEB J. 2004; 18: 1591-1593
        • Phelan J.P.
        • Rose M.R.
        Why dietary restriction substantially increases longevity in animal models but won’t in humans.
        Ageing Res Rev. 2005; 4: 339-350
        • Mangel M.
        • Abrahams M.V.
        Age and longevity in fish, with consideration of the ferox trout.
        Exp Gerontol. 2001; 36: 765-790
        • Kamakura M.
        Royalactin induces queen differentiation in honeybees.
        Nature. 2011; 473: 478-483
        • Mattison J.A.
        • Roth G.S.
        • Beasley T.M.
        • et al.
        Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study.
        Nature. 2012; 489: 318-321
        • Kishi S.
        • Uchiyama J.
        • Baughman A.M.
        • Goto T.
        • Lin M.C.
        • Tsai S.B.
        The zebrafish as a vertebrate model of functional aging and very gradual senescence.
        Exp Gerontol. 2003; 38: 777-786
        • Keller E.T.
        • Murtha J.M.
        The use of mature zebrafish (Danio rerio) as a model for human aging and disease.
        Comp Biochem Physiol C Toxicol Pharmacol. 2004; 138: 335-341
        • Gerhard G.S.
        • Kauffman E.J.
        • Wang X.
        • et al.
        Life spans and senescent phenotypes in two strains of zebrafish (Danio rerio).
        Exp Gerontol. 2002; 37: 1055-1068
        • Zhdanova I.V.
        • Yu L.
        • Lopez-Patino M.
        • Shang E.
        • Kishi S.
        • Guelin E.
        Aging of the circadian system in zebrafish and the effects of melatonin on sleep and cognitive performance.
        Brain Res Bull. 2008; 75: 433-441
        • Yu L.
        • Tucci V.
        • Kishi S.
        • Zhdanova I.V.
        Cognitive aging in zebrafish.
        PLoS One. 2006; 1: e14
        • Tsai S.B.
        • Tucci V.
        • Uchiyama J.
        • et al.
        Differential effects of genotoxic stress on both concurrent body growth and gradual senescence in the adult zebrafish.
        Aging Cell. 2007; 6: 209-224
        • Henriques C.M.
        • Carneiro M.C.
        • Tenente I.M.
        • Jacinto A.
        • Ferreira M.G.
        Telomerase is required for zebrafish life span.
        PLoS Genet. 2013; 9: e1003214
        • Anchelin M.
        • Alcaraz-Perez F.
        • Martinez C.M.
        • Bernabe-Garcia M.
        • Mulero V.
        • Cayuela M.L.
        Premature aging in telomerase-deficient zebrafish.
        Dis Model Mech. 2013; 6: 1101-1112
        • Shimoda N.
        • Izawa T.
        • Yoshizawa A.
        • Yokoi H.
        • Kikuchi Y.
        • Hashimoto N.
        Decrease in cytosine methylation at CpG island shores and increase in DNA fragmentation during zebrafish aging.
        Age (Dordr). 2013; ([Epub ahead of print])
        • White R.M.
        • Sessa A.
        • Burke C.
        • et al.
        Transparent adult zebrafish as a tool for in vivo transplantation analysis.
        Cell Stem Cell. 2008; 2: 183-189
        • Lieschke G.J.
        • Currie P.D.
        Animal models of human disease: zebrafish swim into view.
        Nat Rev Genet. 2007; 8: 353-367
        • Dahlem T.J.
        • Hoshijima K.
        • Jurynec M.J.
        • et al.
        Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome.
        PLoS Genet. 2012; 8: e1002861
        • Chen S.
        • Oikonomou G.
        • Chiu C.N.
        • et al.
        A large-scale in vivo analysis reveals that TALENs are significantly more mutagenic than ZFNs generated using context-dependent assembly.
        Nucl Acids Res. 2013; 4: 2769-2778
        • Bedell V.M.
        • Wang Y.
        • Campbell J.M.
        • et al.
        In vivo genome editing using a high-efficiency TALEN system.
        Nature. 2012; 491: 114-118
        • Gupta A.
        • Christensen R.G.
        • Rayla A.L.
        • Lakshmanan A.
        • Stormo G.D.
        • Wolfe S.A.
        An optimized two-finger archive for ZFN-mediated gene targeting.
        Nat Methods. 2012; 9: 588-590
        • Hwang W.Y.
        • Fu Y.
        • Reyon D.
        • et al.
        Efficient genome editing in zebrafish using a CRISPR-Cas system.
        Nat Biotechnol. 2013; 31: 227-229
        • Pardo-Martin C.
        • Chang T.Y.
        • Koo B.K.
        • Gilleland C.L.
        • Wasserman S.C.
        • Yanik M.F.
