Advertisement

Regenerative medicine in Alzheimer's disease

  • Kevin M. Felsenstein
    Affiliations
    Department of Neuroscience, University of Florida, Gainesville, Fla

    McKnight Brain Institute, University of Florida, Gainesville, Fla

    Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Fla
    Search for articles by this author
  • Kate M. Candelario
    Affiliations
    Department of Neurosurgery, University of Florida, Gainesville, Fla

    McKnight Brain Institute, University of Florida, Gainesville, Fla
    Search for articles by this author
  • Dennis A. Steindler
    Affiliations
    Department of Neurosurgery, University of Florida, Gainesville, Fla

    McKnight Brain Institute, University of Florida, Gainesville, Fla
    Search for articles by this author
  • David R. Borchelt
    Correspondence
    Reprint requests: Prof David R. Borchelt, Departments of Neuroscience and Neurosurgery, McKnight Brain Institute, Center for Translational Research in Neurodegenerative Disease, SantaFe HealthCare Alzheimer's Disease Research Center, University of Florida, Gainesville, Box 100159, FL 32610
    Affiliations
    Department of Neuroscience, University of Florida, Gainesville, Fla

    McKnight Brain Institute, University of Florida, Gainesville, Fla

    Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Fla

    SantaFe HealthCare Alzheimer's Disease Research Center, University of Florida, Gainesville, Fla
    Search for articles by this author
Published:November 11, 2013DOI:https://doi.org/10.1016/j.trsl.2013.11.001
      Identifying novel, effective therapeutics for Alzheimer's disease (AD) is one of the major unmet medical needs for the coming decade. Because the current paradigm for developing and testing disease-modifying AD therapies is protracted and likely to be even longer, with the shift toward earlier intervention in preclinical AD, it is an open issue whether we can develop, test, and widely deploy a novel therapy in time to help the current at-risk generation if we continue to follow the standard paradigms of discovery and drug development. There is an imperative need to find safe and effective preventive measures that can be distributed rapidly to stem the coming wave of AD that will potentially engulf the next generation. We can define regenerative medicine broadly as approaches that use stem cell-based therapies or approaches that seek to modulate inherent neurogenesis. Neurogenesis, although most active during prenatal development, has been shown to continue in several small parts of the brain, including the hippocampus and the subventricular zone, suggesting its potential to reverse cognitive deficits. If AD pathology affects neurogenesis, then it follows that conditions that stimulate endogenous neurogenesis (eg, environmental stimuli, physical activity, trophic factors, cytokines, and drugs) may help to promote the regenerative and recovery process. Herein, we review the complex logistics of potentially implementing neurogenesis-based therapeutic strategies for the treatment of AD.

      Abbreviations:

      (amyloid-beta), AD (Alzheimer's disease)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wimo A.
        • Winblad B.
        • Jonsson L.
        The worldwide societal costs of dementia: estimates for 2009.
        Alzheimers Dement. 2010; 6: 98-103
        • Goate A.
        • Chartier-Harlin M.-C.
        • Mullan M.
        • et al.
        Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease.
        Nature. 1991; 349: 704-706
        • Shoji M.
        • Golde T.E.
        • Ghiso J.
        • et al.
        Production of the Alzheimer amyloid β protein by normal proteolytic processing.
        Science. 1992; 258: 126-129
        • Jackson A.
        • Crossman A.R.
        Nucleus tegmenti pedunculopontinus: efferent connections with special references to the basal ganglia, studied in the rat by anterograde and retrograde transport of horseradish peroxidase.
        Neuroscience. 1983; 10: 725-765
        • Hardy J.
        • Selkoe D.J.
        The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics.
        Science. 2002; 297: 353-356
        • Golde T.E.
        • Schneider L.S.
        • Koo E.H.
        Anti-abeta therapeutics in Alzheimer's disease: the need for a paradigm shift.
        Neuron. 2011; 69: 203-213
        • Giuffrida M.L.
        • Caraci F.
        • Pignataro B.
        • et al.
        Beta-amyloid monomers are neuroprotective.
        J Neurosci. 2009; 29: 10582-10587
      1. The search for Alzheimer's causes and risk factors. 2013. Available at: http://www.alz.org/research/science/alzheimers_disease_causes.asp [Accessed June, 2013].

