Advertisement

Mobilizing endogenous stem cells for retinal repair

  • Honghua Yu
    Affiliations
    Department of Ophthalmology, Liuhuaqiao Hospital, Guangzhou, PR China

    Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Mass
    Search for articles by this author
  • Thi Hong Khanh Vu
    Affiliations
    Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Mass

    Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands
    Search for articles by this author
  • Kin-Sang Cho
    Affiliations
    Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Mass
    Search for articles by this author
  • Chenying Guo
    Affiliations
    Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Mass
    Search for articles by this author
  • Dong Feng Chen
    Correspondence
    Reprint requests: Dong Feng Chen, Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA 02114
    Affiliations
    Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Mass

    VA Boston Healthcare System, Boston, Mass
    Search for articles by this author
Published:November 25, 2013DOI:https://doi.org/10.1016/j.trsl.2013.11.011
      Irreversible vision loss is most often caused by the loss of function and subsequent death of retinal neurons, such as photoreceptor cells—the cells that initiate vision by capturing and transducing signals of light. One reason why retinal degenerative diseases are devastating is that, once retinal neurons are lost, they don't grow back. Stem cell-based cell replacement strategy for retinal degenerative diseases are leading the way in clinical trials of transplantation therapy, and the exciting findings in both human and animal models point to the possibility of restoring vision through a cell replacement regenerative approach. A less invasive method of retinal regeneration by mobilizing endogenous stem cells is, thus, highly desirable and promising for restoring vision. Although many obstacles remain to be overcome, the field of endogenous retinal repair is progressing at a rapid pace, with encouraging results in recent years.

      Abbreviations:

      AC (amacrine cell), Ascl1 (Achaete-Scute complexlike 1), BMC (bone marrow-derived cell), Bp (bipolar cell), BrdU (5′-bromo-2′-deoxyuridine), CE (ciliary epithelium), CNS (central nervous system), Dnmts (DNA methyltransferases), EGF (epidermal growth factor), ESC (embryonic stem cell), FGF (fibroblast growth factor), HC (horizontal cell), MC (Müller cell), NFL (never fiber layer), Pax6 (paired box gene 6), PR (photoreceptor), PRCs (polycomb repressive complexes), RGC (retinal ganglion cell), RPCs (retinal progenitor cell), RPE (retinal pigment epithelium)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rosenfeld P.J.
        Bevacizumab versus ranibizumab for AMD.
        N Engl J Med. 2011; 364: 1966-1967
        • Martin D.F.
        • Maguire M.G.
        • Ying G.S.
        • Grunwald J.E.
        • Fine S.L.
        • Jaffe G.J.
        Ranibizumab and bevacizumab for neovascular age-related macular degeneration.
        N Engl J Med. 2011; 364: 1897-1908
        • Cramer A.O.
        • MacLaren R.E.
        Translating induced pluripotent stem cells from bench to bedside: application to retinal diseases.
        Curr Gene Ther. 2013; 13: 139-151
        • Medina R.J.
        • Archer D.B.
        • Stitt A.W.
        Eyes open to stem cells: safety trial may pave the way for cell therapy to treat retinal disease in patients.
        Stem Cell Res Ther. 2011; 2: 47
        • Reynolds B.A.
        • Weiss S.
        Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system.
        Science. 1992; 255: 1707-1710
        • Richards L.J.
        • Kilpatrick T.J.
        • Bartlett P.F.
        De novo generation of neuronal cells from the adult mouse brain.
        Proc Natl Acad Sci U S A. 1992; 89: 8591-8595
        • Karl M.O.
        • Reh T.A.
        Regenerative medicine for retinal diseases: activating endogenous repair mechanisms.
        Trends Mol Med. 2010; 16: 193-202
        • Fischer A.J.
        • Reh T.A.
        Potential of Muller glia to become neurogenic retinal progenitor cells.
        Glia. 2003; 43: 70-76
        • Jones B.W.
        • Watt C.B.
        • Frederick J.M.
        • et al.
        Retinal remodeling triggered by photoreceptor degenerations.
        J Comp Neurol. 2003; 464: 1-16
        • Raymond P.A.
        • Barthel L.K.
        • Bernardos R.L.
        • Perkowski J.J.
        Molecular characterization of retinal stem cells and their niches in adult zebrafish.
        BMC Dev Biol. 2006; 6: 36
        • Bernardos R.L.
        • Barthel L.K.
        • Meyers J.R.
        • Raymond P.A.
        Late-stage neuronal progenitors in the retina are radial Muller glia that function as retinal stem cells.