        High-throughput in vivo vertebrate screening.
        Nat Methods. 2010; 7: 634-636
        • Gehrig J.
        • Reischl M.
        • Kalmar E.
        • et al.
        Automated high-throughput mapping of promoter-enhancer interactions in zebrafish embryos.
        Nat Methods. 2009; 6: 911-916
        • Baker M.
        Screening: the age of fishes.
        Nat Methods. 2011; 8: 47-51
        • Kishi S.
        • Bayliss P.E.
        • Uchiyama J.
        • et al.
        The identification of zebrafish mutants showing alterations in senescence-associated biomarkers.
        PLoS Genet. 2008; 4: e1000152
        • Jung T.
        • Bader N.
        • Grune T.
        Lipofuscin: formation, distribution, and metabolic consequences.
        Ann N Y Acad Sci. 2007; 1119: 97-111
        • Schmucker D.L.
        Age-related changes in liver structure and function: implications for disease?.
        Exp Gerontol. 2005; 40: 650-659
        • Berlett B.S.
        • Stadtman E.R.
        Protein oxidation in aging, disease, and oxidative stress.
        J Biol Chem. 1997; 272: 20313-20316
        • Poleo G.
        • Brown C.W.
        • Laforest L.
        • Akimenko M.A.
        Cell proliferation and movement during early fin regeneration in zebrafish.
        Dev Dyn. 2001; 221: 380-390
        • Zhdanova I.V.
        Melatonin as a hypnotic: pro.
        Sleep Med Rev. 2005; 9: 51-65
        • Martin G.M.
        Modalities of gene action predicted by the classical evolutionary biological theory of aging.
        Ann N Y Acad Sci. 2007; 1100: 14-20
        • Martin G.M.
        • Bergman A.
        • Barzilai N.
        Genetic determinants of human health span and life span: progress and new opportunities.
        PLoS Genet. 2007; 3: e125
        • Amsterdam A.
        • Nissen R.M.
        • Sun Z.
        • Swindell E.C.
        • Farrington S.
        • Hopkins N.
        Identification of 315 genes essential for early zebrafish development.
        Proc Natl Acad Sci U S A. 2004; 101: 12792-12797
        • Rando T.A.
        • Chang H.Y.
        Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock.
        Cell. 2012; 148: 46-57
        • Williams P.D.
        • Day T.
        Antagonistic pleiotropy, mortality source interactions, and the evolutionary theory of senescence.
        Evolution. 2003; 57: 1478-1488
        • Dimri G.P.
        • Lee X.
        • Basile G.
        • et al.
        A biomarker that identifies senescent human cells in culture and in aging skin in vivo.
        Proc Natl Acad Sci U S A. 1995; 92: 9363-9367
        • Cao L.
        • Li W.
        • Kim S.
        • Brodie S.G.
        • Deng C.X.
        Senescence, aging, and malignant transformation mediated by p53 in mice lacking the Brca1 full-length isoform.
        Genes Dev. 2003; 17: 201-213
        • Keyes W.M.
        • Wu Y.
        • Vogel H.
        • Guo X.
        • Lowe S.W.
        • Mills A.A.
        p63 Deficiency activates a program of cellular senescence and leads to accelerated aging.
        Genes Dev. 2005; 19: 1986-1999
        • Valenzano D.R.
        • Terzibasi E.
        • Cattaneo A.
        • Domenici L.
        • Cellerino A.
        Temperature affects longevity and age-related locomotor and cognitive decay in the short-lived fish Nothobranchius furzeri.
        Aging Cell. 2006; 5: 275-278
        • Kishi S.
        Functional aging and gradual senescence in zebrafish.
        Ann N Y Acad Sci. 2004; 1019: 521-526
        • Kishi S.
        Zebrafish as aging models.
        in: Conn M. Handbook of models for human aging. Elsevier Academic Press, New York2006: 317-338
        • Finch C.E.
        • Kirkwood T.B.L.
        Chance, development, and aging.
        Oxford University Press, New York2000
        • Bateson P.
        • Barker D.
        • Clutton-Brock T.
        • et al.
        Developmental plasticity and human health.
        Nature. 2004; 430: 419-421
        • Vaiserman A.
        Early-life origin of adult disease: evidence from natural experiments.
        Exp Gerontol. 2011; 46: 189-192
        • Barker D.J.
        The developmental origins of adult disease.
        J Am Coll Nutr. 2004; 23: 588S-595S
        • Calvanese V.
        • Lara E.
        • Kahn A.
        • Fraga M.F.
        The role of epigenetics in aging and age-related diseases.
        Ageing Res Rev. 2009; 8: 268-276
        • Budovskaya Y.V.
        • Wu K.
