Advertisement
In-Depth Review: Zebrafish as a Model Organism for Translational Research Review Article| Volume 163, ISSUE 2, P65-78, February 2014

Download started.

Ok

Zebrafish approaches enhance the translational research tackle box

Published:November 04, 2013DOI:https://doi.org/10.1016/j.trsl.2013.10.007
      During the past few decades, zebrafish (Danio rerio) have been a workhorse for developmental biology and genetics. Concurrently, zebrafish have proved highly accessible and effective for translational research by providing a vertebrate animal model useful for gene discovery, disease modeling, chemical genetic screening, and other medically relevant studies. Key resources such as an annotated and complete genome sequence, and diverse tools for genetic manipulation continue to spur broad use of zebrafish. Thus, the purpose of this introductory review is to provide a window into the unique characteristics and diverse uses of zebrafish and to highlight in particular the increasing relevance of zebrafish as a translational animal model. This is accomplished by reviewing broad considerations of anatomic and physiological conservation, approaches for disease modeling and creation, general laboratory methods, genetic tools, genome conservation, and diverse opportunities for functional validation. Additional commentary throughout the review also guides the reader to the 4 new reviews found elsewhere in this special issue that showcase the many unique ways the zebrafish is improving understanding of renal regeneration, mitochondrial disease, dyslipidemia, and aging, for example. With many other possible approaches and a rapidly increasing number of medically relevant reports, zebrafish approaches enhance significantly the tools available for translational research and are actively improving the understanding of human disease.

      Abbreviations:

      cDNA (complementary DNA), dpf (days post fertilization), ISH (in situ hybridization), GFP (green fluorescent protein), KD (knockdown), KO (knockout), MO (morpholino), mRNA (messenger RNA), ZFIN (the Zebrafish Model Organism Database), ZIRC (Zebrafish International Resource Center)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Evans R.M.
        • Swanson L.
        • Rosenfeld M.G.
        Creation of transgenic animals to study development and as models for human disease.
        Recent Prog Hormone Res. 1985; 41: 317-337
        • Geurts A.M.
        • Cost G.J.
        • Freyvert Y.
        • et al.
        Knockout rats via embryo microinjection of zinc-finger nucleases.
        Science. 2009; 325: 433
        • Clark K.J.
        • Argue D.P.
        • Petzold A.M.
        • Ekker S.C.
        zfishbook: connecting you to a world of zebrafish revertible mutants.
        Nucl Acid Res. 2012; 40: D907-D911
        • Kimmel C.B.
        • Ballard W.W.
        • Kimmel S.R.
        • Ullmann B.
        • Schilling T.F.
        Stages of embryonic development of the zebrafish.
        Develop Dynamics. 1995; 203: 253-310
        • Pugach E.K.
        • Li P.
        • White R.
        • Zon L.
        Retro-orbital injection in adult zebrafish.
        J Visual Exp. 2009; 34: 1645
        • White R.M.
        • Sessa A.
        • Burke C.
        • et al.
        Transparent adult zebrafish as a tool for in vivo transplantation analysis.
        Cell Stem Cell. 2008; 2: 183-189
        • Kishi S.
        Using zebrafish models to explore genetic and epigenetic impacts on evolutionary developmental origins of aging.
        Transl Res. 2013; : 123-135
        • Fang L.
        • Liu C.
        • Miller Y.I.
        Zebrafish models of dyslipidemia: relevance to atherosclerosis and angiogenesis.
        Transl Res. 2013; : 99-108
        • Steele S.L.
        • Prykhozhij S.V.
        • Berman J.N.
        Zebrafish as a model system for mitochondrial biology and diseases.
        Transl Res. 2013; : 79-98
        • McCampbell K.K.
        • Wingert R.A.
        New tides: using zebrafish to study renal regeneration.
        Transl Res. 2013; : 109-122
        • Ali S.
        • Champagne D.L.
        • Spaink H.P.
        • Richardson M.K.
        Zebrafish embryos and larvae: a new generation of disease models and drug screens.
        Birth Defects Research C Embryo Today. 2011; 93: 115-133
        • Fraysse B.
        • Mons R.
        • Garric J.
        Development of a zebrafish 4-day embryo-larval bioassay to assess toxicity of chemicals.
        Ecotoxicol Environ Safety. 2006; 63: 253-267
        • Zeddies D.
        • Fay R.
        Development of the acoustically evoked behavioral response in zebrafish to pure tones.
        J Exp Biol. 2005; 208: 1363-1372
        • Brockerhoff S.E.
        • Hurley J.B.
        • Janssen-Bienhold U.
        • Neuhauss S.C.
        • Driever W.
        • Dowling J.E.
        A behavioral screen for isolating zebrafish mutants with visual system defects.
        Proc Natl Acad Sci U S A. 1995; 92: 10545-10549
        • Flemming A.
        Zebrafish as an alternative model organism for disease modelling and drug discovery: implications for the 3Rs.
        NC3RS Newsletter. 2007; 10 (Available at: http://www.nc3rs.org.uk/news.asp?id=421): 1-7
        • Deo R.C.
