Adipose stem cells: biology and clinical applications for tissue repair and regeneration

Published:December 05, 2013DOI:
      There is a clear clinical need for cell therapies to repair or regenerate tissue lost to disease or trauma. Adipose tissue is a renewable source of stem cells, called adipose-derived stem cells (ASCs), that release important growth factors for wound healing, modulate the immune system, decrease inflammation, and home in on injured tissues. Therefore, ASCs may offer great clinical utility in regenerative therapies for afflictions such as Parkinson's disease and Alzheimer's disease, spinal cord injury, heart disease, and rheumatoid arthritis, or for replacing lost tissue from trauma or tumor removal. This article discusses the regenerative properties of ASCs that can be harnessed for clinical applications, and explores current and future challenges for ASC clinical use. Such challenges include knowledge-based deficiencies, hurdles for translating research to the clinic, and barriers to establishing a new paradigm of medical care. Clinical experience with ASCs, ASCs as a portion of the heterogeneous stromal cell population extracted enzymatically from adipose tissue, and stromal vascular fraction are also described.


      ASC (adipose-derived stem cell), BMSC (bone marrow-derived stem cell), CAL (cell-assisted lipotransfer), GVHD (graft-versus-host disease), IL (interleukin), SVF (stromal vascular fraction)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Eto H.
        • Suga H.
        • Matsumoto D.
        • et al.
        Characterization of structure and cellular components of aspirated and excised adipose tissue.
        Plast Reconstr Surg. 2009; 124: 1087-1097
        • Aksu A.E.
        • Rubin J.P.
        • Dudas J.R.
        • et al.
        Role of gender and anatomical region on induction of osteogenic differentiation of human adipose-derived stem cells.
        Ann Plast Surg. 2008; 60: 306-322
        • Merceron C.
        • Portron S.
        • Masson M.
        • et al.
        The effect of two- and three-dimensional cell culture on the chondrogenic potential of human adipose-derived mesenchymal stem cells after subcutaneous transplantation with an injectable hydrogel.
        Cell Transplant. 2011; 20: 1575-1588
        • Wosnitza M.
        • Hemmrich K.
        • Groger A.
        • et al.
        Plasticity of human adipose stem cells to perform adipogenic and endothelial differentiation.
        Differentiation. 2007; 75: 12-23
        • Bourin P.
        • Bunnell B.A.
        • Casteilla L.
        • et al.
        Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT).
        Cytotherapy. 2013; 15: 641-648
        • Lee R.H.
        • Kim B.
        • Choi I.
        • et al.
        Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue.
        Cell Physiol Biochem. 2004; 14: 311-324
        • Kapur S.K.
        • Katz A.J.
        Review of the adipose derived stem cell secretome.
        Biochimie. 2013; 5: 103-110
        • Salgado A.J.
        • Reis R.L.
        • Sousa N.
        • Gimble J.M.
        Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine.
        Curr Stem Cell Res Ther. 2010; 5: 103-110
        • Zuk P.A.
        • Zhu M.
        • Ashjian P.
        • et al.
        Human adipose tissue is a source of multipotent stem cells.
        Mol Biol Cell. 2002; 13: 4279-4295
        • McIntosh K.R.
        • Frazier T.
        • Rowan B.G.
        • Gimble J.M.
        Evolution and future prospects of adipose-derived immunomodulatory cell therapeutics.
        Exp Rev Clin Immunol. 2013; 9: 175-184
        • Qin J.B.
        • Li K.A.
        • Li X.X.
        • et al.
        Long-term MRI tracking of dual-labeled adipose-derived stem cells homing into mouse carotid artery injury.
        Int J Nanomed. 2012; 7: 5191-5203
        • Kiess W.
        • Petzold S.
        • Töpfer M.
        • et al.
        Adipocytes and adipose tissue.
        Best Pract Res Clin Endocrinol Metab. 2008; 22: 135-153
        • Kim W.S.
        • Park B.S.
        • Sung J.H.
