Advertisement

Extracellular matrix as an inductive scaffold for functional tissue reconstruction

  • Bryan N. Brown
    Affiliations
    McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA

    Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA
    Search for articles by this author
  • Stephen F. Badylak
    Correspondence
    Reprint requests: Stephen F. Badylak, McGowan Institute for Regenerative Medicine, Suite 300, 450 Technology Drive, Pittsburgh, PA 15218
    Affiliations
    McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA

    Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA
    Search for articles by this author
Published:November 11, 2013DOI:https://doi.org/10.1016/j.trsl.2013.11.003
      The extracellular matrix (ECM) is a meshwork of both structural and functional proteins assembled in unique tissue-specific architectures. The ECM both provides the mechanical framework for each tissue and organ and is a substrate for cell signaling. The ECM is highly dynamic, and cells both receive signals from the ECM and contribute to its content and organization. This process of “dynamic reciprocity” is key to tissue development and for homeostasis. Based upon these important functions, ECM-based materials have been used in a wide variety of tissue engineering and regenerative medicine approaches to tissue reconstruction. It has been demonstrated that ECM-based materials, when appropriately prepared, can act as inductive templates for constructive remodeling. Specifically, such materials act as templates for the induction of de novo functional, site-appropriate, tissue formation. Herein, the diverse structural and functional roles of the ECM are reviewed to provide a rationale for the use of ECM scaffolds in regenerative medicine. Translational examples of ECM scaffolds in regenerative are provided, and the potential mechanisms by which ECM scaffolds elicit constructive remodeling are discussed. A better understanding of the ability of ECM scaffold materials to define the microenvironment of the injury site will lead to improved clinical outcomes associated with their use.

      Abbreviations:

      ADAMTS (metalloproteinase with thrombospondin motif families), CO2 (carbon dioxide), DNA (deoxyribonucleic acid), ECM (extracellular matrix), EMR (endomucosal resection), HGD (high grade dysplasia), MMP (matrix metalloproteinase), SIS (small intestinal mucosa), TMJ (temporomandibular joint), TMJD (Temporomandibular joint disorder), UBM (urinary bladder matrix), VEGF (vascular endothelial growth factor)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bissell M.J.
        • Hall H.G.
        • Parry G.
        How does the extracellular matrix direct gene expression?.
        J Theor Biol. 1982; 99: 31-68
        • Houghton A.M.
        • Grisolano J.L.
        • Baumann M.L.
        • et al.
        Macrophage elastase (matrix metalloproteinase-12) suppresses growth of lung metastases.
        Cancer Res. 2006; 66: 6149-6155
        • O'Reilly M.S.
        • Boehm T.
        • Shing Y.
        • et al.
        Endostatin: an endogenous inhibitor of angiogenesis and tumor growth.
        Cell. 1997; 88: 277-285
        • Colorado P.C.
        • Torre A.
        • Kamphaus G.
        • et al.
        Anti-angiogenic cues from vascular basement membrane collagen.
        Cancer Res. 2000; 60: 2520-2526
        • Vlodavsky I.
        • Goldshmidt O.
        • Zcharia E.
        • et al.
        Mammalian heparinize: involvement in cancer metastasis, angiogenesis and normal development.
        Semin Cancer Biol. 2002; 12: 121-129
        • Ramchandran R.
        • Dhanabal M.
        • Volk R.
        • et al.
        Antiangiogenic activity of restin, NC10 domain of human collagen XV: comparison to endostatin.
        Biochem Biophys Res Commun. 1999; 255: 735-739
        • Calve S.
        • Odelberg S.J.
        • Simon H.G.
        A transitional extracellular matrix instructs cell behavior during muscle regeneration.
        Dev Biol. 2010; 344: 259-271
        • Murry C.E.
        • Keller G.
        Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development.
        Cell. 2008; 132: 661-680
        • Cortiella J.
        • Niles J.
        • Cantu A.
        • et al.
        Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation.
        Tissue Eng Part A. 2010; 16: 2565-2580
        • Badylak S.F.
        The extracellular matrix as a scaffold for tissue reconstruction.
        Semin Cell Develop Biol. 2002; 13: 377-383
        • Badylak S.F.
        Xenogeneic extracellular matrix as a scaffold for tissue reconstruction.
        Transplant Immunol. 2004; 12: 367-377
        • Badylak S.F.
        The extracellular matrix as a biologic scaffold material.
        Biomaterials. 2007; 28: 3587-3593
        • Badylak S.F.
        • Brown B.N.
        • Gilbert T.W.
        • Daly K.A.
        • Huber A.
        • Turner N.J.
        Biologic scaffolds for constructive tissue remodeling.
        Biomaterials. 2011; 32: 316-319
        • Daley W.P.
        • Peters S.B.
        • Larsen M.
        Extracellular matrix dynamics in development and regenerative medicine.
        J Cell Sci. 2008; 121: 255-264
        • Lu P.
        • Takai K.
        • Weaver V.M.
        • Werb Z.
        Extracellular matrix degradation and remodeling in development and disease.
        Cold Spring Harbor Perspect Biol. 2011; 3
        • Egeblad M.
        • Rasch M.G.
        • Weaver V.M.
        Dynamic interplay between the collagen scaffold and tumor evolution.
        Curr Opin Cell Biol. 2010; 22: 697-706
        • Rozario T.
        • DeSimone D.W.
        The extracellular matrix in development and morphogenesis: a dynamic view.
        Dev Biol. 2010; 341: 126-140
        • Brown B.
        • Lindberg K.
        • Reing J.
        • Stolz D.B.
        • Badylak S.F.
        The basement membrane component of biologic scaffolds derived from extracellular matrix.
        Tissue Eng. 2006; 12: 519-526
        • Engler A.J.
        • Humbert P.O.
        • Wehrle-Haller B.
        • Weaver V.M.
