Advertisement

Microvesicles as mediators of tissue regeneration

  • Keith Sabin
    Affiliations
    Stem Cell Institute, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minn
    Search for articles by this author
  • Nobuaki Kikyo
    Correspondence
    Reprint requests: Nobuaki Kikyo, Stem Cell Institute, MTRF Room 2-216, University of Minnesota, 2001 6th Street SE, Minneapolis, MN 55455
    Affiliations
    Stem Cell Institute, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minn
    Search for articles by this author
Published:November 13, 2013DOI:https://doi.org/10.1016/j.trsl.2013.10.005
      The use of stem cells in the treatment of various diseases and injuries has received increasing interest during the past decade. Injected stem cells, such as mesenchymal stem cells, stimulate tissue repair largely through the secretion of soluble factors that regulate various processes of tissue regeneration, including inflammatory responses, apoptosis, host cell proliferation, and angiogenesis. Recently, it has become apparent that stem cells also use membranous small vesicles, collectively called microvesicles, to repair damaged tissues. Microvesicles are released by many types of cells and exist in almost all types of body fluids. They serve as a vehicle to transfer protein, messenger RNA, and micro RNA to distant cells, altering the gene expression, proliferation, and differentiation of the recipient cells. Although animal models and in vitro studies have suggested promising applications for microvesicles-based regeneration therapy, its effectiveness and feasibility in clinical medicine remain to be established. Further studies of the basic mechanisms responsible for microvesicle-mediated tissue regeneration could lead to novel approaches in regenerative medicine.

      Abbreviations:

      AKI (Acute kidney injury), BrdU (5-Bromo-2′-deoxyuridine), CPC (Cardiomyocyte progenitor cell), EGFRvIII (Epidermal growth factor receptor variant III), EPC (Endothelial progenitor cell), EPC-MVs (Endothelial progenitor cell-derived microvesicles), ERK (Extracellular regulated kinase), ESC (Embryonic stem cell), ESC-MVs (Microvesicles released from embryonic stem cells), HLSC (Human liver stem cell), HLSC-MVs (Human liver stem cell-derived microvesicles), Hsp (Heat shock protein), iPSC (Induced pluripotent stem cell), miRNA (MicroRNA), mRNA (Messenger RNA), MSC (Mesenchymal stem cell), MSC-MVs (Microvesicles released by mesenchymal stem cells), MV (Microvesicle), MVB (Multivesicular body), siRNA (Short interfering RNA), TGF-β (Transforming growth factor β)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mathivanan S.
        • Ji H.
        • Simpson R.J.
        Exosomes: Extracellular organelles important in intercellular communication.
        J Proteomics. 2010; 73: 1907-1920
        • Simons M.
        • Raposo G.
        Exosomes: vesicular carriers for intercellular communication.
        Curr Opin Cell Biol. 2009; 21: 575-581
        • Gyorgy B.
        • Szabo T.G.
        • Pasztoi M.
        • et al.
        Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles.
        Cell Mol Life Sci. 2011; 68: 2667-2688
        • Vlassov A.V.
        • Magdaleno S.
        • Setterquist R.
        • Conrad R.
        Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials.
        Biochim Biophys Acta. 2012; 1820: 940-948
        • Record M.
        • Subra C.
        • Silvente-Poirot S.
        • Poirot M.
        Exosomes as intercellular signalosomes and pharmacological effectors.
        Biochem Pharmacol. 2011; 81: 1171-1182
        • Pant S.
        • Hilton H.
        • Burczynski M.E.
        The multifaceted exosome: biogenesis, role in normal and aberrant cellular function, and frontiers for pharmacological and biomarker opportunities.
        Biochem Pharmacol. 2012; 83: 1484-1494
        • Gagescu R.
        • Demaurex N.
        • Parton R.G.
        • Hunziker W.
        • Huber L.A.
        • Gruenberg J.
        The recycling endosome of Madin-Darby canine kidney cells is a mildly acidic compartment rich in raft components.
        Mol Biol Cell. 2000; 11: 2775-2791
        • Fullekrug J.
        • Simons K.
        Lipid rafts and apical membrane traffic.