        The wound-healing and antioxidant effects of adipose-derived stem cells.
        Expert Opin Biol Ther. 2009; 9: 879-887
        • Hampel U.
        • Klonisch T.
        • Sel S.
        • et al.
        Insulin-like factor 3 promotes wound healing at the ocular surface.
        Endocrinology. 2013; 154: 2034-2045
        • Cui L.
        • Yin S.
        • Liu W.
        • Li N.
        • Zhang W.
        • Cao Y.
        Expanded adipose-derived stem cells suppress mixed lymphocyte reaction by secretion of prostaglandin E2.
        Tissue Eng. 2007; 13: 1185-1195
        • de Vasconcellos Machado C.
        • da Silva Telles P.D.
        • Nascimento I.L.O.
        Immunological characteristics of mesenchymal stem cells.
        Rev Bras Hematol Hemoter. 2013; 35: 62-67
        • Kilroy G.E.
        • Foster S.J.
        • Wu X.
        • et al.
        Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors.
        J Cell Physiol. 2007; 212: 702-709
        • Nakagami H.
        • Maeda K.
        • Morishita R.
        • et al.
        Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue-derived stromal cells.
        Arterioscler Thromb Vasc Biol. 2005; 25: 2542-2547
        • Maumus M.
        • Manferdini C.
        • Toupet K.
        • et al.
        Adipose mesenchymal stem cells protect chondrocytes from degeneration associated with osteoarthritis.
        Stem Cell Res. 2013; 11: 834-844
        • Yang D.
        • Wang W.
        • Li L.
        • et al.
        The relative contribution of paracrine effect versus direct differentiation on adipose-derived stem cell transplantation mediated cardiac repair.
        PLoS One. 2013; 8: e59020
        • Ikegame Y.
        • Yamashita K.
        • Hayashi S.
        • et al.
        Comparison of mesenchymal stem cells from adipose tissue and bone marrow for ischemic stroke therapy.
        Cytotherapy. 2011; 13: 675-685
        • Gnecchi M.
        • Zhang Z.
        • Ni A.
        • Dzau V.J.
        Paracrine mechanisms in adult stem cell signaling and therapy.
        Circ Res. 2008; 103: 1204-1219
        • Marconi S.
        • Castiglione G.
        • Turano E.
        • et al.
        Human adipose-derived mesenchymal stem cells systemically injected promote peripheral nerve regeneration in the mouse model of sciatic crush.
        Tissue Eng A. 2012; 18: 1264-1272
        • Ryu H.-H.
        • Lim J.-H.
        • Byeon Y.-E.
        • et al.
        Functional recovery and neural differentiation after transplantation of allogenic adipose-derived stem cells in a canine model of acute spinal cord injury.
        J Vet Sci. 2009; 10: 273-284
        • Marconi S.
        • Bonaconsa M.
        • Scambi I.
        • et al.
        Systemic treatment with adipose-derived mesenchymal stem cells ameliorates clinical and pathological features in the amyotrophic lateral sclerosis murine model.
        Neuroscience. 2013; 248C: 333-343
        • Hong S.J.
        • Hou D.
        • Brinton T.J.
        • et al.
        Intracoronary and retrograde coronary venous myocardial delivery of adipose-derived stem cells in swine infarction lead to transient myocardial trapping with predominant pulmonary redistribution.
        Catheter Cardiovasc Interv. 2014; 83: e17-e25
        • Yang J.
        • Zhang H.
        • Zhao L.
        • Chen Y.
        • Liu H.
        • Zhang T.
        Human adipose tissue-derived stem cells protect impaired cardiomyocytes from hypoxia/reoxygenation injury through hypoxia-induced paracrine mechanism.
        Cell Biochem Funct. 2012; 30: 505-514
        • Egashira Y.
        • Sugitani S.
        • Suzuki Y.
        • et al.
        The conditioned medium of murine and human adipose-derived stem cells exerts neuroprotective effects against experimental stroke model.