        Multiscale modeling of form and function.
        Science. 2009; 324: 208-212
        • Engler A.J.
        • Sen S.
        • Sweeney H.L.
        • Discher D.E.
        Matrix elasticity directs stem cell lineage specification.
        Cell. 2006; 126: 677-689
        • Reilly G.C.
        • Engler A.J.
        Intrinsic extracellular matrix properties regulate stem cell differentiation.
        J Biomech. 2010; 43: 55-62
        • Kumbar S.G.
        • James R.
        • Nukavarapu S.P.
        • Laurencin C.T.
        Electrospun nanofiber scaffolds: engineering soft tissues.
        Biomed Mater. 2008; 3: 034002
        • Barnes C.P.
        • Sell S.A.
        • Boland E.D.
        • Simpson D.G.
        • Bowlin G.L.
        Nanofiber technology: designing the next generation of tissue engineering scaffolds.
        Adv Drug Deliv Rev. 2007; 59: 1413-1433
        • Hynes R.O.
        • Naba A.
        Overview of the matrisome–an inventory of extracellular matrix constituents and functions.
        Cold Spring Harbor Perspect Biol. 2012; 4: a004903
        • Bernard M.P.
        • Chu M.L.
        • Myers J.C.
        • Ramirez F.
        • Eikenberry E.F.
        • Prockop D.J.
        Nucleotide sequences of complementary deoxyribonucleic acids for the pro alpha 1 chain of human type I procollagen. Statistical evaluation of structures that are conserved during evolution.
        Biochemistry. 1983; 22: 5213-5223
        • Bernard M.P.
        • Myers J.C.
        • Chu M.L.
        • Ramirez F.
        • Eikenberry E.F.
        • Prockop D.J.
        Structure of a cDNA for the pro alpha 2 chain of human type I procollagen. Comparison with chick cDNA for pro alpha 2(I) identifies structurally conserved features of the protein and the gene.
        Biochemistry. 1983; 22: 1139-1145
        • Constantinou C.D.
        • Jimenez S.A.
        Structure of cDNAs encoding the triple-helical domain of murine alpha 2 (VI) collagen chain and comparison to human and chick homologues. Use of polymerase chain reaction and partially degenerate oligonucleotide for generation of novel cDNA clones.
        Matrix. 1991; 11: 1-9
        • Exposito J.Y.
        • D'Alessio M.
        • Solursh M.
        • Ramirez F.
        Sea urchin collagen evolutionarily homologous to vertebrate pro-alpha 2(I) collagen.
        J Biol Chem. 1992; 267: 15559-15562
        • Brown N.H.
        Extracellular matrix in development: insights from mechanisms conserved between invertebrates and vertebrates.
        Cold Spring Harbor Perspect Biol. 2011; 3
        • Davis G.E.
        Matricryptic sites control tissue injury responses in the cardiovascular system: relationships to pattern recognition receptor regulated events.
        J Mol Cell Cardiol. 2010; 48: 454-460
        • Davis G.E.
        • Bayless K.J.
        • Davis M.J.
        • Meininger G.A.
        Regulation of tissue injury responses by the exposure of matricryptic sites within extracellular matrix molecules.
        Am J Pathol. 2000; 156: 1489-1498
        • Hynes R.O.
        The extracellular matrix: not just pretty fibrils.
        Science. 2009; 326: 1216-1219
        • Boudreau N.
        • Myers C.
        • Bissell M.J.
        From laminin to lamin: regulation of tissue-specific gene expression by the ECM.
        Trends Cell Biol. 1995; 5: 1-4
        • Ingber D.
        Extracellular matrix and cell shape: potential control points for inhibition of angiogenesis.
        J Cell Biochem. 1991; 47: 236-241
        • Fata J.E.
        • Werb Z.
        • Bissell M.J.
        Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes.
        Breast Cancer Res BCR. 2004; 6: 1-11
        • Sternlicht M.D.
        • Kouros-Mehr H.
        • Lu P.
        • Werb Z.
        Hormonal and local control of mammary branching morphogenesis.
        Differentiation. 2006; 74: 365-381
        • Valentin J.E.
        • Badylak J.S.
        • McCabe G.P.
        • Badylak S.F.
        Extracellular matrix bioscaffolds for orthopaedic applications. A comparative histologic study.
        J Bone Joint Surg Am Vol. 2006; 88: 2673-2686
        • Valentin J.E.
        • Stewart-Akers A.M.
        • Gilbert T.W.
        • Badylak S.F.
        Macrophage participation in the degradation and remodeling of extracellular matrix scaffolds.
        Tissue Eng Part A. 2009; 15: 1687-1694
        • Cawston T.E.
        • Young D.A.
        Proteinases involved in matrix turnover during cartilage and bone breakdown.
        Cell Tissue Res. 2010; 339: 221-235
        • Page-McCaw A.
        • Ewald A.J.
        • Werb Z.
        Matrix metalloproteinases and the regulation of tissue remodelling.
        Nat Rev Mol Cell Biol. 2007; 8: 221-233
        • Apte S.S.
        A disintegrin-like and metalloprotease (reprolysin-type) with thrombospondin type 1 motif (ADAMTS) superfamily: functions and mechanisms.
        J Biol Chem. 2009; 284: 31493-31497
        • Maquart F.X.
        • Bellon G.
        • Pasco S.
        • Monboisse J.C.
        Matrikines in the regulation of extracellular matrix degradation.
        Biochimie. 2005; 87: 353-360
        • Brennan E.P.
        • Reing J.
        • Chew D.
        • Myers-Irvin J.M.
        • Young E.J.
        • Badylak S.F.
        Antibacterial activity within degradation products of biological scaffolds composed of extracellular matrix.
        Tissue Eng. 2006; 12: 2949-2955
        • Brennan E.P.
        • Tang X.H.
        • Stewart-Akers A.M.