        • MacRae C.A.
        The zebrafish: scalable in vivo modeling for systems biology.
        Systems Biol Med. 2011; 3: 335-346
        • Lieschke G.J.
        • Currie P.D.
        Animal models of human disease: zebrafish swim into view.
        Nat Rev Genet. 2007; 8: 353-367
        • Bandmann O.
        • Burton E.A.
        Genetic zebrafish models of neurodegenerative diseases.
        Neurobiol Dis. 2010; 40: 58-65
        • Barut B.A.
        • Zon L.I.
        Realizing the potential of zebrafish as a model for human disease.
        Physiol Genomics. 2000; 2: 49-51
        • Cui C.
        • Benard E.L.
        • Kanwal Z.
        • et al.
        Infectious disease modeling and innate immune function in zebrafish embryos.
        Methods Cell Biol. 2011; 105: 273-308
        • Dahm R.
        • Geisler R.
        Learning from small fry: the zebrafish as a genetic model organism for aquaculture fish species.
        Mar Biotechnol (NY). 2006; 8: 329-345
        • Goldsmith J.R.
        • Jobin C.
        Think small: zebrafish as a model system of human pathology.
        J Biomed Biotechnol. 2012; 2012: 1-12
        • Hsu C.H.
        • Wen Z.H.
        • Lin C.S.
        • Chakraborty C.
        The zebrafish model: use in studying cellular mechanisms for a spectrum of clinical disease entities.
        Curr Neurovasc Res. 2007; 4: 111-120
        • Santoriello C.
        • Zon L.I.
        Hooked! Modeling human disease in zebrafish.
        J Clin Invest. 2012; 122: 2337-2343
      1. Nüsslein-Volhard C, Dahm R. Zebrafish: a practical approach. In: Nüsslein-Volhard C, Dahm R, eds. Oxford: Oxford University Press; 2002, 1–303.

        • Rinkwitz S.
        • Mourrain P.
        • Becker T.S.
        Zebrafish: an integrative system for neurogenomics and neurosciences.
        Prog Neurobiol. 2011; 93: 231-243
        • Bretaud S.
        • Li Q.
        • Lockwood B.L.
        • Kobayashi K.
        • Lin E.
        • Guo S.
        A choice behavior for morphine reveals experience-dependent drug preference and underlying neural substrates in developing larval zebrafish.
        Neuroscience. 2007; 146: 1109-1116
        • Engeszer R.E.
        • Barbiano L.A.
        • Ryan M.J.
        • Parichy D.M.
        Timing and plasticity of shoaling behaviour in the zebrafish, Danio rerio.
        Anim Behav. 2007; 74: 1269-1275
        • Whitlock K.E.
        The sense of scents: olfactory behaviors in the zebrafish.
        Zebrafish. 2006; 3: 203-213
        • Williams F.E.
        • White D.
        • Messer W.S.
        A simple spatial alternation task for assessing memory function in zebrafish.
        Behav Processes. 2002; 58: 125-132
        • Meeker N.D.
        • Trede N.S.
        Immunology and zebrafish: spawning new models of human disease.
        Dev Comp Immunol. 2008; 32: 745-757
        • Lieschke G.J.
        Zebrafish: an emerging genetic model for the study of cytokines and hematopoiesis in the era of functional genomics.
        Int J Hematol. 2001; 73: 23-31
        • Novoa B.
        • Figueras A.
        Zebrafish: model for the study of inflammation and the innate immune response to infectious diseases.
        Adv Exp Med Biol. 2012; 946: 253-275
        • Lam S.H.
        • Chua H.L.
        • Gong Z.
        • Lam T.J.
        • Sin Y.M.
        Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study.
        Dev Comp Immunol. 2004; 28: 9-28
        • Langenau D.M.
        • Ferrando A.A.
        • Traver D.
        • et al.
        In vivo tracking of T cell development, ablation, and engraftment in transgenic zebrafish.
        Proc Natl Acad Sci U S A. 2004; 101: 7369-7374
        • Chen J.N.
        • Haffter P.
        • Odenthal J.
        • et al.
        Mutations affecting the cardiovascular system and other internal organs in zebrafish.
        Development. 1996; 123: 293-302
        • Chi N.C.
        • Shaw R.M.
        • Jungblut B.
        • et al.
        Genetic and physiologic dissection of the vertebrate cardiac conduction system.
        PLoS Biol. 2008; 6: e109
        • Yang J.
        • Xu X.
        Immunostaining of dissected zebrafish embryonic heart.
        J Visual Exp. 2012; 59: e3510
        • Becker J.R.
        • Deo R.C.
        • Werdich A.A.
        • Panakova D.
        • Coy S.
        • MacRae C.A.
        Human cardiomyopathy mutations induce myocyte hyperplasia and activate hypertrophic pathways during cardiogenesis in zebrafish.
        Dis Model Mechanism. 2011; 4: 400-410
        • Kamei M.
        • Isogai S.
        • Pan W.