        Brain Res. 2012; 1461: 87-95
        • Huang S.-P.
        • Hsu C.-C.
        • Chang S.-C.
        • et al.
        Adipose-derived stem cells seeded on acellular dermal matrix grafts enhance wound healing in a murine model of a full-thickness defect.
        Ann Plast Surg. 2012; 69: 656-662
        • Parsons J.T.
        Focal adhesion kinase: the first ten years.
        J Cell Sci. 2003; 116: 1409-1416
        • Suga H.
        • Eto H.
        • Shigeura T.
        • et al.
        IFATS collection: fibroblast growth factor-2-induced hepatocyte growth factor secretion by adipose-derived stromal cells inhibits postinjury fibrogenesis through a c-Jun N-terminal kinase-dependent mechanism.
        Stem Cells. 2009; 27: 238-249
        • Bhang S.H.
        • Cho S.W.
        • Lim J.M.
        • et al.
        Locally delivered growth factor enhances the angiogenic efficacy of adipose-derived stromal cells transplanted to ischemic limbs.
        Stem Cells. 2009; 27: 1976-1986
        • Shurin M.R.
        Dual role of immunomodulation by anticancer chemotherapy.
        Nat Med. 2013; 19: 20-22
        • Cao Y.
        • Sun Z.
        • Liao L.
        • Meng Y.
        • Han Q.
        • Zhao R.C.
        Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo.
        Biochem Biophys Res Commun. 2005; 332: 370-379
        • Gomillion C.T.
        • Burg K.J.
        Stem cells and adipose tissue engineering.
        Biomaterials. 2006; 27: 6052-6063
        • Seo M.J.
        • Suh S.Y.
        • Bae Y.C.
        • Jung J.S.
        Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo.
        Biochem Biophys Res Commun. 2005; 328: 258-264
        • Fang D.
        • Guo Y.
        • Li S.
        • Ning Z.
        [Research on the adipose-derived stem cells combined with the extract of Eucommiol scaffold material to repair the rabbit mandible defect].
        West China J Stomatol. 2013; 31: 65-69
        • Arrigoni E.
        • de Girolamo L.
        • Di Giancamillo A.
        • et al.
        Adipose-derived stem cells and rabbit bone regeneration: histomorphometric, immunohistochemical and mechanical characterization.
        J Orthop Sci. 2013; 18: 331-339
        • Choi J.W.
        • Park E.J.
        • Shin H.S.
        • Shin I.S.
        • Ra J.C.
        • Koh K.S.
        In vivo differentiation of undifferentiated human adipose tissue-derived mesenchymal stem cells in critical-sized calvarial bone defects.
        Ann Plast Surg. 2014; 72: 225-233
        • Xie X.
        • Wang Y.
        • Zhao C.
        • et al.
        Comparative evaluation of MSCs from bone marrow and adipose tissue seeded in PRP-derived scaffold for cartilage regeneration.
        Biomaterials. 2012; 33: 7008-7018
        • Ogushi Y.
        • Sakai S.
        • Kawakami K.
        Adipose tissue engineering using adipose-derived stem cells enclosed within an injectable carboxymethylcellulose-based hydrogel.
        J Tissue Eng Regen Med. 2012; 7: 884-892
        • Zografou A.
        • Papadopoulos O.
        • Tsigris C.
        • et al.
        Autologous transplantation of adipose-derived stem cells enhances skin graft survival and wound healing in diabetic rats.
        Ann Plast Surg. 2013; 71: 225-232
        • Locke M.
        • Windsor J.
        • Dunbar P.R.
        Human adipose-derived stem cells: isolation, characterization and applications in surgery.
        ANZ J Surg. 2009; 79: 235-244
        • Erickson G.R.
        • Gimble J.M.
        • Franklin D.M.
        • Rice H.E.
        • Awad H.
        • Guilak F.
        Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo.
        Biochem Biophys Res Commun. 2002; 290: 763-769
        • Kawaguchi N.
        • Toriyama K.