        • Gudas L.J.
        • Badylak S.F.
        Chemoattractant activity of degradation products of fetal and adult skin extracellular matrix for keratinocyte progenitor cells.
        J Tissue Eng Regen Med. 2008; 2: 491-498
        • Haviv F.
        • Bradley M.F.
        • Kalvin D.M.
        • et al.
        Thrombospondin-1 mimetic peptide inhibitors of angiogenesis and tumor growth: design, synthesis, and optimization of pharmacokinetics and biological activities.
        J Med Chem. 2005; 48: 2838-2846
        • Li F.
        • Li W.
        • Johnson S.
        • Ingram D.
        • Yoder M.
        • Badylak S.
        Low-molecular-weight peptides derived from extracellular matrix as chemoattractants for primary endothelial cells.
        Endothelium. 2004; 11: 199-206
        • Hocking D.C.
        • Kowalski K.
        A cryptic fragment from fibronectin's III1 module localizes to lipid rafts and stimulates cell growth and contractility.
        J Cell Bio. 2002; 158: 175-184
        • Hocking D.C.
        • Titus P.A.
        • Sumagin R.
        • Sarelius I.H.
        Extracellular matrix fibronectin mechanically couples skeletal muscle contraction with local vasodilation.
        Circ Res. 2008; 102: 372-379
        • Smith M.L.
        • Gourdon D.
        • Little W.C.
        • et al.
        Force-induced unfolding of fibronectin in the extracellular matrix of living cells.
        PLoS Biol. 2007; 5: e268
        • Vakonakis I.
        • Staunton D.
        • Rooney L.M.
        • Campbell I.D.
        Interdomain association in fibronectin: insight into cryptic sites and fibrillogenesis.
        EMBO J. 2007; 26: 2575-2583
        • Vogel V.
        Mechanotransduction involving multimodular proteins: converting force into biochemical signals.
        Ann Rev Biophys Biomol Struct. 2006; 35: 459-488
        • Gao M.
        • Craig D.
        • Lequin O.
        • Campbell I.D.
        • Vogel V.
        • Schulten K.
        Structure and functional significance of mechanically unfolded fibronectin type III1 intermediates.
        Proc Natl Acad Sci U S A. 2003; 100: 14784-14789
        • Mitsi M.
        • Forsten-Williams K.
        • Gopalakrishnan M.
        • Nugent M.A.
        A catalytic role of heparin within the extracellular matrix.
        J Biol Chem. 2008; 283: 34796-34807
        • Ugarova T.P.
        • Zamarron C.
        • Veklich Y.
        • et al.
        Conformational transitions in the cell binding domain of fibronectin.
        Biochemistry. 1995; 34: 4457-4466
        • Krammer A.
        • Lu H.
        • Isralewitz B.
        • Schulten K.
        • Vogel V.
        Forced unfolding of the fibronectin type III module reveals a tensile molecular recognition switch.
        Proc Natl Acad Sci U S A. 1999; 96: 1351-1356
        • Seiffert D.
        • Smith J.W.
        The cell adhesion domain in plasma vitronectin is cryptic.
        J Biol Chem. 1997; 272: 13705-13710
        • Davis G.E.
        Affinity of integrins for damaged extracellular matrix: alpha v beta 3 binds to denatured collagen type I through RGD sites.
        Biochem Biophys Res Commun. 1992; 182: 1025-1031
        • Smith L.L.
        • Cheung H.K.
        • Ling L.E.
        • et al.
        Osteopontin N-terminal domain contains a cryptic adhesive sequence recognized by alpha9beta1 integrin.
        J Biol Chem. 1996; 271: 28485-28491
        • Hirano Y.
        • Okuno M.
        • Hayashi T.
        • Goto K.
        • Nakajima A.
        Cell-attachment activities of surface immobilized oligopeptides RGD, RGDS, RGDV, RGDT, and YIGSR toward five cell lines.
        J Biomater Sci Polymer Ed. 1993; 4: 235-243
        • Hern D.L.
        • Hubbell J.A.
        Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing.
        J Biomed Mater Res. 1998; 39: 266-276
        • Hsiong S.X.
        • Huebsch N.
        • Fischbach C.
        • Kong H.J.
        • Mooney D.J.
        Integrin-adhesion ligand bond formation of preosteoblasts and stem cells in three-dimensional RGD presenting matrices.
        Biomacromolecules. 2008; 9: 1843-1851
        • LeBaron R.G.
        • Athanasiou K.A.
        Extracellular matrix cell adhesion peptides: functional applications in orthopedic materials.
        Tissue Eng. 2000; 6: 85-103
        • Vidal G.
        • Blanchi T.
        • Mieszawska A.J.
        • et al.
        Enhanced cellular adhesion on titanium by silk functionalized with titanium binding and RGD peptides.
        Acta Biomaterialia. 2013; 9: 4935-4943
        • Brizzi M.F.
        • Tarone G.
        • Defilippi P.
        Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche.
        Curr Opin Cell Biol. 2012; 24: 645-651
        • Kazanis I.
        • ffrench-Constant C.
        Extracellular matrix and the neural stem cell niche.
        Develop Neurobiol. 2011; 71: 1006-1017
        • Votteler M.
        • Kluger P.J.
        • Walles H.
        • Schenke-Layland K.
        Stem cell microenvironments–unveiling the secret of how stem cell fate is defined.
        Macromol Biosci. 2010; 10: 1302-1315
        • Shen Q.
        • Wang Y.
        • Kokovay E.
        • et al.
        Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions.
        Cell Stem Cell. 2008; 3: 289-300
        • Kollet O.
        • Dar A.
        • Shivtiel S.
        • et al.
        Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells.
        Nat Med. 2006; 12: 657-664
        • Lymperi S.
        • Ferraro F.
        • Scadden D.T.
        The HSC niche concept has turned 31. Has our knowledge matured?.