        J Neurosci. 2007; 27: 7028-7040
        • Fausett B.V.
        • Gumerson J.D.
        • Goldman D.
        The proneural basic helix-loop-helix gene Ascl1a is required for retina regeneration.
        J Neurosci. 2008; 28: 1109-1117
        • Thummel R.
        • Kassen S.C.
        • Enright J.M.
        • Nelson C.M.
        • Montgomery J.E.
        • Hyde D.R.
        Characterization of Muller glia and neuronal progenitors during adult zebrafish retinal regeneration.
        Exp Eye Res. 2008; 87: 433-444
        • Ramachandran R.
        • Fausett B.V.
        • Goldman D.
        Ascl1a regulates Muller glia dedifferentiation and retinal regeneration through a Lin-28-dependent, let-7 microRNA signalling pathway.
        Nat Cell Biol. 2010; 12: 1101-1107
        • Fausett B.V.
        • Goldman D.
        A role for alpha1 tubulin-expressing Muller glia in regeneration of the injured zebrafish retina.
        J Neurosci. 2006; 26: 6303-6313
        • Ramachandran R.
        • Reifler A.
        • Parent J.M.
        • Goldman D.
        Conditional gene expression and lineage tracing of tuba1a expressing cells during zebrafish development and retina regeneration.
        J Comp Neurol. 2010; 518: 4196-4212
        • Das A.V.
        • Mallya K.B.
        • Zhao X.
        • et al.
        Neural stem cell properties of Muller glia in the mammalian retina: regulation by Notch and Wnt signaling.
        Dev Biol. 2006; 299: 283-302
        • Roesch K.
        • Jadhav A.P.
        • Trimarchi J.M.
        • et al.
        The transcriptome of retinal Muller glial cells.
        J Comp Neurol. 2008; 509: 225-238
        • Garcia M.
        • Forster V.
        • Hicks D.
        • Vecino E.
        Effects of Muller glia on cell survival and neuritogenesis in adult porcine retina in vitro.
        Invest Ophthalmol Vis Sci. 2002; 43: 3735-3743
        • Giannelli S.G.
        • Demontis G.C.
        • Pertile G.
        • Rama P.
        • Broccoli V.
        Adult human Muller glia cells are a highly efficient source of rod photoreceptors.
        Stem Cells. 2011; 29: 344-356
        • Fischer A.J.
        • McGuire C.R.
        • Dierks B.D.
        • Reh T.A.
        Insulin and fibroblast growth factor 2 activate a neurogenic program in Muller glia of the chicken retina.
        J Neurosci. 2002; 22: 9387-9398
        • Del Debbio C.B.
        • Balasubramanian S.
        • Parameswaran S.
        • Chaudhuri A.
        • Qiu F.
        • Ahmad I.
        Notch and Wnt signaling mediated rod photoreceptor regeneration by Muller cells in adult mammalian retina.
        PLoS One. 2010; 5: e12425
        • Hayes S.
        • Nelson B.R.
        • Buckingham B.
        • Reh T.A.
        Notch signaling regulates regeneration in the avian retina.
        Dev Biol. 2007; 312: 300-311
        • Osakada F.
        • Takahashi M.
        Drug development targeting the glycogen synthase kinase-3beta (GSK-3beta)-mediated signal transduction pathway: targeting the Wnt pathway and transplantation therapy as strategies for retinal repair.
        J Pharmacol Sci. 2009; 109: 168-173
        • Liu B.
        • Hunter D.J.
        • Rooker S.
        • et al.
        Wnt signaling promotes Muller cell proliferation and survival after injury.
        Invest Ophthalmol Vis Sci. 2013; 54: 444-453
        • Sanges D.
        • Romo N.
        • Simonte G.
        • et al.
        Wnt/beta-catenin signaling triggers neuron reprogramming and regeneration in the mouse retina.
        Cell Rep. 2013; 4: 271-286
        • Wan J.
        • Zheng H.
        • Xiao H.L.
        • She Z.J.
        • Zhou G.M.
        Sonic hedgehog promotes stem-cell potential of Muller glia in the mammalian retina.
        Biochem Biophys Res Commun. 2007; 363: 347-354
        • Ramachandran R.
        • Zhao X.F.
        • Goldman D.
        Ascl1a/Dkk/beta-catenin signaling pathway is necessary and glycogen synthase kinase-3beta inhibition is sufficient for zebrafish retina regeneration.
        Proc Natl Acad Sci U S A. 2011; 108: 15858-15863
        • Pollak J.
        • Wilken M.S.
        • Ueki Y.
        • et al.
        ASCL1 reprograms mouse Muller glia into neurogenic retinal progenitors.