        • Nicodemou-Lena E.
        • Inou K.
        • Torii S.
        • Kitagawa Y.
        Reconstituted basement membrane potentiates in vivo adipogenesis of 3T3-F442A cells.
        Cytotechnology. 1999; 31: 215-220
        • Hicok K.C.
        • Du Laney T.V.
        • Zhou Y.S.
        • et al.
        Human adipose-derived adult stem cells produce osteoid in vivo.
        Tissue Eng. 2004; 10: 371-380
      1. Lum LY, Cher NLC, Williams CG, Elisseeff JH. An extracellular matrix extract for tissue-engineered cartilage Cartrigel modulates the chondrogenic effect of TGF-3 on mesenchymal stem cells in photopolymerizing hydrogels. 2003;22:71–6.

        • Lee J.
        • Cuddihy M.J.
        • Kotov N.A.
        Three-dimensional cell culture matrices: state of the art.
        Tissue Eng B. 2008; 14: 61-86
        • Chai C.
        • Leong K.W.
        Biomaterials approach to expand and direct differentiation of stem cells.
        Mol Ther. 2007; 15: 467-480
        • Lea-Currie Y.R.
        • Duffin D.J.
        • Buehrer B.M.
        Use of adipose-derived stem cells in high-throughput screening to identify modulators of lipogenesis.
        Methods Mol Biol. 2011; 702: 359-368
        • Gerlach J.C.
        • Lin Y.C.
        • Brayfield C.A.
        • et al.
        Adipogenesis of human adipose-derived stem cells within three-dimensional hollow fiber-based bioreactors.
        Tissue Eng C. 2012; 18: 54-61
        • Gimble J.M.
        • Nuttall M.E.
        Adipose-derived stromal/stem cells (ASC) in regenerative medicine: pharmaceutical applications.
        Curr Pharma Design. 2011; 17: 332-339
        • McIntosh K.R.
        Evaluation of cellular and humoral immune responses to allogeneic adipose-derived stem/stromal cells.
        Methods Mol Biol. 2011; 702: 133-150
        • Puissant B.
        • Barreau C.
        • Bourin P.
        • et al.
        Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells.
        Br J Haematol. 2005; 129: 118-129
        • Yanez R.
        • Lamana M.L.
        • García-Castro J.
        • Colmenero I.
        • Ramirez M.
        • Bueren J.A.
        Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease.
        Stem Cells. 2006; 24: 2582-2591
        • González M.A.
        • Gonzalez–Rey E.
        • Rico L.
        • Büscher D.
        • Delgado M.
        Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses.
        Gastroenterology. 2009; 136: 978-989
        • González M.A.
        • Gonzalez-Rey E.
        • Rico L.
        • Büscher D.
        • Delgado M.
        Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells.
        Arthritis Rheum. 2009; 60: 1006-1019
        • Gagnon A.
        • Chaar J.
        • Sorisky A.
        Thy-1 expression during 3T3-L1 adipogenesis.
        Hormone Metab Res. 2004; 36: 728-731
        • Li M.O.
        • Flavell R.A.
        Contextual regulation of inflammation: a duet by transforming growth factor-β and interleukin-10.
        Immunity. 2008; 28: 468-476
        • Hammami I.
        • Chen J.
        • Bronte V.
        • DeCrescenzo G.
        • Jolicoeur M.
        L-glutamine is a key parameter in the immunosuppression phenomenon.
        Biochem Biophys Res Commun. 2012; 425: 724-729
        • Gonzalez-Rey E.
        • Anderson P.
        • González M.A.
        • Rico L.
        • Büscher D.
        • Delgado M.
        Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis.
        Gut. 2009; 58: 929-939
        • McIntosh K.
        • Zvonic S.
        • Garrett S.
        • et al.
        The immunogenicity of human adipose-derived cells: temporal changes in vitro.
        Stem Cells. 2006; 24: 1246-1253
        • Kang S.K.
        • Lee D.H.