        Ann N Y Acad Sci. 2004; 1014: 164-169
        • Leitinger B.
        • Hogg N.
        The involvement of lipid rafts in the regulation of integrin function.
        J Cell Sci. 2002; 115: 963-972
        • Del Conde I.
        • Cruz M.A.
        • Zhang H.
        • Lopez J.A.
        • Afshar-Kharghan V.
        Platelet activation leads to activation and propagation of the complement system.
        J Exp Med. 2005; 201: 871-879
        • Piccin A.
        • Murphy W.G.
        • Smith O.P.
        Circulating microparticles: pathophysiology and clinical implications.
        Blood Rev. 2007; 21: 157-171
        • Dale G.L.
        • Remenyi G.
        • Friese P.
        Tetraspanin CD9 is required for microparticle release from coated-platelets.
        Platelets. 2009; 20: 361-366
        • Caby M.P.
        • Lankar D.
        • Vincendeau-Scherrer C.
        • Raposo G.
        • Bonnerot C.
        Exosomal-like vesicles are present in human blood plasma.
        Int Immunol. 2005; 17: 879-887
        • Simpson R.J.
        • Lim J.W.
        • Moritz R.L.
        • Mathivanan S.
        Exosomes: proteomic insights and diagnostic potential.
        Exp Rev Proteomics. 2009; 6: 267-283
      1. http://exocarta.org/#.

        • Abusamra A.J.
        • Zhong Z.
        • Zheng X.
        • et al.
        Tumor exosomes expressing Fas ligand mediate CD8+ T-cell apoptosis.
        Blood Cells Mol Dis. 2005; 35: 169-173
        • Andreola G.
        • Rivoltini L.
        • Castelli C.
        • et al.
        Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles.
        J Exp Med. 2002; 195: 1303-1316
        • Huber V.
        • Fais S.
        • Iero M.
        • et al.
        Human colorectal cancer cells induce T-cell death through release of proapoptotic microvesicles: role in immune escape.
        Gastroenterology. 2005; 128: 1796-1804
        • Skog J.
        • Wurdinger T.
        • van Rijn S.
        • et al.
        Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers.
        Nat Cell Biol. 2008; 10: 1470-1476
        • Al-Nedawi K.
        • Meehan B.
        • Micallef J.
        • et al.
        Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells.
        Nat Cell Biol. 2008; 10: 619-624
        • Ramachandran S.
        • Palanisamy V.
        Horizontal transfer of RNAs: exosomes as mediators of intercellular communication.
        Wiley Interdiscip Rev RNA. 2012; 3: 286-293
        • Mittelbrunn M.
        • Gutierrez-Vazquez C.
        • Villarroya-Beltri C.
        • et al.
        Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells.
        Nat Commun. 2011; 2: 282
        • Cantaluppi V.
        • Gatti S.
        • Medica D.
        • et al.
        Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells.
        Kidney Int. 2012; 82: 412-427
        • Collino F.
        • Deregibus M.C.
        • Bruno S.
        • et al.
        Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs.
        PLoS One. 2010; 5: e11803
        • Chen T.S.
        • Lai R.C.
        • Lee M.M.
        • Choo A.B.
        • Lee C.N.
        • Lim S.K.
        Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs.
        Nucl Acids Res. 2010; 38: 215-224
        • Yuan A.
        • Farber E.L.
        • Rapoport A.L.
        • et al.
        Transfer of microRNAs by embryonic stem cell microvesicles.
        PLoS One. 2009; 4: e4722
        • Thomson J.A.
        • Itskovitz-Eldor J.
        • Shapiro S.S.
        • et al.
        Embryonic stem cell lines derived from human blastocysts.
        Science. 1998; 282: 1145-1147
        • Takahashi K.
        • Yamanaka S.
        Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.
        Cell. 2006; 126: 663-676
        • Smith A.G.
        Embryo-derived stem cells: of mice and men.
        Annu Rev Cell Dev Biol. 2001; 17: 435-462
        • Dominici M.
        • Le Blanc K.
        • Mueller I.
        • et al.
        Minimal criteria for defining multipotent mesenchymal stromal cells: the International Society for Cellular Therapy position statement.
        Cytotherapy. 2006; 8: 315-317
      2. clinicaltrials.gov.