        • Southworth L.K.
        • et al.
        An elt-3/elt-5/elt-6 GATA transcription circuit guides aging in C. elegans.
        Cell. 2008; 134: 291-303
        • Martin G.M.
        Epigenetic drift in aging identical twins.
        Proc Natl Acad Sci U S A. 2005; 102: 10413-10414
        • Martin G.M.
        Epigenetic gambling and epigenetic drift as an antagonistic pleiotropic mechanism of aging.
        Aging Cell. 2009; 8: 761-764
        • Amsterdam A.
        • Sadler K.C.
        • Lai K.
        • et al.
        Many ribosomal protein genes are cancer genes in zebrafish.
        PLoS Biol. 2004; 2: e139
        • Spitsbergen J.M.
        • Buhler D.R.
        • Peterson T.S.
        Neoplasia and neoplasm-associated lesions in laboratory colonies of zebrafish emphasizing key influences of diet and aquaculture system design.
        ILAR J. 2012; 53: 114-125
        • DePinho R.A.
        The age of cancer.
        Nature. 2000; 408: 248-254
        • Takahashi K.
        • Yamanaka S.
        Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.
        Cell. 2006; 126: 663-676
        • Okita K.
        • Ichisaka T.
        • Yamanaka S.
        Generation of germline-competent induced pluripotent stem cells.
        Nature. 2007; 448: 313-317
        • Takahashi K.
        • Tanabe K.
        • Ohnuki M.
        • et al.
        Induction of pluripotent stem cells from adult human fibroblasts by defined factors.
        Cell. 2007; 131: 861-872
        • Banito A.
        • Rashid S.T.
        • Acosta J.C.
        • et al.
        Senescence impairs successful reprogramming to pluripotent stem cells.
        Genes Dev. 2009; 23: 2134-2139
        • Hayflick L.
        Entropy explains aging, genetic determinism explains longevity, and undefined terminology explains misunderstanding both.
        PLoS Genet. 2007; 3: e220
        • Hershey D.
        Entropy, basal metabolism and life expectancy.
        Gerontologia. 1963; 68: 245-250
        • Koshimizu E.
        • Imamura S.
        • Qi J.
        • et al.
        Embryonic senescence and laminopathies in a progeroid zebrafish model.
        PLoS One. 2011; 6: e17688
        • Meshorer E.
        • Gruenbaum Y.
        Gone with the Wnt/Notch: stem cells in laminopathies, progeria, and aging.
        J Cell Biol. 2008; 181: 9-13
        • Constantinescu D.
        • Gray H.L.
        • Sammak P.J.
        • Schatten G.P.
        • Csoka A.B.
        Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation.
        Stem Cells. 2006; 24: 177-185
        • Zuo B.
        • Yang J.
        • Wang F.
        • et al.
        Influences of lamin A levels on induction of pluripotent stem cells.
        Biol Open. 2012; 1: 1118-1127
        • Espada J.
        • Varela I.
        • Flores I.
        • et al.
        Nuclear envelope defects cause stem cell dysfunction in premature-aging mice.
        J Cell Biol. 2008; 181: 27-35
        • Scaffidi P.
        • Misteli T.
        Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing.
        Nat Cell Biol. 2008; 10: 452-459
        • Hernandez L.
        • Roux K.J.
        • Wong E.S.
        • et al.
        Functional coupling between the extracellular matrix and nuclear lamina by Wnt signaling in progeria.
        Dev Cell. 2010; 19: 413-425
        • Arancio W.
        A bioinformatics analysis of lamin-A regulatory network: a perspective on epigenetic involvement in Hutchinson-Gilford progeria syndrome.
        Rejuv Res. 2012; 15: 123-127
        • Shumaker D.K.
        • Dechat T.
        • Kohlmaier A.
        • et al.
        Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging.
        Proc Natl Acad Sci U S A. 2006; 103: 8703-8708
        • Melcer S.
        • Hezroni H.
        • Rand E.
        • et al.
        Histone modifications and lamin A regulate chromatin protein dynamics in early embryonic stem cell differentiation.
        Nat Commun. 2012; 3: 910
        • Osorio F.G.
        • Varela I.
        • Lara E.
        • et al.
        Nuclear envelope alterations generate an aging-like epigenetic pattern in mice deficient in Zmpste24 metalloprotease.
        Aging Cell. 2010; 9: 947-957
        • van Engelen B.G.
        • Muchir A.
        • Hutchison C.J.
        • van der Kooi A.J.
        • Bonne G.
        • Lammens M.
        The lethal phenotype of a homozygous nonsense mutation in the lamin A/C gene.
        Neurology. 2005; 64: 374-376
        • De Sandre-Giovannoli A.
        • Levy N.