        • Enciu A.M.
        • Nicolescu M.I.
        • Manole C.G.
        • Muresanu D.F.
        • Popescu L.M.
        • Popescu B.O.
        Neuroregeneration in neurodegenerative disorders.
        BMC Neurol. 2011; 11: 75
        • Dantuma E.
        • Merchant S.
        • Sugaya K.
        Stem cells for the treatment of neurodegenerative diseases.
        Stem Cell Res Ther. 2010; 1: 37
        • Sugaya K.
        Stem cell biology in the study of pathological conditions.
        Neurodegener Dis. 2010; 7: 84-87
        • Chen W.W.
        • Blurton-Jones M.
        Concise review: can stem cells be used to treat or model Alzheimer's disease?.
        Stem Cells. 2012; 30: 2612-2618
        • Kim H.J.
        • Jin C.Y.
        Stem cells in drug screening for neurodegenerative disease.
        Korean J Physiol Pharmacol. 2012; 16: 1-9
        • Waldau B.
        Stem cell transplantation for enhancement of learning and memory in adult neurocognitive disorders.
        Aging Dis. 2010; 1: 60-71
        • Terzic D.
        • Abosch A.
        Update on deep brain stimulation for Parkinson's disease.
        J Neurosurg Sci. 2012; 56: 267-277
        • Vega R.A.
        • Holloway K.L.
        • Larson P.S.
        Image-guided deep brain stimulation.
        Neurosurg Clin N Am. 2014; 1: 159-172
        • Piacentino M.
        • Zambon G.
        • Pilleri M.
        • Bartolomei L.
        Comparison of the incidence of intracranial hemorrhage in two different planning techniques for stereotactic electrode placement in the deep brain stimulation.
        J Neurosurg Sci. 2013; 57: 63-67
        • Martinez-Serrano A.
        • Bjorklund A.
        Immortalized neural progenitor cells for CNS gene transfer and repair.
        Trends Neurosci. 1997; 20: 530-538
        • McDonald J.W.
        • Liu X.Z.
        • Qu Y.
        • et al.
        Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord.
        Nat Med. 1999; 5: 1410-1412
        • Kelly S.
        • Bliss T.M.
        • Shah A.K.
        • et al.
        Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex.
        Proc Natl Acad Sci U S A. 2004; 101: 11839-11844
        • Wernig M.
        • Benninger F.
        • Schmandt T.
        • et al.
        Functional integration of embryonic stem cell-derived neurons in vivo.
        J Neurosci. 2004; 24: 5258-5268
        • Zhang Y.
        • Pak C.
        • Han Y.
        • et al.
        Rapid single-step induction of functional neurons from human pluripotent stem cells.
        Neuron. 2013; 78: 785-798
        • Yuan X.
        • Wan H.
        • Zhao X.
        • Zhu S.
        • Zhou Q.
        • Ding S.
        Brief report: combined chemical treatment enables Oct4-induced reprogramming from mouse embryonic fibroblasts.
        Stem Cells. 2011; 29: 549-553
        • Njie E.
        • Kantorovich S.
        • Astary G.W.
        • et al.
        A preclinical assessment of neural stem cells as delivery vehicles for anti-amyloid therapeutics.
        PLoS One. 2012; 7: e34097
        • Steindler D.A.
        • Kadrie T.
        • Fillmore H.
        • Thomas L.B.
        The subependymal zone: “brain marrow.”.
        Prog Brain Res. 1996; 108: 349-363
        • Shors T.J.
        From stem cells to grandmother cells: how neurogenesis relates to learning and memory.
        Cell Stem Cell. 2008; 3: 253-258
        • Jessberger S.
        • Clark R.E.
        • Broadbent N.J.
        • et al.
        Dentate gyrus-specific knockdown of adult neurogenesis impairs spatial and object recognition memory in adult rats.
        Learn Mem. 2009; 16: 147-154
        • Sahay A.
        • Wilson D.A.
        • Hen R.
        Pattern separation: a common function for new neurons in hippocampus and olfactory bulb.
        Neuron. 2011; 70: 582-588
        • Eriksson P.S.
        • Perfilieva E.
        • Bjork-Eriksson T.
        • et al.
        Neurogenesis in the adult human hippocampus.
        Nat Med. 1998; 4: 1313-1317
        • Pincus D.W.
        • Keyoung H.M.
        • Harrison-Restelli C.
        • et al.
        Fibroblast growth factor-2/brain-derived neurotrophic factor-associated maturation of new neurons generated from adult human subependymal cells.
        Ann Neurol. 1998; 43: 576-585
        • Curtis M.A.
        • Kam M.
        • Nannmark U.
        • et al.
        Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension.