        • Wang S.
        • Qu X.
        • Zhao R.C.
        Clinical applications of mesenchymal stem cells.
        J Hematol Oncol. 2012; 5: 19
        • Lavoie J.R.
        • Rosu-Myles M.
        Uncovering the secretes of mesenchymal stem cells.
        Biochimie. 2013; 12: 2212-2221
        • Quesenberry P.J.
        • Aliotta J.M.
        The paradoxical dynamism of marrow stem cells: considerations of stem cells, niches, and microvesicles.
        Stem Cell Rev. 2008; 4: 137-147
        • Kotton D.N.
        • Ma B.Y.
        • Cardoso W.V.
        • et al.
        Bone marrow-derived cells as progenitors of lung alveolar epithelium.
        Development. 2001; 128: 5181-5188
        • Ortiz L.A.
        • Gambelli F.
        • McBride C.
        • et al.
        Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects.
        Proc Natl Acad Sci U S A. 2003; 100: 8407-8411
        • Liu Y.
        • Yan X.
        • Sun Z.
        • et al.
        Flk-1+ adipose-derived mesenchymal stem cells differentiate into skeletal muscle satellite cells and ameliorate muscular dystrophy in mdx mice.
        Stem Cells Dev. 2007; 16: 695-706
        • Bi B.
        • Schmitt R.
        • Israilova M.
        • Nishio H.
        • Cantley L.G.
        Stromal cells protect against acute tubular injury via an endocrine effect.
        J Am Soc Nephrol. 2007; 18: 2486-2496
        • Duffield J.S.
        • Park K.M.
        • Hsiao L.L.
        • et al.
        Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells.
        J Clin Invest. 2005; 115: 1743-1755
        • Togel F.
        • Hu Z.
        • Weiss K.
        • Isaac J.
        • Lange C.
        • Westenfelder C.
        Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms.
        Am J Physiol Renal Physiol. 2005; 289: F31-F42
        • Chimenti I.
        • Smith R.R.
        • Li T.S.
        • et al.
        Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice.
        Circ Res. 2010; 106: 971-980
        • Gnecchi M.
        • He H.
        • Noiseux N.
        • et al.
        Evidence supporting paracrine hypothesis for AKT-modified mesenchymal stem cell-mediated cardiac protection and functional improvement.
        FASEB J. 2006; 20: 661-669
        • Timmers L.
        • Lim S.K.
        • Arslan F.
        • et al.
        Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium.
        Stem Cell Res. 2007; 1: 129-137
        • Bruno S.
        • Camussi G.
        Role of mesenchymal stem cell-derived microvesicles in tissue repair.
        Pediatr Nephrol. 2013; 12: 2249-2254
        • Camussi G.
        • Deregibus M.C.
        • Tetta C.
        Paracrine/endocrine mechanism of stem cells on kidney repair: role of microvesicle-mediated transfer of genetic information.
        Curr Opin Nephrol Hypertens. 2010; 19: 7-12
        • Dorronsoro A.
        • Robbins P.D.
        Regenerating the injured kidney with human umbilical cord mesenchymal stem cell-derived exosomes.
        Stem Cell Res Ther. 2013; 4: 39
        • Ratajczak M.Z.
        The emerging role of microvesicles in cellular therapies for organ/tissue regeneration.
        Nephrol Dial Transplant. 2011; 26: 1453-1456
        • Bruno S.
        • Grange C.
        • Deregibus M.C.
        • et al.
        Mesenchymal stem cell-derived microvesicles protect against acute tubular injury.
        J Am Soc Nephrol. 2009; 20: 1053-1067
        • Hata T.
        • Murakami K.
        • Nakatani H.
        • Yamamoto Y.
        • Matsuda T.
        • Aoki N.
        Isolation of bovine milk-derived microvesicles carrying mRNAs and microRNAs.
        Biochem Biophys Res Commun. 2010; 396: 528-533
        • Li L.
        • Zhu D.
        • Huang L.
        • et al.
        Argonaute 2 complexes selectively protect the circulating microRNAs in cell-secreted microvesicles.
        PLoS One. 2012; 7: e46957
        • Kosaka N.
        • Iguchi H.
