Advertisement

Stem cells for skeletal muscle regeneration: therapeutic potential and roadblocks

Published:November 18, 2013DOI:https://doi.org/10.1016/j.trsl.2013.11.006
      Conditions involving muscle wasting, such as muscular dystrophies, cachexia, and sarcopenia, would benefit from approaches that promote skeletal muscle regeneration. Stem cells are particularly attractive because they are able to differentiate into specialized cell types while retaining the ability to self-renew and, thus, provide a long-term response. This review will discuss recent advancements on different types of stem cells that have been attributed to be endowed with muscle regenerative potential. We will discuss the nature of these cells and their advantages and disadvantages in regards to therapy for muscular dystrophies.

      Abbreviations:

      DMD (Duchenne muscular dystrophy), ES cells (embryonic stem cells), iPS cells (induced pluripotent stem cells), MD (muscular dystrophy), MDSCs (muscle-derived stem cells), MyoD (myogenic differentiation antigen), Pax3 (paired box homeodomain 3), Pax7 (paired box homeodomain 7)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Emery A.E.
        The muscular dystrophies.
        Lancet. 2002; 359: 687-695
        • Emery A.E.
        Population frequencies of inherited neuromuscular diseases—a world survey.
        Neuromuscul Disord. 1991; 1: 19-29
        • Mendell J.R.
        • Kissel J.T.
        • Amato A.A.
        • et al.
        Myoblast transfer in the treatment of Duchenne's muscular dystrophy.
        N Engl J Med. 1995; 333: 832-838
        • Glass D.J.
        Signaling pathways perturbing muscle mass.
        Curr Opin Clin Nutr Metab Care. 2010; 13: 225-229
        • Acharyya S.
        • Butchbach M.E.
        • Sahenk Z.
        • et al.
        Dystrophin glycoprotein complex dysfunction: a regulatory link between muscular dystrophy and cancer cachexia.
        Cancer Cell. 2005; 8: 421-432
        • Janssen I.
        • Heymsfield S.B.
        • Ross R.
        Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability.
        J Am Geriatr Soc. 2002; 50: 889-896
        • Grounds M.D.
        Age-associated changes in the response of skeletal muscle cells to exercise and regeneration.
        Ann NY Acad Sci. 1998; 854: 78-91
        • Studitsky A.N.
        Types of new formation of cells from living substance in processes of histogenesis and regeneration.
        Zhur Obsch Biol. 1953; 4: 177-197
        • Carlson B.M.
        • Gutmann E.
        Development of contractile properties of minced muscle regenerates in the rat.
        Exp Neurol. 1972; 36: 239-249
        • Carlson B.M.
        • Faulkner J.A.
        Muscle transplantation between young and old rats: age of host determines recovery.
        Am J Physiol. 1989; 256: C1262-C1266
        • Zacks S.I.
        • Sheff M.F.
        Age-related impeded regeneration of mouse minced anterior tibial muscle.
        Muscle Nerve. 1982; 5: 152-161
        • Brack A.S.
        • Conboy M.J.
        • Roy S.
        • et al.
        Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis.
        Science. 2007; 317: 807-810
        • Carlson M.E.
        • Conboy M.J.
        • Hsu M.
        • et al.
        Relative roles of TGF-beta1 and Wnt in the systemic regulation and aging of satellite cell responses.
        Aging Cell. 2009; 8: 676-689
        • Chakkalakal J.V.
        • Jones K.M.
        • Basson M.A.
        • Brack A.S.
        The aged niche disrupts muscle stem cell quiescence.
        Nature. 2012; 490: 355-360
        • Conboy I.M.
        • Conboy M.J.
        • Wagers A.J.
        • Girma E.R.
        • Weissman I.L.
        • Rando T.A.
        Rejuvenation of aged progenitor cells by exposure to a young systemic environment.
        Nature. 2005; 433: 760-764
        • Partridge T.A.
        • Morgan J.E.
        • Coulton G.R.
        • Hoffman E.P.
        • Kunkel L.M.
        Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts.
        Nature. 1989; 337: 176-179
        • Brussee V.
        • Tardif F.
        • Roy B.
        • Goulet M.
        • Sebille A.
        • Tremblay J.P.
        Successful myoblast transplantation in fibrotic muscles: no increased impairment by the connective tissue.
        Transplantation. 1999; 67: 1618-1622
        • Gussoni E.
        • Blau H.M.