        • Weinstein B.M.
        Imaging blood vessels in the zebrafish.
        Methods Cell Biol. 2010; 100: 27-54
        • Bennett C.M.
        • Kanki J.P.
        • Rhodes J.
        • et al.
        Myelopoiesis in the zebrafish, Danio rerio.
        Blood. 2001; 98: 643-651
        • Diep C.Q.
        • Ma D.
        • Deo R.C.
        • et al.
        Identification of adult nephron progenitors capable of kidney regeneration in zebrafish.
        Nature. 2011; 470: 95-100
        • Moss J.B.
        • Koustubhan P.
        • Greenman M.
        • Parsons M.J.
        • Walter I.
        • Moss L.G.
        Regeneration of the pancreas in adult zebrafish.
        Diabetes. 2009; 58: 1844-1851
        • Pack M.
        • Solnica-Krezel L.
        • Malicki J.
        • et al.
        Mutations affecting development of zebrafish digestive organs.
        Development. 1996; 123: 321-328
        • Chu J.
        • Sadler K.C.
        New school in liver development: lessons from zebrafish.
        Hepatology. 2009; 50: 1656-1663
        • Wang Z.
        • Du J.
        • Lam S.H.
        • Mathavan S.
        • Matsudaira P.
        • Gong Z.
        Morphological and molecular evidence for functional organization along the rostrocaudal axis of the adult zebrafish intestine.
        BMC Genomics. 2010; 11: 392
        • Li Q.
        • Uitto J.
        Zebrafish as a model system to study heritable skin diseases.
        Methods Mol Biol. 2013; 961: 411-424
        • Li Q.
        • Uitto J.
        Mineralization/anti-mineralization networks in the skin and vascular connective tissues.
        Am J Pathol. 2013; 183: 10-18
        • Li Q.
        • Frank M.
        • Thisse C.I.
        • Thisse B.V.
        • Uitto J.
        Zebrafish: a model system to study heritable skin diseases.
        J Invest Dermatol. 2011; 131: 565-571
        • Grunwald D.J.
        • Eisen J.S.
        Headwaters of the zebrafish: emergence of a new model vertebrate.
        Nat Rev Genet. 2002; 3: 717-724
        • McGonnell I.M.
        • Fowkes R.C.
        Fishing for gene function–endocrine modelling in the zebrafish.
        J Endocrinol. 2006; 189: 425-439
        • Lohr H.
        • Hammerschmidt M.
        Zebrafish in endocrine systems: recent advances and implications for human disease.
        Annu Rev Physiol. 2011; 73: 183-211
      2. Kent ML, Spitsbergen JM, Matthews JM, Fournie JW, Murray KN, Westerfield M. Diseases of zebrafish in research facilities. 2012. Available at: zebrafish.org/zirc/health/diseaseManual.php.

        • Kent M.L.
        • Bishop-Stewart J.K.
        • Matthews J.L.
        • Spitsbergen J.M.
        Pseudocapillaria tomentosa, a nematode pathogen, and associated neoplasms of zebrafish (Danio rerio) kept in research colonies.
        Comp Med. 2002; 52: 354-358
        • Matthews J.L.
        Common diseases of laboratory zebrafish.
        Methods Cell Biol. 2004; 77: 617-643
        • Smolowitz R.
        • Hanley J.
        • Richmond H.
        A three-year retrospective study of abdominal tumors in zebrafish maintained in an aquatic laboratory animal facility.
        Biol Bull. 2002; 203: 265-266
        • Langenau D.M.
        • Traver D.
        • Ferrando A.A.
        • et al.
        Myc-induced T cell leukemia in transgenic zebrafish.
        Science. 2003; 299: 887-890
        • Chablais F.
        • Veit J.
        • Rainer G.
        • Jazwinska A.
        The zebrafish heart regenerates after cryoinjury-induced myocardial infarction.
        BMC Dev Biol. 2011; 11: 21
        • Goldsmith J.R.
        • Cocchiaro J.L.
        • Rawls J.F.
        • Jobin C.
        Glafenine-induced intestinal injury in zebrafish is ameliorated by mu-opioid signaling via enhancement of Atf6-dependent cellular stress responses.
        Dis Model Mechanism. 2013; 6: 146-159
        • Haffter P.
        • Granato M.
        • Brand M.
        • et al.
        The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio.
        Development. 1996; 123: 1-36
        • Haffter P.
        • Nusslein-Volhard C.
        Large scale genetics in a small vertebrate, the zebrafish.
        Int J Dev Biol. 1996; 40: 221-227
        • Dodd A.
        • Curtis P.M.
        • Williams L.C.
        • Love D.R.
        Zebrafish: bridging the gap between development and disease.
        Human Mol Genet. 2000; 9: 2443-2449
        • Taylor A.M.
        • Zon L.I.
        Zebrafish tumor assays: the state of transplantation.
        Zebrafish. 2009; 6: 339-346
        • Berghmans S.
        • Jette C.
        • Langenau D.
        • et al.
        Making waves in cancer research: new models in the zebrafish.