        • Yoshioka Y.
        • Takeshita F.
        • Matsuki Y.
        • Ochiya T.
        Secretory mechanisms and intercellular transfer of microRNAs in living cells.
        J Biol Chem. 2010; 285: 17442-17452
        • Bruno S.
        • Grange C.
        • Collino F.
        • et al.
        Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury.
        PLoS One. 2012; 7: e33115
        • Zhou Y.
        • Xu H.
        • Xu W.
        • et al.
        Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro.
        Stem Cell Res Ther. 2013; 4: 34
        • Asahara T.
        • Murohara T.
        • Sullivan A.
        • et al.
        Isolation of putative progenitor endothelial cells for angiogenesis.
        Science. 1997; 275: 964-967
        • Zampetaki A.
        • Kirton J.P.
        • Xu Q.
        Vascular repair by endothelial progenitor cells.
        Cardiovasc Res. 2008; 78: 413-421
        • Deregibus M.C.
        • Cantaluppi V.
        • Calogero R.
        • et al.
        Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA.
        Blood. 2007; 110: 2440-2448
        • Borges F.T.
        • Melo S.A.
        • Ozdemir B.C.
        • et al.
        TGF-beta1-containing exosomes from injured epithelial cells activate fibroblasts to initiate tissue regenerative responses and fibrosis.
        J Am Soc Nephrol. 2013; 24: 385-392
        • Wang S.
        • Olson E.N.
        AngiomiRs: key regulators of angiogenesis.
        Curr Opin Genet Dev. 2009; 19: 205-211
        • Lai R.C.
        • Chen T.S.
        • Lim S.K.
        Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease.
        Regen Med. 2011; 6: 481-492
        • Mummery C.L.
        • Davis R.P.
        • Krieger J.E.
        Challenges in using stem cells for cardiac repair.
        Sci Transl Med. 2010; 2: 27ps17
        • Gnecchi M.
        • He H.
        • Liang O.D.
        • et al.
        Paracrine action accounts for marked protection of ischemic heart by AKT-modified mesenchymal stem cells.
        Nat Med. 2005; 11: 367-368
        • Lai R.C.
        • Arslan F.
        • Lee M.M.
        • et al.
        Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury.
        Stem Cell Res. 2010; 4: 214-222
        • Lai R.C.
        • Choo A.
        • Lim S.K.
        Derivation and characterization of human ESC-derived mesenchymal stem cells.
        Methods Mol Biol. 2011; 698: 141-150
        • Vrijsen K.R.
        • Sluijter J.P.
        • Schuchardt M.W.
        • et al.
        Cardiomyocyte progenitor cell-derived exosomes stimulate migration of endothelial cells.
        J Cell Mol Med. 2010; 14: 1064-1070
        • Guan K.
        • Hasenfuss G.
        Do stem cells in the heart truly differentiate into cardiomyocytes?.
        J Mol Cell Cardiol. 2007; 43: 377-387
        • Aguirre A.
        • Sancho-Martinez I.
        • Izpisua Belmonte J.C.
        Reprogramming toward heart regeneration: stem cells and beyond.
        Cell Stem Cell. 2013; 12: 275-284
        • Beltrami A.P.
        • Barlucchi L.
        • Torella D.
        • et al.
        Adult cardiac stem cells are multipotent and support myocardial regeneration.
        Cell. 2003; 114: 763-776
        • Sidhu S.S.
        • Mengistab A.T.
        • Tauscher A.N.
        • LaVail J.
        • Basbaum C.
        The microvesicle as a vehicle for emmprin in tumor-stromal interactions.
        Oncogene. 2004; 23: 956-963
        • Belton Jr., R.J.
        • Chen L.
        • Mesquita F.S.
        • Nowak R.A.
        Basigin-2 is a cell surface receptor for soluble basigin ligand.
        J Biol Chem. 2008; 283: 17805-17814
        • Li T.
        • Yan Y.
        • Wang B.
        • et al.
        Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis.
        Stem Cells Dev. 2013; 22: 845-854
        • Herrera M.B.
        • Fonsato V.
        • Gatti S.
        • et al.
        Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized rats.
        J Cell Mol Med. 2010; 14: 1605-1618
        • Xin H.