        • Bae Y.C.
        • Kim H.K.
        • Baik S.Y.
        • Jung J.S.
        Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats.
        Exp Neurol. 2003; 183: 355-366
        • Valina C.
        • Pinkernell K.
        • Song Y.-H.
        • et al.
        Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction.
        Eur Heart J. 2007; 28: 2667-2677
        • Zhang D.-Z.
        • Gai L.-Y.
        • Liu H.-W.
        • Jin Q.-H.
        • Huang J.-H.
        • Zhu X.-Y.
        Transplantation of autologous adipose-derived stem cells ameliorates cardiac function in rabbits with myocardial infarction.
        Chin Med J. 2007; 120: 300
        • Baer P.C.
        • Schubert R.
        • Bereiter-Hahn J.
        • Plößer M.
        • Geiger H.
        Expression of a functional epidermal growth factor receptor on human adipose-derived mesenchymal stem cells and its signaling mechanism.
        Eur J Cell Biol. 2009; 88: 273-283
        • Stienstra R.
        • van Diepen J.A.
        • Tack C.J.
        • et al.
        Inflammasome is a central player in the induction of obesity and insulin resistance.
        Proc Natl Acad Sci. 2011; 108: 15324-15329
        • Barry F.P.
        • Murphy J.M.
        Mesenchymal stem cells: clinical applications and biological characterization.
        Int J Biochem Cell Biol. 2004; 36: 568-584
        • Kolle S.F.
        • Fischer-Nielsen A.
        • Mathiasen A.B.
        • et al.
        Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival: a randomised placebo-controlled trial.
        Lancet. 2013; 382: 1113-1120
        • Carvalho P.P.
        • Gimble J.M.
        • Dias I.R.
        • Gomes M.E.
        • Reis R.L.
        Xenofree enzymatic products for the isolation of human adipose-derived stromal/stem cells.
        Tissue Eng C. 2013; 19: 473-478
        • Francis M.P.
        • Sachs P.C.
        • Elmore L.W.
        • Holt S.E.
        Isolating adipose-derived mesenchymal stem cells from lipoaspirate blood and saline fraction.
        Organogenesis. 2010; 6: 11-14
        • Bianchi F.
        • Maioli M.
        • Leonardi E.
        • et al.
        A new non-enzymatic method and device to obtain a fat tissue derivative highly enriched in pericyte-like elements by mild mechanical forces from human lipoaspirates.
        Cell Transplant. 2013; 22: 2063-2077
        • Perez-Cano R.
        • Vranckx J.J.
        • Lasso J.M.
        • et al.
        Prospective trial of adipose-derived regenerative cell (ADRC)-enriched fat grafting for partial mastectomy defects: the RESTORE-2 trial.
        Eur J Surg Oncol. 2012; 38: 382-389
        • Yoshimura K.
        • Asano Y.
        • Aoi N.
        • et al.
        Progenitor-enriched adipose tissue transplantation as rescue for breast implant complications.
        Breast J. 2010; 16: 169-175
        • Yoshimura K.
        • Sato K.
        • Aoi N.
        • Kurita M.
        • Hirohi T.
        • Harii K.
        Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells.
        Aesthet Plast Surg. 2008; 32 (discussion 56–7): 48-55
        • Peltoniemi H.H.
        • Salmi A.
        • Miettinen S.
        • et al.
        Stem cell enrichment does not warrant a higher graft survival in lipofilling of the breast: a prospective comparative study.
        J Plast Reconstr Aesthet Surg. 2013; 66: 1494-1503
        • Trojahn Kolle S.F.
        • Oliveri R.S.
        • Glovinski P.V.
        • Elberg J.J.
        • Fischer-Nielsen A.
        • Drzewiecki K.T.
        Importance of mesenchymal stem cells in autologous fat grafting: a systematic review of existing studies.
        J Plast Surg Hand Surg. 2012; 46: 59-68
        • Sterodimas A.
        • de Faria J.
        • Nicaretta B.