        Biotechniques. 2005; 39: 227-237
        • Parng C.
        • Seng W.L.
        • Semino C.
        • McGrath P.
        Zebrafish: a preclinical model for drug screening.
        Assay Drug Dev Technol. 2002; 1: 41-48
        • Finley K.R.
        • Davidson A.E.
        • Ekker S.C.
        Three-color imaging using fluorescent proteins in living zebrafish embryos.
        Biotechniques. 2001; 31: 66-70
        • Burket C.T.
        • Montgomery J.E.
        • Thummel R.
        • et al.
        Generation and characterization of transgenic zebrafish lines using different ubiquitous promoters.
        Transgen Res. 2008; 17: 265-279
        • Udvadia A.J.
        • Linney E.
        Windows into development: historic, current, and future perspectives on transgenic zebrafish.
        Dev Biol. 2003; 256: 1-17
        • Livet J.
        • Weissman T.A.
        • Kang H.
        • et al.
        Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system.
        Nature. 2007; 450: 56-62
        • Clark K.J.
        • Urban M.D.
        • Skuster K.J.
        • Ekker S.C.
        Transgenic zebrafish using transposable elements.
        Methods Cell Biol. 2011; 104: 137-149
        • Howe D.G.
        • Bradford Y.M.
        • Conlin T.
        • et al.
        ZFIN, the Zebrafish Model Organism Database: increased support for mutants and transgenics.
        Nucl Acid Res. 2013; 41: D854-D860
        • Suster M.L.
        • Kikuta H.
        • Urasaki A.
        • Asakawa K.
        • Kawakami K.
        Transgenesis in zebrafish with the tol2 transposon system.
        Methods Mol Biol. 2009; 561: 41-63
        • Sivasubbu S.
        • Balciunas D.
        • Davidson A.E.
        • et al.
        Gene-breaking transposon mutagenesis reveals an essential role for histone H2afza in zebrafish larval development.
        Mechanisms Dev. 2006; 123: 513-529
        • Sun Y.
        • Wloga D.
        • Dougan S.T.
        Embryological manipulations in zebrafish.
        Methods Mol Biol. 2011; 770: 139-184
        • Li P.
        • White R.M.
        • Zon L.I.
        Transplantation in zebrafish.
        Methods Cell Biol. 2011; 105: 403-417
        • Pan Y.A.
        • Freundlich T.
        • Weissman T.A.
        • et al.
        Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish.
        Development. 2013; 140: 2835-2846
        • Pan Y.A.
        • Livet J.
        • Sanes J.R.
        • Lichtman J.W.
        • Schier A.F.
        Multicolor Brainbow imaging in zebrafish.
        Cold Spring Harbor Protocols. 2011; (pdb prot5546)
        • Pickart M.A.
        • Klee E.W.
        • Nielsen A.L.
        • et al.
        Genome-wide reverse genetics framework to identify novel functions of the vertebrate secretome.
        PLoS One. 2006; 1: e104
        • Fang L.
        • Green S.R.
        • Baek J.S.
        • et al.
        In vivo visualization and attenuation of oxidized lipid accumulation in hypercholesterolemic zebrafish.
        J Clin Invest. 2011; 121: 4861-4869
        • Cheng K.C.
        A life-span atlas for the zebrafish.
        Zebrafish. 2004; 1: 69
        • Canada B.A.
        • Thomas G.K.
        • Cheng K.C.
        • Wang J.Z.
        SHIRAZ: an automated histology image annotation system for zebrafish phenomics.
        Multimedia Tools Applications. 2011; 51: 401-440
        • Cheng K.C.
        • Xin X.
        • Clark D.P.
        • La Riviere P.
        Whole-animal imaging, gene function, and the Zebrafish Phenome Project.
        Curr Opin Genet Dev. 2011; 21: 620-629
        • Eames B.F.
        • Delaurier A.
        • Ullmann B.
        • et al.
        FishFace: interactive atlas of zebrafish craniofacial development at cellular resolution.
        BMC Dev Biol. 2013; 13: 23
        • Bird N.C.
        • Windner S.E.
        • Devoto S.H.
        Immunocytochemistry to study myogenesis in zebrafish.
        Methods Mol Biol. 2012; 798: 153-169
        • Shimoda H.
        • Isogai S.
        Immunohistochemical demonstration of lymphatic vessels in adult zebrafish.
        Acta Histochem Cytochem. 2012; 45: 335-341
        • Campos C.
        • Kamiya M.
        • Banala S.
        • Johnsson K.
        • Gonzalez-Gaitan M.
        Labelling cell structures and tracking cell lineage in zebrafish using SNAP-tag.
        Develop Dynamics. 2011; 240: 820-827
        • Bryson-Richardson R.J.
        • Berger S.
        • Schilling T.F.
        • et al.
        FishNet: an online database of zebrafish anatomy.
        BMC Biol. 2007; 5: 34
        • Cooper M.S.
        • D'Amico L.A.
        • Henry C.A.
        Confocal microscopic analysis of morphogenetic movements.