        • Kunkel L.M.
        The fate of individual myoblasts after transplantation into muscles of DMD patients.
        Nat Med. 1997; 3: 970-977
        • Gussoni E.
        • Pavlath G.K.
        • Lanctot A.M.
        • et al.
        Normal dystrophin transcripts detected in Duchenne muscular-dystrophy patients after myoblast transplantation.
        Nature. 1992; 356: 435-438
        • Partridge T.
        • Lu Q.L.
        • Morris G.
        • Hoffman E.
        Is myoblast transplantation effective?.
        Nat Med. 1998; 4: 1208-1209
        • Tremblay J.P.
        • Malouin F.
        • Roy R.
        • et al.
        Results of a triple blind clinical study of myoblast transplantations without immunosuppressive treatment in young boys with Duchenne muscular dystrophy.
        Cell Transplant. 1993; 2: 99-112
        • Guerette B.
        • Skuk D.
        • Celestin F.
        • et al.
        Prevention by anti-LFA-1 of acute myoblast death following transplantation.
        J Immunol. 1997; 159: 2522-2531
        • Skuk D.
        • Caron N.J.
        • Goulet M.
        • Roy B.
        • Tremblay J.P.
        Resetting the problem of cell death following muscle-derived cell transplantation: detection, dynamics and mechanisms.
        J Neuropath Exp Neur. 2003; 62: 951-967
        • Qu Z.
        • Balkir L.
        • van Deutekom J.C.
        • Robbins P.D.
        • Pruchnic R.
        • Huard J.
        Development of approaches to improve cell survival in myoblast transfer therapy.
        J Cell Biol. 1998; 142: 1257-1267
        • Fan Y.
        • Maley M.
        • Beilharz M.
        • Grounds M.
        Rapid death of injected myoblasts in myoblast transfer therapy.
        Muscle Nerve. 1996; 19: 853-860
        • Skuk D.
        • Paradis M.
        • Goulet M.
        • Chapdelaine P.
        • Rothstein D.M.
        • Tremblay J.P.
        Intramuscular transplantation of human postnatal myoblasts generates functional donor-derived satellite cells.
        Mol Ther. 2010; 18: 1689-1697
        • Hill E.
        • Boontheekul T.
        • Mooney D.J.
        Regulating activation of transplanted cells controls tissue regeneration.
        Proc Natl Acad Sci U S A. 2006; 103: 2494-2499
        • Hill E.
        • Boontheekul T.
        • Mooney D.J.
        Designing scaffolds to enhance transplanted myoblast survival and migration.
        Tissue Eng. 2006; 12: 1295-1304
        • Goudenege S.
        • Lamarre Y.
        • Dumont N.
        • et al.
        Laminin-111: a potential therapeutic agent for Duchenne muscular dystrophy.
        Mol Ther. 2010; 18: 2155-2163
        • Collins C.A.
        • Olsen I.
        • Zammit P.S.
        • et al.
        Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche.
        Cell. 2005; 122: 289-301
        • Montarras D.
        • Morgan J.
        • Collins C.
        • et al.
        Direct isolation of satellite cells for skeletal muscle regeneration.
        Science. 2005; 309: 2064-2067
        • Seale P.
        • Sabourin L.A.
        • Girgis-Gabardo A.
        • Mansouri A.
        • Gruss P.
        • Rudnicki M.A.
        Pax7 is required for the specification of myogenic satellite cells.
        Cell. 2000; 102: 777-786
        • Mauro A.
        Satellite cell of skeletal muscle fibers.
        J Biophys Biochem Cytol. 1961; : 493-495
        • Bischoff R.
        A satellite cell mitogen from crushed adult muscle.
        Dev Biol. 1986; 115: 140-147
        • Buckingham M.
        • Bajard L.
        • Chang T.
        • et al.
        The formation of skeletal muscle: from somite to limb.
        J Anat. 2003; 202: 59-68
        • Montarras D.
        • L'Honore A.
        • Buckingham M.
        Lying low but ready for action: the quiescent muscle satellite cell.
        FEBS J. 2013; 280: 4036-4050
        • Zammit P.S.
        • Golding J.P.
        • Nagata Y.
        • Hudon V.
        • Partridge T.A.
        • Beauchamp J.R.
        Muscle satellite cells adopt divergent fates: a mechanism for self-renewal?.
        J Cell Biol. 2004; 166: 347-357
        • Halevy O.