        • Boriani F.
        Autologous fat transplantation versus adipose-derived stem cell-enriched lipografts: a study.
        Aesthet Surg J. 2011; 31: 682-693
        • Mailey B.
        • Saba S.
        • Baker J.
        • et al.
        A comparison of cell-enriched fat transfer to conventional fat grafting after aesthetic procedures using a patient satisfaction survey.
        Ann Plast Surg. 2013; 70: 410-415
        • Tanikawa D.Y.
        • Aguena M.
        • Bueno D.F.
        • Passos-Bueno M.R.
        • Alonso N.
        Fat grafts supplemented with adipose-derived stromal cells in the rehabilitation of patients with craniofacial microsomia.
        Plast Reconstruct Surg. 2013; 132: 141-152
        • Yoshimura K.
        • Sato K.
        • Aoi N.
        • et al.
        Cell-assisted lipotransfer for facial lipoatrophy: efficacy of clinical use of adipose-derived stem cells.
        Dermatol Surg. 2008; 34: 1178-1185
        • Koh K.S.
        • Oh T.S.
        • Kim H.
        • et al.
        Clinical application of human adipose tissue–derived mesenchymal stem cells in progressive hemifacial atrophy (Parry-Romberg disease) with microfat grafting techniques using 3-dimensional computed tomography and 3-dimensional camera.
        Ann Plast Surg. 2012; 69: 331-337
        • Mesimäki K.
        • Lindroos B.
        • Törnwall J.
        • et al.
        Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells.
        Int J Oral Maxillofac Surg. 2009; 38: 201-209
        • Lendeckel S.
        • Jodicke A.
        • Christophis P.
        • et al.
        Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report.
        J Craniomaxillofac Surg. 2004; 32: 370-373
      2. ClinicalTrials.Gov. Effectiveness of Adipose Tissue Derived Mesenchymal Stem Cells as Osteogenic Component in Composite Grafts (ROBUST). University Hospital, Basel, Switzerland. Accessed August 2013.

      3. ClinicalTrials.Gov. Development of Bone Grafts Using Adipose Derived Stem Cells and Different Scaffolds. University of Zurich. Accessed August 2013.

        • Garcia-Olmo D.
        • Herreros D.
        • Pascual M.
        • et al.
        Treatment of enterocutaneous fistula in Crohn's disease with adipose-derived stem cells: a comparison of protocols with and without cell expansion.
        Int J Colorect Dis. 2009; 24: 27-30
        • de la Portilla F.
        • Alba F.
        • Garcia-Olmo D.
        • Herrerias J.M.
        • Gonzalez F.X.
        • Galindo A.
        Expanded allogeneic adipose-derived stem cells (eASCs) for the treatment of complex perianal fistula in Crohn's disease: results from a multicenter phase I/IIa clinical trial.
        Int J Colorect Dis. 2013; 28: 313-323
        • Fang B.
        • Song Y.
        • Liao L.
        • Zhang Y.
        • Zhao R.C.
        Favorable response to human adipose tissue-derived mesenchymal stem cells in steroid-refractory acute graft-versus-host disease.
        Transplant Proc. 2007; 39: 3358-3362
        • Fang B.
        • Song Y.
        • Zhao R.C.
        • Han Q.
        • Lin Q.
        Using human adipose tissue-derived mesenchymal stem cells as salvage therapy for hepatic graft-versus-host disease resembling acute hepatitis.
        Transplant Proc. 2007; 39: 1710-1713
        • Riordan N.H.
        • Ichim T.E.
        • Min W.P.
        • et al.
        Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis.
        J Transl Med. 2009; 7: 29
        • Ostrand-Rosenberg S.
        Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity.
        Cancer Immunol Immunother. 2010; 59: 1593-1600
        • Muehlberg F.L.
        • Song Y.H.
        • Krohn A.
        • et al.
        Tissue-resident stem cells promote breast cancer growth and metastasis.
        Carcinogenesis. 2009; 30: 589-597