        Methods Cell Biol. 1999; 59: 179-204
        • Macdonald R.
        Zebrafish immunohistochemistry.
        Methods Mol Biol. 1999; 127: 77-88
      3. Zebrafish International Resource Center. Accessed September, 2013. Available at: http://zebrafish.org/.

        • Wienholds E.
        • Kloosterman W.P.
        • Miska E.
        • et al.
        MicroRNA expression in zebrafish embryonic development.
        Science. 2005; 309: 310-311
        • Stuckenholz C.
        • Lu L.
        • Thakur P.
        • Kaminski N.
        • Bahary N.
        FACS-assisted microarray profiling implicates novel genes and pathways in zebrafish gastrointestinal tract development.
        Gastroenterology. 2009; 137: 1321-1332
        • Thisse B.
        • Heyer V.
        • Lux A.
        • et al.
        Spatial and temporal expression of the zebrafish genome by large-scale in situ hybridization screening.
        Methods Cell Biol. 2004; 77: 505-519
        • Niethammer P.
        • Grabher C.
        • Look A.T.
        • Mitchison T.J.
        A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish.
        Nature. 2009; 459: 996-999
        • Zang L.
        • Shimada Y.
        • Nishimura Y.
        • Tanaka T.
        • Nishimura N.
        A novel, reliable method for repeated blood collection from aquarium fish.
        Zebrafish. 2013; 10: 425-432
        • Eames S.C.
        • Philipson L.H.
        • Prince V.E.
        • Kinkel M.D.
        Blood sugar measurement in zebrafish reveals dynamics of glucose homeostasis.
        Zebrafish. 2010; 7: 205-213
        • Jagadeeswaran P.
        • Liu Y.C.
        • Sheehan J.P.
        Analysis of hemostasis in the zebrafish.
        Methods Cell Biol. 1999; 59: 337-357
        • Jagadeeswaran P.
        • Sheehan J.P.
        Analysis of blood coagulation in the zebrafish.
        Blood Cell Mol Dis. 1999; 25: 239-249
        • Murtha J.M.
        • Qi W.
        • Keller E.T.
        Hematologic and serum biochemical values for zebrafish (Danio rerio).
        Comp Med. 2003; 53: 37-41
        • Pedroso G.L.
        • Hammes T.O.
        • Escobar T.D.
        • Fracasso L.B.
        • Forgiarini L.F.
        • da Silveira T.R.
        Blood collection for biochemical analysis in adult zebrafish.
        J Visual Exp. 2012; 63: e3865
        • Gupta T.
        • Mullins M.C.
        Dissection of organs from the adult zebrafish.
        J Visual Exp. 2010; 37: e1717
        • Schmitt C.E.
        • Holland M.B.
        • Jin S.W.
        Visualizing vascular networks in zebrafish: an introduction to microangiography.
        Methods Mol Biol. 2012; 843: 59-67
        • Chen E.
        • Hermanson S.
        • Ekker S.C.
        Syndecan-2 is essential for angiogenic sprouting during zebrafish development.
        Blood. 2004; 103: 1710-1719
        • Cocchiaro J.L.
        • Rawls J.F.
        Microgavage of zebrafish larvae.
        J Visual Exp. 2013; 72: e4434
        • Zang L.
        • Morikane D.
        • Shimada Y.
        • Tanaka T.
        • Nishimura N.
        A novel protocol for the oral administration of test chemicals to adult zebrafish.
        Zebrafish. 2011; 8: 203-210
        • Kinkel M.D.
        • Eames S.C.
        • Philipson L.H.
        • Prince V.E.
        Intraperitoneal injection into adult zebrafish.
        J Visual Exp. 2010; 42: e2126
        • Watanabe K.
        • Nishimura Y.
        • Nomoto T.
        • et al.
        In vivo assessment of the permeability of the blood-brain barrier and blood-retinal barrier to fluorescent indoline derivatives in zebrafish.
        BMC Neurosci. 2012; 13: 101
        • Xie J.
        • Farage E.
        • Sugimoto M.
        • Anand-Apte B.
        A novel transgenic zebrafish model for blood-brain and blood-retinal barrier development.
        BMC Dev Biol. 2010; 10: 76
        • Driever W.
        • Solnica-Krezel L.
        • Schier A.F.
        • et al.
        A genetic screen for mutations affecting embryogenesis in zebrafish.
        Development. 1996; 123: 37-46
        • Amsterdam A.
        • Burgess S.
        • Golling G.
        • et al.
        A large-scale insertional mutagenesis screen in zebrafish.
        Genes Dev. 1999; 13: 2713-2724
        • Amsterdam A.
        • Hopkins N.
        Mutagenesis strategies in zebrafish for identifying genes involved in development and disease.
        Trends Genet. 2006; 22: 473-478
        • Wienholds E.
        • Schulte-Merker S.
        • Walderich B.
        • Plasterk R.H.
        Target-selected inactivation of the zebrafish rag1 gene.
        Science. 2002; 297: 99-102
        • Russell W.L.