        Science. 2007; 315: 1243-1249
        • Kukekov V.G.
        • Laywell E.D.
        • Suslov O.
        • et al.
        Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain.
        Exp Neurol. 1999; 156: 333-344
        • Coras R.
        • Siebzehnrubl F.A.
        • Pauli E.
        • et al.
        Low proliferation and differentiation capacities of adult hippocampal stem cells correlate with memory dysfunction in humans.
        Brain. 2010; 133: 3359-3372
        • Reynolds B.A.
        • Weiss S.
        Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system.
        Science. 1992; 255: 1707-1710
        • Craig C.G.
        • Tropepe V.
        • Morshead C.M.
        • Reynolds B.A.
        • Weiss S.
        • van der Kooy D.
        In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain.
        J Neurosci. 1996; 16: 2649-2658
        • Steindler D.A.
        • Pincus D.W.
        Stem cells and neuropoiesis in the adult human brain.
        Lancet. 2002; 359: 1047-1054
        • Samuels I.S.
        • Karlo J.C.
        • Faruzzi A.N.
        • et al.
        Deletion of ERK2 mitogen-activated protein kinase identifies its key roles in cortical neurogenesis and cognitive function.
        J Neurosci. 2008; 28: 6983-6995
        • Zhang C.L.
        • Zou Y.
        • He W.
        • Gage F.H.
        • Evans R.M.
        A role for adult TLX-positive neural stem cells in learning and behaviour.
        Nature. 2008; 451: 1004-1007
        • Pang Z.P.
        • Yang N.
        • Vierbuchen T.
        • et al.
        Induction of human neuronal cells by defined transcription factors.
        Nature. 2011; 476: 220-223
        • Takahashi K.
        • Yamanaka S.
        Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.
        Cell. 2006; 126: 663-676
        • Magavi S.S.
        • Leavitt B.R.
        • Macklis J.D.
        Induction of neurogenesis in the neocortex of adult mice.
        Nature. 2000; 405: 951-955
        • Encinas J.M.
        • Vaahtokari A.
        • Enikolopov G.
        Fluoxetine targets early progenitor cells in the adult brain.
        Proc Natl Acad Sci U S A. 2006; 103: 8233-8238
        • Mowla A.
        • Mosavinasab M.
        • Pani A.
        Does fluoxetine have any effect on the cognition of patients with mild cognitive impairment? A double-blind, placebo-controlled, clinical trial.
        J Clin Psychopharmacol. 2007; 27: 67-70
        • Taupin P.
        Neurogenic drugs and compounds.
        Recent Pat CNS Drug Discov. 2010; 5: 253-257
        • Taupin P.
        Adult neurogenesis and neural stem cells as a model for the discovery and development of novel drugs.
        Expert Opin Drug Discov. 2010; 5: 921-925
        • Sanchez-Ramos J.
        • Cimino C.
        • Avila R.
        • et al.
        Pilot study of granulocyte-colony stimulating factor for treatment of Alzheimer's disease.
        J Alzheimers Dis. 2012; 31: 843-855
        • Wollen K.A.
        Alzheimer's disease: the pros and cons of pharmaceutical, nutritional, botanical, and stimulatory therapies, with a discussion of treatment strategies from the perspective of patients and practitioners.
        Altern Med Rev. 2010; 15: 223-244
        • More S.V.
        • Koppula S.
        • Kim I.S.
        • Kumar H.
        • Kim B.W.
        • Choi D.K.
        The role of bioactive compounds on the promotion of neurite outgrowth.
        Molecules. 2012; 17: 6728-6753
        • Howes M.J.
        • Houghton P.J.
        Plants used in Chinese and Indian traditional medicine for improvement of memory and cognitive function.
        Pharmacol Biochem Behav. 2003; 75: 513-527
        • Hugel H.M.
        • Jackson N.
        • May B.H.
        • Xue C.C.
        Chinese herbs for dementia diseases.
        Mini Rev Med Chem. 2012; 12: 371-379
        • Singh H.K.
        Brain enhancing ingredients from Ayurvedic medicine: quintessential example of Bacopa monniera, a narrative review.
        Nutrients. 2013; 5: 478-497
        • Perry E.
        • Howes M.J.
        Medicinal plants and dementia therapy: herbal hopes for brain aging?.
        CNS Neurosci Ther. 2011; 17: 683-698
        • Williams R.J.
        • Spencer J.P.
        Flavonoids, cognition, and dementia: actions, mechanisms, and potential therapeutic utility for Alzheimer disease.
        Free Radic Biol Med. 2012; 52: 35-45
        • Natarajan S.
        • Shunmugiah K.P.
        • Kasi P.D.