        • Piestun Y.
        • Allouh M.Z.
        • et al.
        Pattern of Pax7 expression during myogenesis in the posthatch chicken establishes a model for satellite cell differentiation and renewal.
        Dev Dyn. 2004; 231: 489-502
        • Olguin H.C.
        • Olwin B.B.
        Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: a potential mechanism for self-renewal.
        Dev Biol. 2004; 275: 375-388
        • Cox D.M.
        • Du M.
        • Marback M.
        • et al.
        Phosphorylation motifs regulating the stability and function of myocyte enhancer factor 2A.
        J Biol Chem. 2003; 278: 15297-15303
        • Rosenblatt J.D.
        • Lunt A.I.
        • Parry D.J.
        • Partridge T.A.
        Culturing satellite cells from living single muscle fiber explants.
        In Vitro Cell Dev Biol Anim. 1995; 31: 773-779
        • Oustanina S.
        • Hause G.
        • Braun T.
        Pax7 directs postnatal renewal and propagation of myogenic satellite cells but not their specification.
        Embo J. 2004; 23: 3430-3439
        • Kuang S.
        • Charge S.B.
        • Seale P.
        • Huh M.
        • Rudnicki M.A.
        Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis.
        J Cell Biol. 2006; 172: 103-113
        • Relaix F.
        • Montarras D.
        • Zaffran S.
        • et al.
        Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells.
        JCell Biol. 2006; 172: 91-102
        • Kuang S.H.
        • Kuroda K.
        • Le Grand F.
        • Rudnicki M.A.
        Asymmetric self-renewal and commitment of satellite stem cells in muscle.
        Cell. 2007; 129: 999-1010
        • Sambasivan R.
        • Yao R.
        • Kissenpfennig A.
        • et al.
        Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration.
        Development. 2011; 138: 3647-3656
        • Rocheteau P.
        • Gayraud-Morel B.
        • Siegl-Cachedenier I.
        • Blasco M.A.
        • Tajbakhsh S.
        A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division.
        Cell. 2012; 148: 112-125
        • Troy A.
        • Cadwallader A.B.
        • Fedorov Y.
        • Tyner K.
        • Tanaka K.K.
        • Olwin B.B.
        Coordination of satellite cell activation and self-renewal by par-complex-dependent asymmetric activation of p38 alpha/beta MAPK.
        Cell Stem Cell. 2012; 11: 541-553
        • Sacco A.
        • Doyonnas R.
        • Kraft P.
        • Vitorovic S.
        • Blau H.M.
        Self-renewal and expansion of single transplanted muscle stem cells.
        Nature. 2008; 456: 502-506
        • Irintchev A.
        • Zeschnigk M.
        • Starzinski-Powitz A.
        • Wernig A.
        Expression pattern of M-cadherin in normal, denervated, and regenerating mouse muscles.
        Dev Dyn. 1994; 199: 326-337
        • Beauchamp J.R.
        • Heslop L.
        • Yu D.S.
        • et al.
        Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells.
        J Cell Biol. 2000; 151: 1221-1234
        • Cornelison D.D.
        • Wilcox-Adelman S.A.
        • Goetinck P.F.
        • Rauvala H.
        • Rapraeger A.C.
        • Olwin B.B.
        Essential and separable roles for Syndecan-3 and Syndecan-4 in skeletal muscle development and regeneration.
        Genes Dev. 2004; 18: 2231-2236
        • Burkin D.J.
        • Kaufman S.J.
        The alpha7beta1 integrin in muscle development and disease.
        Cell Tissue Res. 1999; 296: 183-190
        • Gnocchi V.F.
        • White R.B.
        • Ono Y.
        • Ellis J.A.
        • Zammit P.S.
        Further characterisation of the molecular signature of quiescent and activated mouse muscle satellite cells.
        PloS One. 2009; 4: e5205
        • Ratajczak M.Z.
        • Majka M.
        • Kucia M.
        • et al.
        Expression of functional CXCR4 by muscle satellite cells and secretion of SDF-1 by muscle-derived fibroblasts is associated with the presence of both muscle progenitors in bone marrow and hematopoietic stem/progenitor cells in muscles.
        Stem Cells. 2003; 21: 363-371
        • Meech R.
        • Gonzalez K.N.
        • Barro M.
        • et al.
        Barx2 is expressed in satellite cells and is required for normal muscle growth and regeneration.