        Ann N Y Acad Sci. 2010; 1192: 12-18
        • Crapo P.M.
        • Gilbert T.W.
        • Badylak S.F.
        An overview of tissue and whole organ decellularization processes.
        Biomaterials. 2011; 32: 3233-3243
        • Gilbert T.W.
        • Sellaro T.L.
        • Badylak S.F.
        Decellularization of tissues and organs.
        Biomaterials. 2006; 27: 3675-3683
        • Badylak S.F.
        • Gilbert T.W.
        Immune response to biologic scaffold materials.
        Semin Immunol. 2008; 20: 109-116
        • Brown B.N.
        • Valentin J.E.
        • Stewart-Akers A.M.
        • McCabe G.P.
        • Badylak S.F.
        Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component.
        Biomaterials. 2009; 30: 1482-1491
        • Gilbert T.W.
        Strategies for tissue and organ decellularization.
        J Cell Biochem. 2012; 113: 2217-2222
        • Reing J.E.
        • Brown B.N.
        • Daly K.A.
        • et al.
        The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds.
        Biomaterials. 2010; 31: 8626-8633
        • Barnes C.A.
        • Brison J.
        • Michel R.
        • et al.
        The surface molecular functionality of decellularized extracellular matrices.
        Biomaterials. 2011; 32: 137-143
        • Keane T.J.
        • Londono R.
        • Turner N.J.
        • Badylak S.F.
        Consequences of ineffective decellularization of biologic scaffolds on the host response.
        Biomaterials. 2012; 33: 1771-1781
        • Gilbert T.W.
        • Stolz D.B.
        • Biancaniello F.
        • Simmons-Byrd A.
        • Badylak S.F.
        Production and characterization of ECM powder: implications for tissue engineering applications.
        Biomaterials. 2005; 26: 1431-1435
        • Freytes D.O.
        • Martin J.
        • Velankar S.S.
        • Lee A.S.
        • Badylak S.F.
        Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix.
        Biomaterials. 2008; 29: 1630-1637
        • Badylak S.F.
        • Taylor D.
        • Uygun K.
        Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds.
        Ann Rev Biomed Eng. 2011; 13: 27-53
        • Baptista P.M.
        • Orlando G.
        • Mirmalek-Sani S.H.
        • Siddiqui M.
        • Atala A.
        • Soker S.
        Whole organ decellularization–a tool for bioscaffold fabrication and organ bioengineering.
        Conf Proc IEEE Eng Med Biol Soc. 2009; 2009: 6526-6529
        • Enzinger P.C.
        • Mayer R.J.
        Esophageal cancer.
        N Engl J Med. 2003; 349: 2241-2252
        • Ries L.A.
        • Wingo P.A.
        • Miller D.S.
        • et al.
        The annual report to the nation on the status of cancer, 1973-1997, with a special section on colorectal cancer.
        Cancer. 2000; 88: 2398-2424
        • Orringer M.B.
        • Marshall B.
        • Iannettoni M.D.
        Transhiatal esophagectomy for treatment of benign and malignant esophageal disease.
        World J Surg. 2001; 25: 196-203
        • Gawad K.A.
        • Hosch S.B.
        • Bumann D.
        • et al.
        How important is the route of reconstruction after esophagectomy: a prospective randomized study.
        Am J Gastroenterol. 1999; 94: 1490-1496
        • Ell C.
        • May A.
        • Pech O.
        • et al.
        Curative endoscopic resection of early esophageal adenocarcinomas (Barrett's cancer).
        Gastrointest Endosc. 2007; 65: 3-10
        • Namasivayam V.
        • Wang K.K.
        • Prasad G.A.
        Endoscopic mucosal resection in the management of esophageal neoplasia: current status and future directions.
        Clin Gastroenterol Hepatol. 2010; 8 (quiz e96): 743-754
        • Chennat J.
        • Konda V.J.
        • Ross A.S.
        • et al.
        Complete Barrett's eradication endoscopic mucosal resection: an effective treatment modality for high-grade dysplasia and intramucosal carcinoma–an American single-center experience.
        Am J Gastroenterol. 2009; 104: 2684-2692
        • Pouw R.E.
        • Seewald S.
        • Gondrie J.J.
        • et al.
        Stepwise radical endoscopic resection for eradication of Barrett's oesophagus with early neoplasia in a cohort of 169 patients.
        Gut. 2010; 59: 1169-1177
        • Witteman B.P.
        • Foxwell T.J.
        • Monsheimer S.
        • et al.
        Transoral endoscopic inner layer esophagectomy: management of high-grade dysplasia and superficial cancer with organ preservation.
        J Gastrointest Surg. 2009; 13: 2104-2112
        • Nieponice A.
        • McGrath K.
        • Qureshi I.
        • et al.
        An extracellular matrix scaffold for esophageal stricture prevention after circumferential EMR.
        Gastrointest Endosc. 2009; 69: 289-296
        • Nieponice A.
        • Gilbert T.W.
        • Badylak S.F.
        Reinforcement of esophageal anastomoses with an extracellular matrix scaffold in a canine model.
        Ann Thorac Surg. 2006; 82: 2050-2058
        • Badylak S.F.
        • Vorp D.A.
        • Spievack A.R.
        • et al.
        Esophageal reconstruction with ECM and muscle tissue in a dog model.
        J Surg Res. 2005; 128: 87-97
        • Badylak S.
        • Meurling S.
        • Chen M.
        • Spievack A.
        • Simmons-Byrd A.
        Resorbable bioscaffold for esophageal repair in a dog model.
        J Pediatr Surg. 2000; 35: 1097-1103
        • Agrawal V.
        • Brown B.N.
        • Beattie A.J.
        • Gilbert T.W.
        • Badylak S.F.
        Evidence of innervation following extracellular matrix scaffold-mediated remodelling of muscular tissues.