        Plants traditionally used in age-related brain disorders (dementia): an ethnopharmacological survey.
        Pharm Biol. 2013; 51: 492-523
        • Lin B.
        Polyphenols and neuroprotection against ischemia and neurodegeneration.
        Mini Rev Med Chem. 2011; 11: 1222-1238
        • Singh M.
        • Arseneault M.
        • Sanderson T.
        • Murthy V.
        • Ramassamy C.
        Challenges for research on polyphenols from foods in Alzheimer's disease: bioavailability, metabolism, and cellular and molecular mechanisms.
        J Agric Food Chem. 2008; 56: 4855-4873
        • Imanshahidi M.
        • Hosseinzadeh H.
        The pharmacological effects of Salvia species on the central nervous system.
        Phytother Res. 2006; 20: 427-437
        • Snyder J.S.
        • Hong N.S.
        • McDonald R.J.
        • Wojtowicz J.M.
        A role for adult neurogenesis in spatial long-term memory.
        Neuroscience. 2005; 130: 843-852
        • Dresler M.
        • Sandberg A.
        • Ohla K.
        • et al.
        Non-pharmacological cognitive enhancement.
        Neuropharmacology. 2013; 64: 529-543
        • Bahar-Fuchs A.
        • Clare L.
        • Woods B.
        Cognitive training and cognitive rehabilitation for persons with mild to moderate dementia of the Alzheimer's or vascular type: a review.
        Alzheimers Res Ther. 2013; 5: 35
        • Kempermann G.
        • van Praag H.
        • Gage F.H.
        Activity-dependent regulation of neuronal plasticity and self repair.
        Prog Brain Res. 2000; 127: 35-48
        • Kempermann G.
        • Gage F.H.
        Neurogenesis in the adult hippocampus.
        Novartis Found Symp. 2000; 231: 220-235
        • Lazarov O.
        • Robinson J.
        • Tang Y.P.
        • et al.
        Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice.
        Cell. 2005; 120: 701-713
        • Verret L.
        • Jankowsky J.L.
        • Xu G.M.
        • Borchelt D.R.
        • Rampon C.
        Alzheimer's-type amyloidosis in transgenic mice impairs survival of newborn neurons derived from adult hippocampal neurogenesis.
        J Neurosci. 2007; 27: 6771-6780
        • Tanzi R.E.
        • Chopra D.
        Super brain: Unleashing the explosive power of your mind to maximize health, happiness, and spiritual well-being.
        Harmony, New York, NY2012
        • Gates N.
        • Fiatarone Singh M.A.
        • Sachdev P.S.
        • Valenzuela M.
        The effect of exercise training on cognitive function in older adults with mild cognitive impairment: a meta-analysis of randomized controlled trials.
        Am J Geriatr Psychiatry. 2013; : 1086-1097
        • Spector A.
        • Orrell M.
        • Hall L.
        Systematic review of neuropsychological outcomes in dementia from cognition-based psychological interventions.
        Dement Geriatr Cogn Disord. 2012; 34: 244-255
        • Chen R.C.
        • Liu C.L.
        • Lin M.H.
        • et al.
        Non-pharmacological treatment reducing not only behavioral symptoms, but also psychotic symptoms of older adults with dementia: a prospective cohort study in Taiwan.
        Geriatr Gerontol Int. 2013; ([in press])
        • Ideguchi M.
        • Palmer T.D.
        • Recht L.D.
        • Weimann J.M.
        Murine embryonic stem cell-derived pyramidal neurons integrate into the cerebral cortex and appropriately project axons to subcortical targets.
        J Neurosci. 2010; 30: 894-904
        • Guo F.
        • Maeda Y.
        • Ma J.
        • et al.
        Pyramidal neurons are generated from oligodendroglial progenitor cells in adult piriform cortex.
        J Neurosci. 2010; 30: 12036-12049
        • Ozdinler P.H.
        • Macklis J.D.
        IGF-I specifically enhances axon outgrowth of corticospinal motor neurons.
        Nat Neurosci. 2006; 9: 1371-1381
        • Cafferty W.B.
        • McGee A.W.
        • Strittmatter S.M.
        Axonal growth therapeutics: regeneration or sprouting or plasticity?.
        Trends Neurosci. 2008; 31: 215-220
        • Busch S.A.
        • Silver J.
        The role of extracellular matrix in CNS regeneration.
        Curr Opin Neurobiol. 2007; 17: 120-127
        • Arlotta P.
        • Molyneaux B.J.
        • Chen J.
        • Inoue J.
        • Kominami R.
        • Macklis J.D.
        Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo.
        Neuron. 2005; 45: 207-221