        Altered splicing in prelamin A-associated premature aging phenotypes.
        Prog Mol Subcell Biol. 2006; 44: 199-232
        • Rodriguez J.I.
        • Perez-Alonso P.
        • Funes R.
        • Perez-Rodriguez J.
        Lethal neonatal Hutchinson-Gilford progeria syndrome.
        Am J Med Genet. 1999; 82: 242-248
        • Zwaan B.J.
        Linking development and aging.
        Sci Aging Knowledge Environ. 2003; : e32
        • Imamura S.
        • Kishi S.
        Molecular cloning and functional characterization of zebrafish ATM.
        Int J Biochem Cell Biol. 2005; 37: 1105-1116
        • Imamura S.
        • Uchiyama J.
        • Koshimizu E.
        • et al.
        A non-canonical function of zebrafish telomerase reverse transcriptase is required for developmental hematopoiesis.
        PLoS One. 2008; 3: e3364
        • Stenkamp D.L.
        • Satterfield R.
        • Muhunthan K.
        • Sherpa T.
        • Vihtelic T.S.
        • Cameron D.A.
        Age-related cone abnormalities in zebrafish with genetic lesions in sonic Hedgehog.
        Invest Ophthalmol Vis Sci. 2008; 49: 4631-4640
        • Brack A.S.
        • Conboy M.J.
        • Roy S.
        • et al.
        Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis.
        Science. 2007; 317: 807-810
        • Liu H.
        • Fergusson M.M.
        • Castilho R.M.
        • et al.
        Augmented Wnt signaling in a mammalian model of accelerated aging.
        Science. 2007; 317: 803-806
        • Essers M.A.
        • de Vries-Smits L.M.
        • Barker N.
        • Polderman P.E.
        • Burgering B.M.
        • Korswagen H.C.
        Functional interaction between beta-catenin and FOXO in oxidative stress signaling.
        Science. 2005; 308: 1181-1184
        • Pospisilik J.A.
        • Schramek D.
        • Schnidar H.
        • et al.
        Drosophila genome-wide obesity screen reveals Hedgehog as a determinant of brown versus white adipose cell fate.
        Cell. 2010; 140: 148-160
        • Yoon J.C.
        • Ng A.
        • Kim B.H.
        • Bianco A.
        • Xavier R.J.
        • Elledge S.J.
        Wnt signaling regulates mitochondrial physiology and insulin sensitivity.
        Genes Dev. 2010; 24: 1507-1518
        • Neureiter D.
        New in Hedgehog signaling: a possible role in aging, and chronic degenerative and inflammatory diseases?.
        Bioessays. 2012; 34 (Comment on DOI 10.1002/bies.201200049): 828-829
        • Dashti M.
        • Peppelenbosch M.P.
        • Rezaee F.
        Hedgehog signalling as an antagonist of ageing and its associated diseases.
        Bioessays. 2012; 34: 849-856
        • Kuro-o M.
        • Matsumura Y.
        • Aizawa H.
        • et al.
        Mutation of the mouse Klotho gene leads to a syndrome resembling ageing.
        Nature. 1997; 390: 45-51
        • Kurosu H.
        • Yamamoto M.
        • Clark J.D.
        • et al.
        Suppression of aging in mice by the hormone Klotho.
        Science. 2005; 309: 1829-1833
        • DeCarolis N.A.
        • Wharton Jr., K.A.
        • Eisch A.J.
        Which way does the Wnt blow? Exploring the duality of canonical Wnt signaling on cellular aging.
        Bioessays. 2008; 30: 102-106
        • Hoffmeyer K.
        • Raggioli A.
        • Rudloff S.
        • et al.
        Wnt/beta-catenin signaling regulates telomerase in stem cells and cancer cells.
        Science. 2012; 336: 1549-1554
        • Park J.I.
        • Venteicher A.S.
        • Hong J.Y.
        • et al.
        Telomerase modulates Wnt signalling by association with target gene chromatin.
        Nature. 2009; 460: 66-72
        • Jaskelioff M.
        • Muller F.L.
        • Paik J.H.
        • et al.
        Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice.
        Nature. 2011; 469: 102-106
        • Loffredo F.S.
        • Steinhauser M.L.
        • Jay S.M.
        • et al.
        Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy.
        Cell. 2013; 153: 828-839
        • Rose M.R.
        • Burke M.R.
        Genomic croesus: experimental evolutionary genetics of Drosophila aging.
        Exp Gerontol. 2011; 46: 397-403
        • Gill M.S.
        • Olsen A.
        • Sampayo J.N.
        • Lithgow G.J.
        An automated high-throughput assay for survival of the nematode Caenorhabditis elegans.
        Free Radic Biol Med. 2003; 35: 558-565