        Development. 2013; 140: 2619-2631
        • Kubota R.
        • Hokoc J.N.
        • Moshiri A.
        • McGuire C.
        • Reh T.A.
        A comparative study of neurogenesis in the retinal ciliary marginal zone of homeothermic vertebrates.
        Brain Res Dev Brain Res. 2002; 134: 31-41
        • MacNeil A.
        • Pearson R.A.
        • MacLaren R.E.
        • Smith A.J.
        • Sowden J.C.
        • Ali R.R.
        Comparative analysis of progenitor cells isolated from the iris, pars plana, and ciliary body of the adult porcine eye.
        Stem Cells. 2007; 25: 2430-2438
        • Xu H.
        • Sta Iglesia D.D.
        • Kielczewski J.L.
        • et al.
        Characteristics of progenitor cells derived from adult ciliary body in mouse, rat, and human eyes.
        Invest Ophthalmol Vis Sci. 2007; 48: 1674-1682
        • Gualdoni S.
        • Baron M.
        • Lakowski J.
        • et al.
        Adult ciliary epithelial cells, previously identified as retinal stem cells with potential for retinal repair, fail to differentiate into new rod photoreceptors.
        Stem Cells. 2010; 28: 1048-1059
        • Cicero S.A.
        • Johnson D.
        • Reyntjens S.
        • et al.
        Cells previously identified as retinal stem cells are pigmented ciliary epithelial cells.
        Proc Natl Acad Sci U S A. 2009; 106: 6685-6690
        • Zhao X.
        • Das A.V.
        • Soto-Leon F.
        • Ahmad I.
        Growth factor-responsive progenitors in the postnatal mammalian retina.
        Dev Dyn. 2005; 232: 349-358
        • Abdouh M.
        • Bernier G.
        In vivo reactivation of a quiescent cell population located in the ocular ciliary body of adult mammals.
        Exp Eye Res. 2006; 83: 153-164
        • Kubo F.
        • Nakagawa S.
        Hairy1 acts as a node downstream of Wnt signaling to maintain retinal stem cell-like progenitor cells in the chick ciliary marginal zone.
        Development. 2009; 136: 1823-1833
        • Inoue T.
        • Kagawa T.
        • Fukushima M.
        • et al.
        Activation of canonical Wnt pathway promotes proliferation of retinal stem cells derived from adult mouse ciliary margin.
        Stem Cells. 2006; 24: 95-104
        • De Marzo A.
        • Aruta C.
        • Marigo V.
        PEDF promotes retinal neurosphere formation and expansion in vitro.
        Adv Exp Med Biol. 2010; 664: 621-630
        • Inoue T.
        • Coles B.L.
        • Dorval K.
        • et al.
        Maximizing functional photoreceptor differentiation from adult human retinal stem cells.
        Stem Cells. 2010; 28: 489-500
        • Ikegami Y.
        • Mitsuda S.
        • Araki M.
        Neural cell differentiation from retinal pigment epithelial cells of the newt: an organ culture model for the urodele retinal regeneration.
        J Neurobiol. 2002; 50: 209-220
        • Susaki K.
        • Chiba C.
        MEK mediates in vitro neural transdifferentiation of the adult newt retinal pigment epithelium cells: is FGF2 an induction factor?.
        Pigment Cell Res. 2007; 20: 364-379
        • Araki M.
        Regeneration of the amphibian retina: role of tissue interaction and related signaling molecules on RPE transdifferentiation.
        Dev Growth Differ. 2007; 49: 109-120
        • Zhao S.
        • Thornquist S.C.
        • Barnstable C.J.
        In vitro transdifferentiation of embryonic rat retinal pigment epithelium to neural retina.
        Brain Res. 1995; 677: 300-310
        • Al-Hussaini H.
        • Kam J.H.
        • Vugler A.
        • Semo M.
        • Jeffery G.
        Mature retinal pigment epithelium cells are retained in the cell cycle and proliferate in vivo.
        Mol Vis. 2008; 14: 1784-1791
        • Salero E.
        • Blenkinsop T.A.
        • Corneo B.
        • et al.
        Adult human RPE can be activated into a multipotent stem cell that produces mesenchymal derivatives.
        Cell Stem Cell. 2012; 10: 88-95
        • Amemiya K.
        • Haruta M.
        • Takahashi M.
        • Kosaka M.
        • Eguchi G.
        Adult human retinal pigment epithelial cells capable of differentiating into neurons.
        Biochem Biophys Res Commun. 2004; 316: 1-5
        • Wohl S.G.
        • Schmeer C.W.