        Stem Cells. 2012; 30: 253-265
        • Volonte D.
        • Liu Y.
        • Galbiati F.
        The modulation of caveolin-1 expression controls satellite cell activation during muscle repair.
        FASEB J. 2005; 19: 237-239
        • Fukada S.
        • Uezumi A.
        • Ikemoto M.
        • et al.
        Molecular signature of quiescent satellite cells in adult skeletal muscle.
        Stem Cells. 2007; 25: 2448-2459
        • Cornelison D.D.
        • Wold B.J.
        Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells.
        Dev Biol. 1997; 191: 270-283
        • Sherwood R.I.
        • Christensen J.L.
        • Conboy I.M.
        • et al.
        Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle.
        Cell. 2004; 119: 543-554
        • Cerletti M.
        • Jurga S.
        • Witczak C.A.
        • et al.
        Highly efficient, functional engraftment of skeletal muscle stem cells in dystrophic muscles.
        Cell. 2008; 134: 37-47
        • Tanaka K.K.
        • Hall J.K.
        • Troy A.A.
        • Cornelison D.D.W.
        • Majka S.M.
        • Olwin B.B.
        Syndecan-4-expressing muscle progenitor cells in the SP engraft as satellite cells during muscle regeneration.
        Cell Stem Cell. 2009; 4: 217-225
        • Bosnakovski D.
        • Xu Z.
        • Li W.
        • et al.
        Prospective isolation of skeletal muscle stem cells with a Pax7 reporter.
        Stem Cells. 2008; 26: 3194-3204
        • Sambasivan R.
        • Gayraud-Morel B.
        • Dumas G.
        • et al.
        Distinct regulatory cascades govern extraocular and pharyngeal arch muscle progenitor cell fates.
        Dev Cell. 2009; 16: 810-821
        • Gilbert P.M.
        • Havenstrite K.L.
        • Magnusson K.E.
        • et al.
        Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture.
        Science. 2010; 329: 1078-1081
        • Bentzinger C.F.
        • Wang Y.X.
        • von Maltzahn J.
        • Soleimani V.D.
        • Yin H.
        • Rudnicki M.A.
        Fibronectin regulates Wnt7a signaling and satellite cell expansion.
        Cell Stem Cell. 2013; 12: 75-87
        • Kawabe Y.
        • Wang Y.X.
        • McKinnell I.W.
        • Bedford M.T.
        • Rudnicki M.A.
        Carm1 regulates Pax7 transcriptional activity through MLL1/2 recruitment during asymmetric satellite stem cell divisions.
        Cell Stem Cell. 2012; 11: 333-345
        • Arpke R.W.
        • Darabi R.
        • Mader T.L.
        • et al.
        A new immuno-dystrophin-deficient model, the NSG-Mdx mouse, provides evidence for functional improvement following allogeneic satellite cell transplantation.
        Stem Cells. 2013; 31: 1611-1620
        • Dreyer H.C.
        • Blanco C.E.
        • Sattler F.R.
        • Schroeder E.T.
        • Wiswell R.A.
        Satellite cell numbers in young and older men 24 hours after eccentric exercise.
        Muscle Nerve. 2006; 33: 242-253
        • Maier F.
        • Bornemann A.
        Comparison of the muscle fiber diameter and satellite cell frequency in human muscle biopsies.
        Muscle Nerve. 1999; 22: 578-583
        • Kadi F.
        • Charifi N.
        • Denis C.
        • Lexell J.
        Satellite cells and myonuclei in young and elderly women and men.
        Muscle Nerve. 2004; 29: 120-127
        • Crameri R.M.
        • Langberg H.
        • Magnusson P.
        • et al.
        Changes in satellite cells in human skeletal muscle after a single bout of high intensity exercise.
        J Physiol. 2004; 558: 333-340
        • Qu-Petersen Z.
        • Deasy B.
        • Jankowski R.
        • et al.
        Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration.
        J Cell Biol. 2002; 157: 851-864
        • Deasy B.M.
        • Jankowski R.J.
        • Huard J.
        Muscle-derived stem cells: characterization and potential for cell-mediated therapy.
        Blood Cells Mol Dis. 2001; 27: 924-933
        • Torrente Y.
        • Tremblay J.P.
        • Pisati F.
        • et al.
        Intraarterial injection of muscle-derived CD34(+)Sca-1(+) stem cells restores dystrophin in mdx mice.