        • Kelly E.M.
        • Hunsicker P.R.
        • Bangham J.W.
        • Maddux S.C.
        • Phipps E.L.
        Specific-locus test shows ethylnitrosourea to be the most potent mutagen in the mouse.
        Proc Natl Acad Sci U S A. 1979; 76: 5818-5819
        • Patton E.E.
        • Zon L.I.
        The art and design of genetic screens: zebrafish.
        Nat Rev Genet. 2001; 2: 956-966
        • Varshney G.K.
        • Huang H.
        • Zhang S.
        • et al.
        The Zebrafish Insertion Collection (ZInC): a Web based, searchable collection of zebrafish mutations generated by DNA insertion.
        Nucl Acid Res. 2013; 41: D861-D864
      4. Zebrafish Mutation Project. Accessed September, 2013. Available at: http://www.sanger.ac.uk/Projects/D_rerio/zmp/.

        • Kettleborough R.N.
        • Busch-Nentwich E.M.
        • Harvey S.A.
        • et al.
        A systematic genome-wide analysis of zebrafish protein-coding gene function.
        Nature. 2013; 496: 494-497
        • Nasevicius A.
        • Ekker S.C.
        Effective targeted gene “knockdown” in zebrafish.
        Nat Genet. 2000; 26: 216-220
        • Ekker M.
        Saving zebrafish mutants.
        Bioessays. 1999; 21: 94-98
        • Talbot W.S.
        • Hopkins N.
        Zebrafish mutations and functional analysis of the vertebrate genome.
        Genes Dev. 2000; 14: 755-762
        • Diekmann H.
        • Anichtchik O.
        • Fleming A.
        • et al.
        Decreased BDNF levels are a major contributor to the embryonic phenotype of huntingtin knockdown zebrafish.
        J Neurosci. 2009; 29: 1343-1349
        • French V.M.
        • van de Laar I.M.
        • Wessels M.W.
        • et al.
        NPHP4 variants are associated with pleiotropic heart malformations.
        Circ Res. 2012; 110: 1564-1574
        • Ghosh A.K.
        • Murga-Zamalloa C.A.
        • Chan L.
        • Hitchcock P.F.
        • Swaroop A.
        • Khanna H.
        Human retinopathy-associated ciliary protein retinitis pigmentosa GTPase regulator mediates cilia-dependent vertebrate development.
        Human Mol Genet. 2010; 19: 90-98
        • Kabashi E.
        • Bercier V.
        • Lissouba A.
        • et al.
        FUS and TARDBP but not SOD1 interact in genetic models of amyotrophic lateral sclerosis.
        PLoS Genet. 2011; 7: e1002214
        • Kaiser D.M.
        • Acharya M.
        • Leighton P.L.
        • et al.
        Amyloid beta precursor protein and prion protein have a conserved interaction affecting cell adhesion and CNS development.
        PLoS One. 2012; 7: e51305
        • Kvarnung M.
        • Nilsson D.
        • Lindstrand A.
        • et al.
        A novel intellectual disability syndrome caused by GPI anchor deficiency due to homozygous mutations in PIGT.
        J Med Genet. 2013; 50: 521-528
        • Heuser A.
        • Plovie E.R.
        • Ellinor P.T.
        • et al.
        Mutant desmocollin-2 causes arrhythmogenic right ventricular cardiomyopathy.
        Am J Human Genet. 2006; 79: 1081-1088
        • Balciunas D.
        • Wangensteen K.J.
        • Wilber A.
        • et al.
        Harnessing a high cargo-capacity transposon for genetic applications in vertebrates.
        PLoS Genet. 2006; 2: e169
        • Kawakami K.
        Transgenesis and gene trap methods in zebrafish by using the Tol2 transposable element.
        Methods Cell Biol. 2004; 77: 201-222
        • Amsterdam A.
        Insertional mutagenesis in zebrafish: genes for development, genes for disease.
        Briefings Funct Genom Proteomics. 2006; 5: 19-23
        • Langenau D.M.
        • Feng H.
        • Berghmans S.
        • Kanki J.P.
        • Kutok J.L.
        • Look A.T.
        Cre/lox-regulated transgenic zebrafish model with conditional myc-induced T cell acute lymphoblastic leukemia.
        Proc Natl Acad Sci U S A. 2005; 102: 6068-6073
        • Hans S.
        • Kaslin J.
        • Freudenreich D.
        • Brand M.
        Temporally-controlled site-specific recombination in zebrafish.
        PLoS One. 2009; 4: e4640
        • Wienholds E.
        • Plasterk R.H.
        Target-selected gene inactivation in zebrafish.
        Methods Cell Biol. 2004; 77: 69-90
        • Jungke P.
        • Hans S.
        • Brand M.
        The zebrafish CreZoo: an easy-to-handle database for novel CreER(T2)-driver lines.
        Zebrafish. 2013; 10: 259-263
        • Sood R.
        • Carrington B.
        • Bishop K.
        • et al.