        J Tissue Eng Regen Med. 2009; 3: 590-600
        • Badylak S.F.
        • Hoppo T.
        • Nieponice A.
        • Gilbert T.W.
        • Davison J.M.
        • Jobe B.A.
        Esophageal preservation in five male patients after endoscopic inner-layer circumferential resection in the setting of superficial cancer: a regenerative medicine approach with a biologic scaffold.
        Tissue Eng Part A. 2011; 17: 1643-1650
        • Beiner J.M.
        • Jokl P.
        Muscle contusion injuries: current treatment options.
        J Am Acad Orthopaed Surg. 2001; 9: 227-237
        • Garrett Jr., W.E.
        Muscle strain injuries.
        Am J Sports Med. 1996; 24: S2-S8
        • Lehto M.U.
        • Jarvinen M.J.
        Muscle injuries, their healing process and treatment.
        Annales Chirurgiae et Gynaecologiae. 1991; 80: 102-108
        • Jarvinen T.A.
        • Kaariainen M.
        • Jarvinen M.
        • Kalimo H.
        Muscle strain injuries.
        Curr Opin Rheumatol. 2000; 12: 155-161
        • Jarvinen T.A.
        • Jarvinen T.L.
        • Kaariainen M.
        • Kalimo H.
        • Jarvinen M.
        Muscle injuries: biology and treatment.
        Am J Sports Med. 2005; 33: 745-764
        • Aarimaa V.
        • Kaariainen M.
        • Vaittinen S.
        • et al.
        Restoration of myofiber continuity after transection injury in the rat soleus.
        Neuromusc Disord. 2004; 14: 421-428
        • Crow B.D.
        • Haltom J.D.
        • Carson W.L.
        • Greene W.B.
        • Cook J.L.
        Evaluation of a novel biomaterial for intrasubstance muscle laceration repair.
        J Orthopaed Res. 2007; 25: 396-403
        • Garrett Jr., W.E.
        • Seaber A.V.
        • Boswick J.
        • Urbaniak J.R.
        • Goldner J.L.
        Recovery of skeletal muscle after laceration and repair.
        J Hand Surg. 1984; 9: 683-692
        • Menetrey J.
        • Kasemkijwattana C.
        • Fu F.H.
        • Moreland M.S.
        • Huard J.
        Suturing versus immobilization of a muscle laceration. A morphological and functional study in a mouse model.
        Am J Sports Med. 1999; 27: 222-229
        • Terada N.
        • Takayama S.
        • Yamada H.
        • Seki T.
        Muscle repair after a transsection injury with development of a gap: an experimental study in rats.
        Scand J Plastic Reconstruct Surg Hand Surg/Nordisk plastikkirurgisk forening [and] Nordisk klubb for handkirurgi. 2001; 35: 233-238
        • Sicari B.M.
        • Agrawal V.
        • Siu B.F.
        • et al.
        A murine model of volumetric muscle loss and a regenerative medicine approach for tissue replacement.
        Tissue Eng Part A. 2012; 18: 1941-1948
        • Turner N.J.
        • Badylak J.S.
        • Weber D.J.
        • Badylak S.F.
        Biologic scaffold remodeling in a dog model of complex musculoskeletal injury.
        J Surg Res. 2012; 176: 490-502
        • Turner N.J.
        • Yates Jr., A.J.
        • Weber D.J.
        • et al.
        Xenogeneic extracellular matrix as an inductive scaffold for regeneration of a functioning musculotendinous junction.
        Tissue Eng Part A. 2010; 16: 3309-3317
        • Valentin J.E.
        • Turner N.J.
        • Gilbert T.W.
        • Badylak S.F.
        Functional skeletal muscle formation with a biologic scaffold.
        Biomaterials. 2010; 31: 7475-7484
        • Mase Jr., V.J.
        • Hsu J.R.
        • Wolf S.E.
        • et al.
        Clinical application of an acellular biologic scaffold for surgical repair of a large, traumatic quadriceps femoris muscle defect.
        Orthopedics. 2010; 33: 511
        • Rollman G.B.
        • Gillespie J.M.
        The role of psychosocial factors in temporomandibular disorders.
        Curr Rev Pain. 2000; 4: 71-81
        • Oakley M.
        • Vieira A.R.
        The many faces of the genetics contribution to temporomandibular joint disorder.
        Orthod Craniofac Res. 2008; 11: 125-135
        • Tanaka E.
        • Detamore M.S.
        • Mercuri L.G.
        Degenerative disorders of the temporomandibular joint: etiology, diagnosis, and treatment.
        J Dent Res. 2008; 87: 296-307
        • Farrar W.B.
        • McCarty Jr., W.L.
        The TMJ dilemma.
        J Ala Dent Assoc. 1979; 63: 19-26
        • Hall H.D.
        • Indresano A.T.
        • Kirk W.S.
        • Dietrich M.S.
        Prospective multicenter comparison of 4 temporomandibular joint operations.
        J Oral Maxillofac Surg. 2005; 63: 1174-1179
        • Nyberg J.
        • Adell R.
        • Svensson B.
        Temporomandibular joint discectomy for treatment of unilateral internal derangements–a 5-year follow-up evaluation.
        Int J Oral Maxillofac Surg. 2004; 33: 8-12
        • Krug J.
        • Jirousek Z.
        • Suchmova H.
        • Cermakova E.
        Influence of discoplasty and discectomy of the temporomandibular joint on elimination of pain and restricted mouth opening.
        Acta Medica (Hradec Kralove). 2004; 47: 47-53
        • Vazquez-Delgado E.
        • Valmaseda-Castellon E.
        • Vazquez-Rodriguez E.
        • Gay-Escoda C.
        Long-term results of functional open surgery for the treatment of internal derangement of the temporomandibular joint.
        Br J Oral Maxillofac Surg. 2004; 42: 142-148
        • McCain J.P.