        • Isenmann S.
        Neurogenic potential of stem/progenitor-like cells in the adult mammalian eye.
        Prog Retin Eye Res. 2012; 31: 213-242
        • Orlic D.
        • Kajstura J.
        • Chimenti S.
        • et al.
        Bone marrow cells regenerate infarcted myocardium.
        Nature. 2001; 410: 701-705
        • Krause D.S.
        • Theise N.D.
        • Collector M.I.
        • et al.
        Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell.
        Cell. 2001; 105: 369-377
        • LaBarge M.A.
        • Blau H.M.
        Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury.
        Cell. 2002; 111: 589-601
        • Li Y.
        • Reca R.G.
        • Atmaca-Sonmez P.
        • et al.
        Retinal pigment epithelium damage enhances expression of chemoattractants and migration of bone marrow-derived stem cells.
        Invest Ophthalmol Vis Sci. 2006; 47: 1646-1652
        • Li Y.
        • Atmaca-Sonmez P.
        • Schanie C.L.
        • Ildstad S.T.
        • Kaplan H.J.
        • Enzmann V.
        Endogenous bone marrow derived cells express retinal pigment epithelium cell markers and migrate to focal areas of RPE damage.
        Invest Ophthalmol Vis Sci. 2007; 48: 4321-4327
        • Machalinska A.
        • Klos P.
        • Baumert B.
        • et al.
        Stem cells are mobilized from the bone marrow into the peripheral circulation in response to retinal pigment epithelium damage: a pathophysiological attempt to induce endogenous regeneration.
        Curr Eye Res. 2011; 36: 663-672
        • Takeda M.
        • Takamiya A.
        • Jiao J.W.
        • et al.
        Alpha-aminoadipate induces progenitor cell properties of Muller glia in adult mice.
        Invest Ophthalmol Vis Sci. 2008; 49: 1142-1150
        • Karl M.O.
        • Hayes S.
        • Nelson B.R.
        • Tan K.
        • Buckingham B.
        • Reh T.A.
        Stimulation of neural regeneration in the mouse retina.
        Proc Natl Acad Sci U S A. 2008; 105: 19508-19513
        • Ooto S.
        • Akagi T.
        • Kageyama R.
        • et al.
        Potential for neural regeneration after neurotoxic injury in the adult mammalian retina.
        Proc Natl Acad Sci U S A. 2004; 101: 13654-13659
        • Bringmann A.
        • Iandiev I.
        • Pannicke T.
        • et al.
        Cellular signaling and factors involved in Muller cell gliosis: neuroprotective and detrimental effects.
        Prog Retin Eye Res. 2009; 28: 423-451
        • Osakada F.
        • Ooto S.
        • Akagi T.
        • Mandai M.
        • Akaike A.
        • Takahashi M.
        Wnt signaling promotes regeneration in the retina of adult mammals.
        J Neurosci. 2007; 27: 4210-4219
        • Ueki Y.
        • Reh T.A.
        EGF stimulates Muller glial proliferation via a BMP-dependent mechanism.
        Glia. 2013; 61: 778-789
        • Romo P.
        • Madigan M.C.
        • Provis J.M.
        • Cullen K.M.
        Differential effects of TGF-beta and FGF-2 on in vitro proliferation and migration of primate retinal endothelial and Muller cells.
        Acta Ophthalmol. 2011; 89: e263-e268
        • Ikeda T.
        • Waldbillig R.J.
        • Puro D.G.
        Truncation of IGF-I yields two mitogens for retinal Muller glial cells.
        Brain Res. 1995; 686: 87-92
        • Wang Z.
        • Sugano E.
        • Isago H.
        • Murayama N.
        • Tamai M.
        • Tomita H.
        Notch signaling pathway regulates proliferation and differentiation of immortalized Muller cells under hypoxic conditions in vitro.
        Neuroscience. 2012; 214: 171-180
        • Wan J.
        • Zheng H.
        • Chen Z.L.
        • Xiao H.L.
        • Shen Z.J.
        • Zhou G.M.
        Preferential regeneration of photoreceptor from Muller glia after retinal degeneration in adult rat.
        Vision Res. 2008; 48: 223-234
        • Milenkovic I.
        • Weick M.
        • Wiedemann P.
        • Reichenbach A.
        • Bringmann A.
        P2Y receptor-mediated stimulation of Muller glial cell DNA synthesis: dependence on EGF and PDGF receptor transactivation.
        Invest Ophthalmol Vis Sci. 2003; 44: 1211-1220
        • Close J.L.
        • Liu J.
        • Gumuscu B.
        • Reh T.A.