        Efficient methods for targeted mutagenesis in zebrafish using zinc-finger nucleases: data from targeting of nine genes using CompoZr or CoDA ZFNs.
        PLoS One. 2013; 8: e57239
        • Ma A.C.
        • Lee H.B.
        • Clark K.J.
        • Ekker S.C.
        High efficiency in vivo genome engineering with a simplified 15-RVD GoldyTALEN design.
        PLoS One. 2013; 8: e65259
        • Zu Y.
        • Tong X.
        • Wang Z.
        • et al.
        TALEN-mediated precise genome modification by homologous recombination in zebrafish.
        Nat Methods. 2013; 10: 329-331
        • Bedell V.M.
        • Wang Y.
        • Campbell J.M.
        • et al.
        In vivo genome editing using a high-efficiency TALEN system.
        Nature. 2012; 491: 114-118
        • Vercoe R.B.
        • Chang J.T.
        • Dy R.L.
        • et al.
        Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands.
        PLoS Genet. 2013; 9: e1003454
        • Hwang W.Y.
        • Fu Y.
        • Reyon D.
        • et al.
        Heritable and precise zebrafish genome editing using a CRISPR-Cas system.
        PLoS One. 2013; 8: e68708
        • Hwang W.Y.
        • Fu Y.
        • Reyon D.
        • et al.
        Efficient genome editing in zebrafish using a CRISPR-Cas system.
        Nat Biotechnol. 2013; 31: 227-229
        • Chang N.
        • Sun C.
        • Gao L.
        • et al.
        Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos.
        Cell Res. 2013; 23: 465-472
        • Fu Y.
        • Foden J.A.
        • Khayter C.
        • et al.
        High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells.
        Nat Biotechnol. 2013; 31: 822-826
        • Grunwald D.J.
        A revolution coming to a classic model organism.
        Nat Methods. 2013; 10: 5-6
        • Pickart M.A.
        • Sivasubbu S.
        • Nielsen A.L.
        • Shriram S.
        • King R.A.
        • Ekker S.C.
        Functional genomics tools for the analysis of zebrafish pigment.
        Pigment Cell Res. 2004; 17: 461-470
        • Summerton J.
        Morpholino antisense oligomers: the case for an RNase H-independent structural type.
        Biochim Biophys Acta. 1999; 1489: 141-158
        • Summerton J.
        • Weller D.
        Morpholino antisense oligomers: design, preparation, and properties.
        Antisense Nucl Acid Drug Dev. 1997; 7: 187-195
        • Bill B.R.
        • Petzold A.M.
        • Clark K.J.
        • Schimmenti L.A.
        • Ekker S.C.
        A primer for morpholino use in zebrafish.
        Zebrafish. 2009; 6: 69-77
        • Robu M.E.
        • Larson J.D.
        • Nasevicius A.
        • et al.
        p53 activation by knockdown technologies.
        PLoS Genet. 2007; 3: e78
        • Heasman J.
        Morpholino oligos: making sense of antisense?.
        Dev Biol. 2002; 243: 209-214
        • Eisen J.S.
        • Smith J.C.
        Controlling morpholino experiments: don't stop making antisense.
        Development. 2008; 135: 1735-1743
        • Dahlem T.J.
        • Hoshijima K.
        • Jurynec M.J.
        • et al.
        Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome.
        PLoS Genet. 2012; 8: e1002861
        • Eckfeldt C.E.
        • Mendenhall E.M.
        • Flynn C.M.
        • et al.
        Functional analysis of human hematopoietic stem cell gene expression using zebrafish.
        PLoS Biol. 2005; 3: e254
        • Liu C.T.
        • Garnaas M.K.
        • Tin A.
        • et al.
        Genetic association for renal traits among participants of African ancestry reveals new loci for renal function.
        PLoS Genet. 2011; 7: e1002264
        • Liu L.Y.
        • Fox C.S.
        • North T.E.
        • Goessling W.
        Functional validation of GWAS gene candidates for abnormal liver function during zebrafish liver development.
        Dis Model Mechanism. 2013; 6: 1271-1278
        • Manzini M.C.
        • Tambunan D.E.
        • Hill R.S.
        • et al.
        Exome sequencing and functional validation in zebrafish identify GTDC2 mutations as a cause of Walker-Warburg syndrome.
        Am J Human Genet. 2012; 91: 541-547
        • Pattaro C.
        • Kottgen A.
        • Teumer A.
        • et al.
        Genome-wide association and functional follow-up reveals new loci for kidney function.
        PLoS Genet. 2012; 8: e1002584
        • Howe K.
        • Clark M.D.
        • Torroja C.F.
        • et al.
        The zebrafish reference genome sequence and its relationship to the human genome.
        Nature. 2013; 496: 498-503
        • Volff J.N.
        Genome evolution and biodiversity in teleost fish.
        Heredity. 2005; 94: 280-294
        • Taylor J.S.
        • Van de Peer Y.
        • Braasch I.
        • Meyer A.
        Comparative genomics provides evidence for an ancient genome duplication event in fish. Phil Trans R Soc Lond B.