        • Sanders B.
        • Koslin M.G.
        • Quinn J.H.
        • Peters P.B.
        • Indresano A.T.
        Temporomandibular joint arthroscopy: a 6-year multicenter retrospective study of 4831 joints.
        J Oral Maxillofac Surg. 1992; 50: 926-930
        • Kaneyama K.
        • Segami N.
        • Sato J.
        • Murakami K.
        • Iizuka T.
        Outcomes of 152 temporomandibular joints following arthroscopic anterolateral capsular release by holmium: YAG laser or electrocautery.
        Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004; 97 (discussion 52): 546-551
        • Nitzan D.W.
        • Samson B.
        • Better H.
        Long-term outcome of arthrocentesis for sudden-onset, persistent, severe closed lock of the temporomandibular joint.
        J Oral Maxillofac Surg. 1997; 55 (discussion 7–8): 151-157
        • Reston J.T.
        • Turkelson C.M.
        Meta-analysis of surgical treatments for temporomandibular articular disorders.
        J Oral Maxillofac Surg. 2003; 61 (discussion -2): 3-10
        • Alonso A.
        • Kaimal S.
        • Look J.
        • et al.
        A quantitative evaluation of inflammatory cells in human temporomandibular joint tissues from patients with and without implants.
        J Oral Maxillofac Surg. 2009; 67: 788-796
        • Ferreira J.N.
        • Ko C.C.
        • Myers S.
        • Swift J.
        • Fricton J.R.
        Evaluation of surgically retrieved temporomandibular joint alloplastic implants: pilot study.
        J Oral Maxillofac Surg. 2008; 66: 1112-1124
        • Fricton J.R.
        • Look J.O.
        • Schiffman E.
        • Swift J.
        Long-term study of temporomandibular joint surgery with alloplastic implants compared with nonimplant surgery and nonsurgical rehabilitation for painful temporomandibular joint disc displacement.
        J Oral Maxillofac Surg. 2002; 60 (discussion 11–2): 1400-1411
        • Dolwick M.F.
        • Aufdemorte T.B.
        Silicone-induced foreign body reaction and lymphadenopathy after temporomandibular joint arthroplasty.
        Oral Surg Oral Med Oral Pathol. 1985; 59: 449-452
        • Dimitroulis G.
        A critical review of interpositional grafts following temporomandibular joint discectomy with an overview of the dermis-fat graft.
        Int J Oral Maxillofac Surg. 2011; 40: 561-568
        • Dimitroulis G.
        The use of dermis grafts after discectomy for internal derangement of the temporomandibular joint.
        J Oral Maxillofac Surg. 2005; 63: 173-178
        • Matukas V.J.
        • Lachner J.
        The use of autologous auricular cartilage for temporomandibular joint disc replacement: a preliminary report.
        J Oral Maxillofac Surg. 1990; 48: 348-353
        • Meyer R.A.
        The autogenous dermal graft in temporomandibular joint disc surgery.
        J Oral Maxillofac Surg. 1988; 46: 948-954
        • Pogrel M.A.
        • Kaban L.B.
        The role of a temporalis fascia and muscle flap in temporomandibular joint surgery.
        J Oral Maxillofac Surg. 1990; 48: 14-19
        • Thyne G.M.
        • Yoon J.H.
        • Luyk N.H.
        • McMillan M.D.
        Temporalis muscle as a disc replacement in the temporomandibular joint of sheep.
        J Oral Maxillofac Surg. 1992; 50 (discussion 87–8): 979-987
        • Dimitroulis G.
        Macroscopic and histologic analysis of abdominal dermis-fat grafts retrieved from human temporomandibular joints.
        J Oral Maxillofac Surg. 2011; 69: 2329-2333
        • McKenna S.J.
        Discectomy for the treatment of internal derangements of the temporomandibular joint.
        J Oral Maxillofac Surg. 2001; 59: 1051-1056
        • Almarza A.J.
        • Athanasiou K.A.
        Seeding techniques and scaffolding choice for tissue engineering of the temporomandibular joint disk.
        Tissue Eng. 2004; 10: 1787-1795
        • Almarza A.J.
        • Athanasiou K.A.
        Effects of hydrostatic pressure on TMJ disc cells.
        Tissue Eng. 2006; 12: 1285-1294
        • Bean A.C.
        • Almarza A.J.
        • Athanasiou K.A.
        Effects of ascorbic acid concentration on the tissue engineering of the temporomandibular joint disc.
        Proc Inst Mech Eng H. 2006; 220: 439-447
        • Detamore M.S.
        • Athanasiou K.A.
        Motivation, characterization, and strategy for tissue engineering the temporomandibular joint disc.
        Tissue Eng. 2003; 9: 1065-1087
        • Detamore M.S.
        • Athanasiou K.A.
        Structure and function of the temporomandibular joint disc: implications for tissue engineering.
        J Oral Maxillofac Surg. 2003; 61: 494-506
        • Detamore M.S.
        • Athanasiou K.A.
        Evaluation of three growth factors for TMJ disc tissue engineering.
        Ann Biomed Eng. 2005; 33: 383-390
        • Elder B.D.
        • Athanasiou K.A.
        Synergistic and additive effects of hydrostatic pressure and growth factors on tissue formation.
        PLoS One. 2008; 3: e2341
        • Elder B.D.
        • Eleswarapu S.V.
        • Athanasiou K.A.
        Extraction techniques for the decellularization of tissue engineered articular cartilage constructs.
        Biomaterials. 2009; 30: 3749-3756
        • Grayson W.L.
        • Frohlich M.
        • Yeager K.
        • et al.
        Regenerative medicine special feature: engineering anatomically shaped human bone grafts.
        Proc Natl Acad Sci U S A. 2009; 107: 3299-3304
        • Johns D.E.
        • Athanasiou K.A.