        J Cell Biol. 2001; 152: 335-348
        • Mueller G.M.
        • O'Day T.
        • Watchko J.F.
        • Ontell M.
        Effect of injecting primary myoblasts versus putative muscle-derived stem cells on mass and force generation in mdx mice.
        Hum Gene Ther. 2002; 13: 1081-1090
        • Chirieleison S.M.
        • Feduska J.M.
        • Schugar R.C.
        • Askew Y.
        • Deasy B.M.
        Human muscle-derived cell populations isolated by differential adhesion rates: phenotype and contribution to skeletal muscle regeneration in Mdx/SCID mice.
        Tissue Eng Pt A. 2012; 18: 232-241
        • Lavasani M.
        • Lu A.
        • Thompson S.D.
        • Robbins P.D.
        • Huard J.
        • Niedernhofer L.J.
        Isolation of muscle-derived stem/progenitor cells based on adhesion characteristics to collagen-coated surfaces.
        Methods Mol Biol. 2013; 976: 53-65
        • De Angelis L.
        • Berghella L.
        • Coletta M.
        • et al.
        Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration.
        The J Cell Biol. 1999; 147: 869-878
        • Minasi M.G.
        • Riminucci M.
        • De Angelis L.
        • et al.
        The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues.
        Development. 2002; 129: 2773-2783
        • Sampaolesi M.
        • Blot S.
        • D'Antona G.
        • et al.
        Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs.
        Nature. 2006; 444: 574-579
        • Sampaolesi M.
        • Torrente Y.
        • Innocenzi A.
        • et al.
        Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts.
        Science. 2003; 301: 487-492
        • Dellavalle A.
        • Sampaolesi M.
        • Tonlorenzi R.
        • et al.
        Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells.
        Nat Cell Biol. 2007; 9: 255-267
        • Dellavalle A.
        • Maroli G.
        • Covarello D.
        • et al.
        Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells.
        Nat Commun. 2011; 2: 499
        • Tedesco F.S.
        • Hoshiya H.
        • D'Antona G.
        • et al.
        Stem cell-mediated transfer of a human artificial chromosome ameliorates muscular dystrophy.
        Sci Transl Med. 2011; 3: 96ra78
        • Quattrocelli M.
        • Palazzolo G.
        • Floris G.
        • et al.
        Intrinsic cell memory reinforces myogenic commitment of pericyte-derived iPSCs.
        J Pathol. 2011; 223: 593-603
        • Evans M.J.
        • Kaufman M.H.
        Establishment in culture of pluripotential cells from mouse embryos.
        Nature. 1981; 292: 154-156
        • Martin G.R.
        Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells.
        Proc Natl Acad Sci U S A. 1981; 78: 7634-7638
        • Thomson J.A.
        • Itskovitz-Eldor J.
        • Shapiro S.S.
        • et al.
        Embryonic stem cell lines derived from human blastocysts.
        Science. 1998; 282: 1145-1147
        • Wiles M.V.
        • Keller G.
        Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture.
        Development. 1991; 111: 259-267
        • Kennedy M.
        • Firpo M.
        • Choi K.
        • et al.
        A common precurson for primitive erythropoiesis and definitive haematopoiesis.
        Nature. 1997; 386: 488-493
        • Kaufman D.S.
        • Woll P.S.
        • Martin C.H.
        • Linehan J.L.
        • Tian X.
        CD34+ cells derived from human embryonic stem cells demonstrate hematopoietic stem cell potential in vitro and in vivo.
        Blood. 2004; 104: 163a
        • Müller M.
        • Fleischmann B.K.
        • Selbert S.
        • et al.
        Selection of ventricular-like cardiomyocytes from ES cells in vitro.
        FASEB J. 2000; 14: 2540-2548
        • Klug M.G.
        • Soonpaa M.H.
        • Koh G.Y.
        • Field L.J.
        Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts.
        J Clin Invest. 1996; 98: 216-224
        • Vittet D.
        • Prandini M.H.
        • Berthier R.
        • et al.
        Embryonic stem cells differentiate in vitro to endothelial cells through successive maturation steps.
        Blood. 1996; 88: 3424-3431
        • Rohwedel J.
        • Maltsev V.
        • Bober E.
        • Arnold H.H.
        • Hescheler J.
        • Wobus A.M.
        Muscle cell differentiation of embryonic stem cells reflects myogenesis in vivo: developmentally regulated expression of myogenic determination genes and functional expression of ionic currents.