        Epidermal growth factor receptor expression regulates proliferation in the postnatal rat retina.
        Glia. 2006; 54: 94-104
        • Sagar S.M.
        • Edwards R.H.
        • Sharp F.R.
        Epidermal growth factor and transforming growth factor alpha induce c-fos gene expression in retinal Muller cells in vivo.
        J Neurosci Res. 1991; 29: 549-559
        • Bhatia B.
        • Jayaram H.
        • Singhal S.
        • Jones M.F.
        • Limb G.A.
        Differences between the neurogenic and proliferative abilities of Muller glia with stem cell characteristics and the ciliary epithelium from the adult human eye.
        Exp Eye Res. 2011; 93: 852-861
        • Theus M.H.
        • Ricard J.
        • Bethea J.R.
        • Liebl D.J.
        EphB3 limits the expansion of neural progenitor cells in the subventricular zone by regulating p53 during homeostasis and following traumatic brain injury.
        Stem Cells. 2010; 28: 1231-1242
        • Depaepe V.
        • Suarez-Gonzalez N.
        • Dufour A.
        • et al.
        Ephrin signalling controls brain size by regulating apoptosis of neural progenitors.
        Nature. 2005; 435: 1244-1250
        • Holmberg J.
        • Armulik A.
        • Senti K.A.
        • et al.
        Ephrin-A2 reverse signaling negatively regulates neural progenitor proliferation and neurogenesis.
        Genes Dev. 2005; 19: 462-471
        • Jiao J.
        • Chen D.F.
        Induction of neurogenesis in nonconventional neurogenic regions of the adult central nervous system by niche astrocyte-produced signals.
        Stem Cell. 2008; 26: 1221-1230
        • Jiao J.W.
        • Feldheim D.A.
        • Chen D.F.
        Ephrins as negative regulators of adult neurogenesis in diverse regions of the central nervous system.
        Proc Natl Acad Sci U S A. 2008; 105: 8778-8783
        • Stolfi A.
        • Wagner E.
        • Taliaferro J.M.
        • Chou S.
        • Levine M.
        Neural tube patterning by ephrin, FGF and Notch signaling relays.
        Development. 2011; 138: 5429-5439
        • Yokote H.
        • Fujita K.
        • Jing X.
        • et al.
        Trans-activation of EphA4 and FGF receptors mediated by direct interactions between their cytoplasmic domains.
        Proc Natl Acad Sci U S A. 2005; 102: 18866-18871
        • Lim B.K.
        • Cho S.J.
        • Sumbre G.
        • Poo M.M.
        Region-specific contribution of ephrin-B and Wnt signaling to receptive field plasticity in developing optic tectum.
        Neuron. 2010; 65: 899-911
        • Fang Y.
        • Cho K.S.
        • Tchedre K.
        • et al.
        Ephrin-A3 suppresses Wnt signaling to control retinal stem cell potency.
        Stem Cells. 2013; 31: 349-359
        • Busch S.A.
        • Silver J.
        The role of extracellular matrix in CNS regeneration.
        Curr Opin Neurobiol. 2007; 17: 120-127
        • Silver J.
        • Miller J.H.
        Regeneration beyond the glial scar.
        Nat Rev Neurosci. 2004; 5: 146-156
        • Kita E.M.
        • Bertolesi G.E.
        • Hehr C.L.
        • Johnston J.
        • McFarlane S.
        Neuropilin-1 biases dendrite polarization in the retina.
        Development. 2013; 140: 2933-2941
        • Ponta H.
        • Sherman L.
        • Herrlich P.A.
        CD44: from adhesion molecules to signalling regulators.
        Nat Rev Mol Cell Biol. 2003; 4: 33-45
        • Krishnamoorthy R.
        • Agarwal N.
        • Chaitin M.H.
        Upregulation of CD44 expression in the retina during the rds degeneration.
        Brain Res Mol Brain Res. 2000; 77: 125-130
        • Zhang Y.
        • Klassen H.J.
        • Tucker B.A.
        • Perez M.T.
        • Young M.J.
        CNS progenitor cells promote a permissive environment for neurite outgrowth via a matrix metalloproteinase-2-dependent mechanism.
        J Neurosci. 2007; 27: 4499-4506
        • Balenci L.
        • Wonders C.
        • Coles B.L.
        • Clarke L.
        • van der Kooy D.
        BMPs and SFRP2 maintain the quiescence of adult mammalian retinal stem cells.
        Stem Cells. 2013; 31: 2218-2230
        • Vierbuchen T.
        • Ostermeier A.
        • Pang Z.P.