        Design characteristics for temporomandibular joint disc tissue engineering: learning from tendon and articular cartilage.
        Proc Inst Mech Eng H. 2007; 221: 509-526
        • Johns D.E.
        • Athanasiou K.A.
        Improving culture conditions for temporomandibular joint disc tissue engineering.
        Cells Tissues Organs. 2007; 185: 246-257
        • Johns D.E.
        • Wong M.E.
        • Athanasiou K.A.
        Clinically relevant cell sources for TMJ disc engineering.
        J Dent Res. 2008; 87: 548-552
        • Lumpkins S.B.
        • McFetridge P.S.
        Regional variations in the viscoelastic compressive properties of the temporomandibular joint disc and implications toward tissue engineering.
        J Biomed Mater Res A. 2009; 90: 784-791
        • Lumpkins S.B.
        • Pierre N.
        • McFetridge P.S.
        A mechanical evaluation of three decellularization methods in the design of a xenogeneic scaffold for tissue engineering the temporomandibular joint disc.
        Acta Biomaterialia. 2008; 4: 808-816
        • Wang L.
        • Lazebnik M.
        • Detamore M.S.
        Hyaline cartilage cells outperform mandibular condylar cartilage cells in a TMJ fibrocartilage tissue engineering application.
        Osteoarthritis Cartilage. 2009; 17: 346-353
        • Brown B.N.
        • Chung W.L.
        • Pavlick M.
        • et al.
        Extracellular matrix as an inductive template for temporomandibular joint meniscus reconstruction: a pilot study.
        J Oral Maxillofac Surg. 2011; 69: e488-e505
        • Brown B.N.
        • Chung W.L.
        • Almarza A.J.
        • et al.
        Inductive, scaffold-based, regenerative medicine approach to reconstruction of the temporomandibular joint disk.
        J Oral Maxillofac Surg. 2012; 70: 2656-2668
        • Boruch A.V.
        • Nieponice A.
        • Qureshi I.R.
        • Gilbert T.W.
        • Badylak S.F.
        Constructive remodeling of biologic scaffolds is dependent on early exposure to physiologic bladder filling in a canine partial cystectomy model.
        J Surg Res. 2010; 161: 217-225
        • Hodde J.P.
        • Badylak S.F.
        • Shelbourne K.D.
        The effect of range of motion on remodeling of small intestinal submucosa (SIS) when used as an Achilles tendon repair material in the rabbit.
        Tissue Eng. 1997; 3: 27-37
        • Almarza A.J.
        • Yang G.
        • Woo S.L.
        • Nguyen T.
        • Abramowitch S.D.
        Positive changes in bone marrow-derived cells in response to culture on an aligned bioscaffold.
        Tissue Eng Part A. 2008; 14: 1489-1495
        • Androjna C.
        • Spragg R.K.
        • Derwin K.A.
        Mechanical conditioning of cell-seeded small intestine submucosa: a potential tissue-engineering strategy for tendon repair.
        Tissue Eng. 2007; 13: 233-243
        • Nguyen T.D.
        • Liang R.
        • Woo S.L.
        • et al.
        Effects of cell seeding and cyclic stretch on the fiber remodeling in an extracellular matrix-derived bioscaffold.
        Tissue Eng Part A. 2009; 15: 957-963
        • Wallis M.C.
        • Yeger H.
        • Cartwright L.
        • et al.
        Feasibility study of a novel urinary bladder bioreactor.
        Tissue Eng Part A. 2008; 14: 339-348
        • Gilbert T.W.
        • Stewart-Akers A.M.
        • Sydeski J.
        • Nguyen T.D.
        • Badylak S.F.
        • Woo S.L.
        Gene expression by fibroblasts seeded on small intestinal submucosa and subjected to cyclic stretching.
        Tissue Eng. 2007; 13: 1313-1323
        • Agrawal V.
        • Tottey S.
        • Johnson S.A.
        • Freund J.M.
        • Siu B.F.
        • Badylak S.F.
        Recruitment of progenitor cells by an extracellular matrix cryptic peptide in a mouse model of digit amputation.
        Tissue Eng Part A. 2011; 17: 2435-2443
        • Reing J.E.
        • Zhang L.
        • Myers-Irvin J.
        • et al.
        Degradation products of extracellular matrix affect cell migration and proliferation.
        Tissue Eng Part A. 2009; 15: 605-614
        • Beattie A.J.
        • Gilbert T.W.
        • Guyot J.P.
        • Yates A.J.
        • Badylak S.F.
        Chemoattraction of progenitor cells by remodeling extracellular matrix scaffolds.
        Tissue Eng Part A. 2009; 15: 1119-1125
        • Crisan M.
        • Yap S.
        • Casteilla L.
        • et al.
        A perivascular origin for mesenchymal stem cells in multiple human organs.
        Cell Stem Cell. 2008; 3: 301-313
        • Zantop T.
        • Gilbert T.W.
        • Yoder M.C.
        • Badylak S.F.
        Extracellular matrix scaffolds are repopulated by bone marrow-derived cells in a mouse model of Achilles tendon reconstruction.
        J Orthopaed Res. 2006; 24: 1299-1309
        • Badylak S.F.
        • Park K.
        • Peppas N.
        • McCabe G.
        • Yoder M.
        Marrow-derived cells populate scaffolds composed of xenogeneic extracellular matrix.
        Exp Hematol. 2001; 29: 1310-1318
        • Altman G.H.
        • Horan R.L.
        • Martin I.
        • et al.
        Cell differentiation by mechanical stress.
        FASEB J. 2002; 16: 270-272
        • Matziolis G.
        • Tuischer J.
        • Kasper G.
        • et al.
        Simulation of cell differentiation in fracture healing: mechanically loaded composite scaffolds in a novel bioreactor system.
        Tissue Eng. 2006; 12: 201-208
        • Nieponice A.
        • Maul T.M.