        Dev Biol. 1994; 164: 87-101
        • Bhagavati S.
        • Xu W.
        Generation of skeletal muscle from transplanted embryonic stem cells in dystrophic mice.
        Biochem Biophys Res Commun. 2005; 333: 644-649
        • Barberi T.
        • Bradbury M.
        • Dincer Z.
        • Panagiotakos G.
        • Socci N.D.
        • Studer L.
        Derivation of engraftable skeletal myoblasts from human embryonic stem cells.
        Nat Med. 2007; 13: 642-648
        • Darabi R.
        • Gehlbach K.
        • Bachoo R.M.
        • et al.
        Functional skeletal muscle regeneration from differentiating embryonic stem cells.
        Nat Med. 2008; 14: 134-143
        • Darabi R.
        • Santos F.N.C.
        • Filareto A.
        • et al.
        Assessment of the myogenic stem cell compartment following transplantation of Pax3/Pax7-induced embryonic stem cell-derived progenitors.
        Stem Cells. 2011; 29: 777-790
        • Darabi R.
        • Baik J.
        • Clee M.
        • Kyba M.
        • Tupler R.
        • Perlingeiro R.C.
        Engraftment of embryonic stem cell-derived myogenic progenitors in a dominant model of muscular dystrophy.
        Exp Neurol. 2009; 220: 212-216
        • Filareto A.
        • Darabi R.
        • Perlingeiro R.C.R.
        Engraftment of ES-derived myogenic progenitors in a severe mouse model of muscular dystrophy.
        J Stem Cell Res Ther. 2012; 220: 212-216
        • Sakurai H.
        • Okawa Y.
        • Inami Y.
        • Nishio N.
        • Isobe K.
        Paraxial mesodermal progenitors derived from mouse embryonic stem cells contribute to muscle regeneration via differentiation into muscle satellite cells.
        Stem Cells. 2008; 26: 1865-1873
        • Sakurai H.
        • Inami Y.
        • Tamamura Y.
        • Yoshikai T.
        • Sehara-Fujisawa A.
        • Isobe K.
        Bidirectional induction toward paraxial mesodermal derivatives from mouse ES cells in chemically defined medium.
        Stem Cell Res. 2009; 3: 157-169
        • Chang H.
        • Yoshimoto M.
        • Umeda K.
        • et al.
        Generation of transplantable, functional satellite-like cells from mouse embryonic stem cells.
        FASEB J. 2009; 23: 1907-1919
        • Fukada S.
        • Higuchi S.
        • Segawa M.
        • et al.
        Purification and cell-surface marker characterization of quiescent satellite cells from murine skeletal muscle by a novel monoclonal antibody.
        Exp Cell Res. 2004; 296: 245-255
        • Takahashi K.
        • Yamanaka S.
        Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.
        Cell. 2006; 126: 663-676
        • Wernig M.
        • Meissner A.
        • Foreman R.
        • et al.
        In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state.
        Nature. 2007; 448: 318-324
        • Okita K.
        • Ichisaka T.
        • Yamanaka S.
        Generation of germline-competent induced pluripotent stem cells.
        Nature. 2007; 448: 313-317
        • Maherali N.
        • Sridharan R.
        • Xie W.
        • et al.
        Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution.
        Cell Stem Cell. 2007; 1: 55-70
        • Takahashi K.
        • Tanabe K.
        • Ohnuki M.
        • et al.
        Induction of pluripotent stem cells from adult human fibroblasts by defined factors.
        Cell. 2007; 131: 861-872
        • Park I.H.
        • Zhao R.
        • West J.A.
        • et al.
        Reprogramming of human somatic cells to pluripotency with defined factors.
        Nature. 2008; 451: 141-146
        • Yu J.
        • Vodyanik M.A.
        • Smuga-Otto K.
        • et al.
        Induced pluripotent stem cell lines derived from human somatic cells.
        Science. 2007; 318: 1917-1920
        • Blelloch R.
        • Venere M.
        • Yen J.
        • Ramalho-Santos M.
        Generation of induced pluripotent stem cells in the absence of drug selection.
        Cell Stem Cell. 2007; 1: 245-247
        • Byrne J.A.
        • Pedersen D.A.
        • Clepper L.L.
        • et al.
        Producing primate embryonic stem cells by somatic cell nuclear transfer.
        Nature. 2007; 450: 497-502
        • Park I.H.