        • Li Y.
        • Buller B.
        • et al.
        Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth.
        Stem Cells. 2012; 30: 1556-1564
        • Yu Y.M.
        • Gibbs K.M.
        • Davila J.
        • et al.
        MicroRNA miR-133b is essential for functional recovery after spinal cord injury in adult zebrafish.
        Eur J Neurosci. 2011; 33: 1587-1597
        • Ratajczak J.
        • Miekus K.
        • Kucia M.
        • et al.
        Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery.
        Leukemia. 2006; 20: 847-856
        • Calabrese J.M.
        • Seila A.C.
        • Yeo G.W.
        • Sharp P.A.
        RNA sequence analysis defines Dicer’s role in mouse embryonic stem cells.
        Proc Natl Acad Sci U S A. 2007; 104: 18097-18102
        • Miyoshi N.
        • Ishii H.
        • Nagano H.
        • et al.
        Reprogramming of mouse and human cells to pluripotency using mature microRNAs.
        Cell Stem Cell. 2011; 8: 633-638
        • Katsman D.
        • Stackpole E.J.
        • Domin D.R.
        • Farber D.B.
        Embryonic stem cell-derived microvesicles induce gene expression changes in Müller cells of the retina.
        PLoS One. 2012; 7: e50417
        • Bobrie A.
        • Krumeich S.
        • Reyal F.
        • et al.
        Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression.
        Cancer Res. 2012; 72: 4920-4930
        • Ostrowski M.
        • Carmo N.B.
        • Krumeich S.
        • et al.
        Rab27a and Rab27b control different steps of the exosome secretion pathway.
        Nat Cell Biol. 2010; 12: 19-30
        • Islam A.
        • Shen X.
        • Hiroi T.
        • Moss J.
        • Vaughan M.
        • Levine S.J.
        The brefeldin A-inhibited guanine nucleotide-exchange protein, BIG2, regulates the constitutive release of TNFR1 exosome-like vesicles.
        J Biol Chem. 2007; 282: 9591-9599
        • Kooijmans S.A.
        • Vader P.
        • van Dommelen S.M.
        • van Solinge W.W.
        • Schiffelers R.M.
        Exosome mimetics: a novel class of drug delivery systems.
        Int J Nanomed. 2012; 7: 1525-1541
        • Marcus M.E.
        • Leonard J.N.
        Fedexosomes: engineering therapeutic biological nanoparticles that truly deliver.
        Pharmaceuticals (Basel). 2013; 6: 659-680
        • Alvarez-Erviti L.
        • Seow Y.
        • Yin H.
        • Betts C.
        • Lakhal S.
        • Wood M.J.
        Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes.
        Nat Biotechnol. 2011; 29: 341-345
        • Hartman Z.C.
        • Wei J.
        • Glass O.K.
        • et al.
        Increasing vaccine potency through exosome antigen targeting.
        Vaccine. 2011; 29: 9361-9367
        • Ohno S.
        • Takanashi M.
        • Sudo K.
        • et al.
        Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells.
        Mol Ther. 2013; 21: 185-191
        • Sancho-Martinez I.
        • Baek S.H.
        • Izpisua Belmonte J.C.
        Lineage conversion methodologies meet the reprogramming toolbox.
        Nat Cell Biol. 2012; 14: 892-899
        • Inagawa K.
        • Miyamoto K.
        • Yamakawa H.
        • et al.
        Induction of cardiomyocyte-like cells in infarct hearts by gene transfer of Gata4, Mef2c, and Tbx5.
        Circ Res. 2012; 111: 1147-1156
        • Qian L.
        • Huang Y.
        • Spencer C.I.
        • et al.
        In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes.
        Nature. 2012; 485: 593-598
        • Song K.
        • Nam Y.J.
        • Luo X.
        • et al.
        Heart repair by reprogramming non-myocytes with cardiac transcription factors.
        Nature. 2012; 485: 599-604
        • Zhou Q.
        • Brown J.
        • Kanarek A.
        • Rajagopal J.
        • Melton D.A.
        In vivo reprogramming of adult pancreatic exocrine cells to beta-cells.
        Nature. 2008; 455: 627-632