        • Kokubu Y.
        • Sudhof T.C.
        • Wernig M.
        Direct conversion of fibroblasts to functional neurons by defined factors.
        Nature. 2010; 463: 1035-1041
        • Nabeshima A.
        • Nishibayashi C.
        • Ueda Y.
        • Ogino H.
        • Araki M.
        Loss of cell-extracellular matrix interaction triggers retinal regeneration accompanied by Rax and Pax6 activation.
        Genesis. 2013; 51: 410-419
        • Gehring W.J.
        • Ikeo K.
        Pax 6: mastering eye morphogenesis and eye evolution.
        Trends Genet. 1999; 15: 371-377
        • Insua M.F.
        • Simon M.V.
        • Garelli A.
        • de Los Santos B.
        • Rotstein N.P.
        • Politi L.E.
        Trophic factors and neuronal interactions regulate the cell cycle and Pax6 expression in Muller stem cells.
        J Neurosci Res. 2008; 86: 1459-1471
        • Ashery-Padan R.
        • Gruss P.
        Pax6 lights-up the way for eye development.
        Curr Opin Cell Biol. 2001; 13: 706-714
        • Joly S.
        • Pernet V.
        • Samardzija M.
        • Grimm C.
        Pax6-positive Muller glia cells express cell cycle markers but do not proliferate after photoreceptor injury in the mouse retina.
        Glia. 2011; 59: 1033-1046
        • Fischer A.J.
        • Reh T.A.
        Müller glia are a potential source ofneural regeneration in the postnatal chicken retina.
        Nat Neurosci. 2001; 3: 247-252
        • Furukawa T.
        • Morrow E.M.
        • Cepko C.L.
        Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation.
        Cell. 1997; 91: 531-541
        • Mears A.J.
        • Kondo M.
        • Swain P.K.
        • et al.
        Nrl is required for rod photoreceptor development.
        Nat Genet. 2001; 29: 447-452
        • Chen J.
        • Rattner A.
        • Nathans J.
        The rod photoreceptor-specific nuclear receptor Nr2e3 represses transcription of multiple cone-specific genes.
        J Neurosci. 2005; 25: 118-129
        • Haider N.B.
        • Jacobson S.G.
        • Cideciyan A.V.
        • et al.
        Mutation of a nuclear receptor gene, NR2E3, causes enhanced S cone syndrome, a disorder of retinal cell fate.
        Nat Genet. 2000; 24: 127-131
        • Muhchyi C.
        • Juliandi B.
        • Matsuda T.
        • Nakashima K.
        Epigenetic regulation of neural stem cell fate during corticogenesis.
        Int J Dev Neurosci. 2013; 31: 424-433
        • Hu X.L.
        • Wang Y.
        • Shen Q.
        Epigenetic control on cell fate choice in neural stem cells.
        Protein Cell. 2012; 3: 278-290
        • Gao Y.
        • Jammes H.
        • Rasmussen M.A.
        • et al.
        Epigenetic regulation of gene expression in porcine epiblast, hypoblast, trophectoderm and epiblast-derived neural progenitor cells.
        Epigenetics. 2011; 6: 1149-1161
        • Aldiri I.
        • Moore K.B.
        • Hutcheson D.A.
        • Zhang J.
        • Vetter M.L.
        Polycomb repressive complex PRC2 regulates Xenopus retina development downstream of Wnt/beta-catenin signaling.
        Development. 2013; 140: 2867-2878
        • He S.
        • Li X.
        • Chan N.
        • Hinton D.R.
        Review: epigenetic mechanisms in ocular disease.
        Mol Vis. 2013; 19: 665-674
        • Stojic L.
        • Jasencakova Z.
        • Prezioso C.
        • et al.
        Chromatin regulated interchange between polycomb repressive complex 2 (PRC2)-Ezh2 and PRC2-Ezh1 complexes controls myogenin activation in skeletal muscle cells.
        Epigen Chromatin. 2011; 4: 16
        • Barth T.K.
        • Imhof A.
        Fast signals and slow marks: the dynamics of histone modifications.
        Trends Biochem Sci. 2010; 35: 618-626
        • Lee S.
        • Lee S.K.
        Crucial roles of histone-modifying enzymes in mediating neural cell-type specification.
        Curr Opin Neurobiol. 2010; 20: 29-36
        • Yamaguchi M.
        • Tonou-Fujimori N.
        • Komori A.
        • et al.
        Histone deacetylase 1 regulates retinal neurogenesis in zebrafish by suppressing Wnt and Notch signaling pathways.
        Development. 2005; 132: 3027-3043
        • Chen B.