        • Arora N.
        • Huo H.
        • et al.
        Disease-specific induced pluripotent stem cells.
        Cell. 2008; 134: 877-886
        • Mizuno Y.
        • Chang H.
        • Umeda K.
        • et al.
        Generation of skeletal muscle stem/progenitor cells from murine induced pluripotent stem cells.
        FASEB J. 2010; 24: 2245-2253
        • Darabi R.
        • Pan W.
        • Bosnakovski D.
        • Baik J.
        • Kyba M.
        • Perlingeiro R.C.
        Functional myogenic engraftment from mouse iPS cells.
        Stem Cell Rev Rep. 2011; 7: 948-957
        • Darabi R.
        • Arpke R.W.
        • Irion S.
        • et al.
        Human ES- and iPS-derived myogenic progenitors restore dystrophin and improve contractility upon transplantation in dystrophic mice.
        Cell Stem Cell. 2012; 10: 610-619
        • Goudenege S.
        • Lebel C.
        • Huot N.B.
        • et al.
        Myoblasts derived from normal hESCs and dystrophic hiPSCs efficiently fuse with existing muscle fibers following transplantation.
        Mol Ther. 2012; 20: 2153-2167
        • Iacovino M.
        • Bosnakovski D.
        • Fey H.
        • et al.
        Inducible cassette exchange: a rapid and efficient system enabling conditional gene expression in embryonic stem and primary cells.
        Stem Cells. 2011; 29: 1580-1588
        • Awaya T.
        • Kato T.
        • Mizuno Y.
        • et al.
        Selective development of myogenic mesenchymal cells from human embryonic and induced pluripotent stem cells.
        PloS One. 2012; 7: e51638
        • Filareto A.
        • Parker S.
        • Darabi R.
        • et al.
        An ex vivo gene therapy approach to treat muscular dystrophy using inducible pluripotent stem cells.
        Nat Commun. 2013; 4: 1549
        • Deconinck A.E.
        • Rafael J.A.
        • Skinner J.A.
        • et al.
        Utrophin-dystrophin-deficient mice as a model for Duchenne muscular dystrophy.
        Cell. 1997; 90: 717-727
        • Grady R.M.
        • Teng H.
        • Nichol M.C.
        • Cunningham J.C.
        • Wilkinson R.S.
        • Sanes J.R.
        Skeletal and cardiac myopathies in mice lacking utrophin and dystrophin: a model for Duchenne muscular dystrophy.
        Cell. 1997; 90: 729-738
        • Odom G.L.
        • Gregorevic P.
        • Allen J.M.
        • Finn E.
        • Chamberlain J.S.
        Microutrophin delivery through rAAV6 increases lifespan and improves muscle function in dystrophic dystrophin/utrophin-deficient mice.
        Mol Ther. 2008; 16: 1539-1545
        • Sonnemann K.J.
        • Heun-Johnson H.
        • Turner A.J.
        • Baltgalvis K.A.
        • Lowe D.A.
        • Ervasti J.M.
        Functional substitution by TAT-utrophin in dystrophin-deficient mice.
        PLoS Med. 2009; 6: e1000083
        • Tinsley J.M.
        • Potter A.C.
        • Phelps S.R.
        • Fisher R.
        • Trickett J.I.
        • Davies K.E.
        Amelioration of the dystrophic phenotype of mdx mice using a truncated utrophin transgene.
        Nature. 1996; 384: 349-353
        • Tinsley J.
        • Deconinck N.
        • Fisher R.
        • et al.
        Expression of full-length utrophin prevents muscular dystrophy in mdx mice.
        Nat Med. 1998; 4: 1441-1444
        • Tedesco F.S.
        • Gerli M.F.
        • Perani L.
        • et al.
        Transplantation of genetically corrected human iPSC-derived progenitors in mice with limb-girdle muscular dystrophy.
        Science Transl Med. 2012; 4: 140ra89
        • Fong C.Y.
        • Gauthaman K.
        • Bongso A.
        Teratomas from pluripotent stem cells: a clinical hurdle.
        J Cell Biochem. 2010; 111: 769-781
        • Fu W.
        • Wang S.J.
        • Zhou G.D.
        • Liu W.
        • Cao Y.
        • Zhang W.J.
        Residual undifferentiated cells during differentiation of induced pluripotent stem cells in vitro and in vivo.
        Stem Cells Dev. 2012; 21: 521-529