        Biol Sci. 2001; 356: 1661-1679
        • Meyer A.
        • Schartl M.
        Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions.
        Curr Opin Cell Biol. 1999; 11: 699-704
        • Barbazuk W.B.
        • Korf I.
        • Kadavi C.
        • et al.
        The syntenic relationship of the zebrafish and human genomes.
        Genome Res. 2000; 10: 1351-1358
        • Lister J.A.
        • Close J.
        • Raible D.W.
        Duplicate mitf genes in zebrafish: complementary expression and conservation of melanogenic potential.
        Dev Biol. 2001; 237: 333-344
        • Stein C.
        • Caccamo M.
        • Laird G.
        • Leptin M.
        Conservation and divergence of gene families encoding components of innate immune response systems in zebrafish.
        Genome Biol. 2007; 8: R251
        • Klee E.W.
        • Schneider H.
        • Clark K.J.
        • et al.
        Zebrafish: a model for the study of addiction genetics.
        Human Genet. 2012; 131: 977-1008
      5. Allele Frequency Database. Accessed September, 2013. Available at: http://alfred.med.yale.edu/alfred/.

      6. International HapMap Project. Accessed September, 2013. Available at: http://hapmap.ncbi.nlm.nih.gov/.

      7. dbSNP. Accessed September, 2013. Available at: http://www.ncbi.nlm.nih.gov/snp.

      8. OMIM. Accessed September, 2013. Available at: http://www.ncbi.nlm.nih.gov/omim.

        • Craven S.E.
        • French D.
        • Ye W.
        • de Sauvage F.
        • Rosenthal A.
        Loss of Hspa9b in zebrafish recapitulates the ineffective hematopoiesis of the myelodysplastic syndrome.
        Blood. 2005; 105: 3528-3534
        • Cui S.
        • Leyva-Vega M.
        • Tsai E.A.
        • et al.
        Evidence from human and zebrafish that GPC1 is a biliary atresia susceptibility gene.
        Gastroenterology. 2013; 144: 1107-1115
        • Mahmood F.
        • Mozere M.
        • Zdebik A.A.
        • et al.
        Generation and validation of a zebrafish model of EAST (epilepsy, ataxia, sensorineural deafness and tubulopathy) syndrome.
        Dis Model Mechanism. 2013; 6: 652-660
        • Pretorius P.R.
        • Aldahmesh M.A.
        • Alkuraya F.S.
        • Sheffield V.C.
        • Slusarski D.C.
        Functional analysis of BBS3 A89V that results in non-syndromic retinal degeneration.
        Human Mol Genet. 2011; 20: 1625-1632
        • Pretorius P.R.
        • Baye L.M.
        • Nishimura D.Y.
        • et al.
        Identification and functional analysis of the vision-specific BBS3 (ARL6) long isoform.
        PLoS Genet. 2010; 6: e1000884
        • Reynolds A.
        • McDearmid J.R.
        • Lachance S.
        • et al.
        VANGL1 rare variants associated with neural tube defects affect convergent extension in zebrafish.
        Mechanism Dev. 2010; 127: 385-392
        • Shu X.
        • Zeng Z.
        • Gautier P.
        • et al.
        Knockdown of the zebrafish ortholog of the retinitis pigmentosa 2 (RP2) gene results in retinal degeneration.
        Invest Ophthalmol Vis Sci. 2011; 52: 2960-2966
        • Song P.
        • Pimplikar S.W.
        Knockdown of amyloid precursor protein in zebrafish causes defects in motor axon outgrowth.
        PLoS One. 2012; 7: e34209
        • Twigg S.R.
        • Lloyd D.
        • Jenkins D.
        • et al.
        Mutations in multidomain protein MEGF8 identify a Carpenter syndrome subtype associated with defective lateralization.
        Am J Human Genet. 2012; 91: 897-905
        • Vatine G.D.
        • Zada D.
        • Lerer-Goldshtein T.
        • et al.
        Zebrafish as a model for monocarboxyl transporter 8-deficiency.
        J Biol Chem. 2013; 288: 169-180
        • Tsetskhladze Z.R.
        • Canfield V.A.
        • Ang K.C.
        • et al.
        Functional assessment of human coding mutations affecting skin pigmentation using zebrafish.
        PLoS One. 2012; 7: e47398
        • Zuchner S.
        • Dallman J.
        • Wen R.
        • et al.
        Whole-exome sequencing links a variant in DHDDS to retinitis pigmentosa.
        Am J Human Genet. 2011; 88: 201-206
        • Hirata H.
        • Nanda I.
        • van Riesen A.
        • et al.
        ZC4H2 mutations are associated with arthrogryposis multiplex congenita and intellectual disability through impairment of central and peripheral synaptic plasticity.
        Am J Human Genet. 2013; 92: 681-695
        • Singh K.K.
        • De Rienzo G.
        • Drane L.
        • et al.
        Common DISC1 polymorphisms disrupt Wnt/GSK3beta signaling and brain development.
        Neuron. 2011; 72: 545-558