        • Cepko C.L.
        Requirement of histone deacetylase activity for the expression of critical photoreceptor genes.
        BMC Dev Biol. 2007; 7: 78
        • Nasonkin I.O.
        • Lazo K.
        • Hambright D.
        • Brooks M.
        • Fariss R.
        • Swaroop A.
        Distinct nuclear localization patterns of DNA methyltransferases in developing and mature mammalian retina.
        J Comp Neurol. 2011; 519: 1914-1930
        • Rai K.
        • Nadauld L.D.
        • Chidester S.
        • et al.
        Zebra fish Dnmt1 and Suv39h1 regulate organ-specific terminal differentiation during development.
        Mol Cell Biol. 2006; 26: 7077-7085
        • Banno K.
        • Kisu I.
        • Yanokura M.
        • et al.
        Epimutation and cancer: a new carcinogenic mechanism of Lynch syndrome.
        Int J Oncol. 2012; 41: 793-797
        • Fleisch V.C.
        • Fraser B.
        • Allison W.T.
        Investigating regeneration and functional integration of CNS neurons: lessons from zebrafish genetics and other fish species.
        Biochim Biophys Acta. 2011; 1812: 364-380
        • Ng L.
        • Lu A.
        • Swaroop A.
        • Sharlin D.S.
        • Forrest D.
        Two transcription factors can direct three photoreceptor outcomes from rod precursor cells in mouse retinal development.
        J Neurosci. 2011; 31: 11118-11125
        • Gonzalez-Cordero A.
        • West E.L.
        • Pearson R.A.
        • et al.
        Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina.
        Nat Biotechnol. 2013; 31: 741-747
        • Hambright D.
        • Park K.Y.
        • Brooks M.
        • McKay R.
        • Swaroop A.
        • Nasonkin I.O.
        Long-term survival and differentiation of retinal neurons derived from human embryonic stem cell lines in un-immunosuppressed mouse retina.
        Mol Vis. 2012; 18: 920-936
        • Zhang Y.
        • Wang W.
        Effects of bone marrow mesenchymal stem cell transplantation on light-damaged retina.
        Invest Ophthalmol Vis Sci. 2010; 51: 3742-3748
        • West E.L.
        • Pearson R.A.
        • MacLaren R.E.
        • Sowden J.C.
        • Ali R.R.
        Cell transplantation strategies for retinal repair.
        Prog Brain Res. 2009; 175: 3-21
        • Ikeda H.
        • Osakada F.
        • Watanabe K.
        • et al.
        Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells.
        Proc Natl Acad Sci U S A. 2005; 102: 11331-11336
        • Banin E.
        • Obolensky A.
        • Idelson M.
        • et al.
        Retinal incorporation and differentiation of neural precursors derived from human embryonic stem cells.
        Stem Cells. 2006; 24: 246-257
        • Lamba D.A.
        • Karl M.O.
        • Ware C.B.
        • Reh T.A.
        Efficient generation of retinal progenitor cells from human embryonic stem cells.
        Proc Natl Acad Sci U S A. 2006; 103: 12769-12774
        • Lamba D.A.
        • Gust J.
        • Reh T.A.
        Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice.
        Cell Stem Cell. 2009; 4: 73-79
        • Lamba D.A.
        • McUsic A.
        • Hirata R.K.
        • Wang P.R.
        • Russell D.
        • Reh T.A.
        Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells.
        PLoS One. 2010; 5: e8763
        • Osakada F.
        • Ikeda H.
        • Mandai M.
        • et al.
        Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells.
        Nat Biotechnol. 2008; 26: 215-224
        • Ramsden C.M.
        • Powner M.B.
        • Carr A.J.
        • Smart M.J.
        • da Cruz L.
        • Coffey P.J.
        Stem cells in retinal regeneration: past, present and future.
        Development. 2013; 140: 2576-2585
        • Homma K.
        • Okamoto S.
        • Mandai M.
        • et al.
        Developing rods transplanted into the degenerating retina of Crx-knockout mice exhibit neural activity similar to native photoreceptors.
        Stem Cells. 2013; 31: 1149-1159
        • Li T.
        • Lewallen M.
        • Chen S.
        • Yu W.
        • Zhang N.
        • Xie T.
        Multipotent stem cells isolated from the adult mouse retina are capable of producing functional photoreceptor cells.
        Cell Res. 2013; 23: 788-802
        • MacLaren R.E.
        • Pearson R.A.
        • MacNeil A.
        • et al.
        Retinal repair by transplantation of photoreceptor precursors.
        Nature. 2006; 444: 203-207
        • Nickerson P.E.