        • Cumer J.M.
        • Soletti L.
        • Vorp D.A.
        Mechanical stimulation induces morphological and phenotypic changes in bone marrow-derived progenitor cells within a three-dimensional fibrin matrix.
        J Biomed Mater Res A. 2007; 81: 523-530
      1. Ratner BD. 9.21-Polymeric Implants. In: Krzysztof Matyjaszewski, Martin Möller, eds. Polymer Science: A Comprehensive Reference. Amsterdam, The Netherlands: Elsevier. 2012. p. 397–411.

        • Allman A.J.
        • McPherson T.B.
        • Badylak S.F.
        • et al.
        Xenogeneic extracellular matrix grafts elicit a TH2-restricted immune response.
        Transplantation. 2001; 71: 1631-1640
        • Allman A.J.
        • McPherson T.B.
        • Merrill L.C.
        • Badylak S.F.
        • Metzger D.W.
        The Th2-restricted immune response to xenogeneic small intestinal submucosa does not influence systemic protective immunity to viral and bacterial pathogens.
        Tissue Eng. 2002; 8: 53-62
        • Badylak S.F.
        • Valentin J.E.
        • Ravindra A.K.
        • McCabe G.P.
        • Stewart-Akers A.M.
        Macrophage phenotype as a determinant of biologic scaffold remodeling.
        Tissue Eng Part A. 2008; 14: 1835-1842
        • Brown B.N.
        • Londono R.
        • Tottey S.
        • et al.
        Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials.
        Acta Biomaterialia. 2012; 8: 978-987
        • Anderson J.M.
        Inflammatory response to implants.
        ASAIO Trans/American Society for Artificial Internal Organs. 1988; 34: 101-107
        • Palmer E.M.
        • Beilfuss B.A.
        • Nagai T.
        • Semnani R.T.
        • Badylak S.F.
        • van Seventer G.A.
        Human helper T cell activation and differentiation is suppressed by porcine small intestinal submucosa.
        Tissue Eng. 2002; 8: 893-900
        • Bach F.H.
        • Ferran C.
        • Hechenleitner P.
        • et al.
        Accommodation of vascularized xenografts: expression of “protective genes” by donor endothelial cells in a host Th2 cytokine environment.
        Nat Med. 1997; 3: 196-204
        • Chen N.
        • Field E.H.
        Enhanced type 2 and diminished type 1 cytokines in neonatal tolerance.
        Transplantation. 1995; 59: 933-941
        • Piccotti J.R.
        • Chan S.Y.
        • VanBuskirk A.M.
        • Eichwald E.J.
        • Bishop D.K.
        Are Th2 helper T lymphocytes beneficial, deleterious, or irrelevant in promoting allograft survival?.
        Transplantation. 1997; 63: 619-624
        • Gilbert T.W.
        • Stewart-Akers A.M.
        • Simmons-Byrd A.
        • Badylak S.F.
        Degradation and remodeling of small intestinal submucosa in canine Achilles tendon repair.
        J Bone Joint Surg Am Vol. 2007; 89: 621-630
        • Gilbert T.W.
        • Stewart-Akers A.M.
        • Badylak S.F.
        A quantitative method for evaluating the degradation of biologic scaffold materials.
        Biomaterials. 2007; 28: 147-150
        • Agrawal V.
        • Johnson S.A.
        • Reing J.
        • et al.
        Epimorphic regeneration approach to tissue replacement in adult mammals.
        Proc Natl Acad Sci U S A. 2010; 107: 3351-3355
        • Agrawal V.
        • Kelly J.
        • Tottey S.
        • et al.
        An isolated cryptic peptide influences osteogenesis and bone remodeling in an adult mammalian model of digit amputation.
        Tissue Eng Part A. 2011; 17: 3033-3044
        • Agrawal V.
        • Siu B.F.
        • Chao H.
        • et al.
        Partial characterization of the Sox2+ cell population in an adult murine model of digit amputation.
        Tissue Eng Part A. 2012; 18: 1454-1463
        • Medberry C.J.
        • Crapo P.M.
        • Siu B.F.
        • et al.
        Hydrogels derived from central nervous system extracellular matrix.
        Biomaterials. 2013; 34: 1033-1040
        • Sarikaya A.
        • Record R.
        • Wu C.C.
        • Tullius B.
        • Badylak S.
        • Ladisch M.
        Antimicrobial activity associated with extracellular matrices.
        Tissue Eng. 2002; 8: 63-71
        • Holtom P.D.
        • Shinar Z.
        • Benna J.
        • Patzakis M.J.
        Porcine small intestine submucosa does not show antimicrobial properties.
        Clin Orthopaed Relat Res. 2004; : 18-21
        • de Castro Bras L.E.
        • Shurey S.
        • Sibbons P.D.
        Evaluation of cross-linked and noncross-linked biologic prostheses for abdominal hernia repair.
        Hernia. 2012; 16: 77-89
        • Shah B.C.
        • Tiwari M.M.
        • Goede M.R.
        • et al.
        Not all biologics are equal!.
        Hernia. 2011; 15: 165-171
        • Collins B.H.
        • Chari R.S.
        • Magee J.C.
        • et al.
        Mechanisms of injury in porcine livers perfused with blood of patients with fulminant hepatic failure.
        Transplantation. 1994; 58: 1162-1171
        • Cooper D.K.
        • Good A.H.
        • Koren E.
        • et al.
        Identification of alpha-galactosyl and other carbohydrate epitopes that are bound by human anti-pig antibodies: relevance to discordant xenografting in man.
        Transplant Immunol. 1993; 1: 198-205
        • Galili U.
        • Macher B.A.
        • Buehler J.
        • Shohet S.B.
        Human natural anti-alpha-galactosyl IgG. II. The specific recognition of alpha (1–3)-linked galactose residues.
        J Exp Med. 1985; 162: 573-582