        • McLeod M.C.
        • Myers T.
        • Clarke D.B.
        Effects of epidermal growth factor and erythropoietin on Muller glial activation and phenotypic plasticity in the adult mammalian retina.
        J Neurosci Res. 2011; 89: 1018-1030
        • Klassen H.
        • Sakaguchi D.S.
        • Young M.J.
        Stem cells and retinal repair.
        Prog Retin Eye Res. 2004; 23: 149-181
        • Okamoto S.
        • Takahashi M.
        Induction of retinal pigment epithelial cells from monkey iPS cells.
        Invest Ophthalmol Vis Sci. 2011; 52: 8785-8790
        • Park U.C.
        • Cho M.S.
        • Park J.H.
        • et al.
        Subretinal transplantation of putative retinal pigment epithelial cells derived from human embryonic stem cells in rat retinal degeneration model.
        Clin Exp Reprod Med. 2011; 38: 216-221
        • Juuti-Uusitalo K.
        • Vaajasaari H.
        • Ryhanen T.
        • et al.
        Efflux protein expression in human stem cell-derived retinal pigment epithelial cells.
        PLoS One. 2012; 7: e30089
        • Hertz J.
        • Qu B.
        • Hu Y.
        • Patel R.D.
        • Valenzuela D.A.
        • Goldberg J.L.
        Survival and integration of developing and progenitor-derived retinal ganglion cells following transplantation.
        Cell Transplant. 2013; ([Epub ahead of print])
        • Singhal S.
        • Bhatia B.
        • Jayaram H.
        • et al.
        Human Muller glia with stem cell characteristics differentiate into retinal ganglion cell (RGC) precursors in vitro and partially restore RGC function in vivo following transplantation.
        Stem Cells Transl Med. 2012; 1: 188-199
        • Phillips M.J.
        • Wallace K.A.
        • Dickerson S.J.
        • et al.
        Blood-derived human iPS cells generate optic vesicle-like structures with the capacity to form retinal laminae and develop synapses.
        Invest Ophthalmol Vis Sci. 2012; 53: 2007-2019
        • Aoki H.
        • Hara A.
        • Niwa M.
        • Motohashi T.
        • Suzuki T.
        • Kunisada T.
        Transplantation of cells from eye-like structures differentiated from embryonic stem cells in vitro and in vivo regeneration of retinal ganglion-like cells.
        Graefes Arch Clin Exp Ophthalmol. 2008; 246: 255-265
        • Jagatha B.
        • Divya M.S.
        • Sanalkumar R.
        • et al.
        In vitro differentiation of retinal ganglion-like cells from embryonic stem cell derived neural progenitors.
        Biochem Biophys Res Commun. 2009; 380: 230-235
        • Cho J.H.
        • Mao C.A.
        • Klein W.H.
        Adult mice transplanted with embryonic retinal progenitor cells: new approach for repairing damaged optic nerves.
        Mol Vis. 2012; 18: 2658-2672
        • Mellough C.B.
        • Cui Q.
        • Harvey A.R.
        Treatment of adult neural progenitor cells prior to transplantation affects graft survival and integration in a neonatal and adult rat model of selective retinal ganglion cell depletion.
        Restor Neurol Neurosci. 2007; 25: 177-190
        • Meng F.
        • Wang X.
        • Gu P.
        • Wang Z.
        • Guo W.
        Induction of retinal ganglion-like cells from fibroblasts by adenoviral gene delivery.
        Neuroscience. 2013; 250: 381-393
        • Bull N.D.
        • Limb G.A.
        • Martin K.R.
        Human Muller stem cell (MIO-M1) transplantation in a rat model of glaucoma: survival, differentiation, and integration.
        Invest Ophthalmol Vis Sci. 2008; 49: 3449-3456
        • Zwart I.
        • Hill A.J.
        • Al-Allaf F.
        • et al.
        Umbilical cord blood mesenchymal stromal cells are neuroprotective and promote regeneration in a rat optic tract model.
        Exp Neurol. 2009; 216: 439-448
        • Johnson T.V.
        • Bull N.D.
        • Martin K.R.
        Identification of barriers to retinal engraftment of transplanted stem cells.
        Invest Ophthalmol Vis Sci. 2010; 51: 960-970
        • Johnson T.V.
        • Bull N.D.
        • Hunt D.P.
        • Marina N.
        • Tomarev S.I.
        • Martin K.R.
        Neuroprotective effects of intravitreal mesenchymal stem cell transplantation in experimental glaucoma.
        Invest Ophthalmol Vis Sci. 2010; 51: 2051-2059