Regenerative therapy for cardiovascular disease

Published:December 12, 2013DOI:
      Recent insights into myocardial biology uncovered a hereto unknown regenerative capacity of the adult heart. The discovery of dividing cardiomyocytes and the identification and characterization of cardiac stem and progenitor cells with myogenic and angiogenic potential have generated new hopes that cardiac regeneration and repair might become a therapeutic option. During the past decade, multiple candidate cells have been proposed for cardiac regeneration, and their mechanisms of action in the myocardium have been explored. Initial clinical trials have focused on the use of bone marrow-derived cells to promote myocardial regeneration in ischemic heart disease and have yielded very mixed results, with no clear signs of clinically meaningful functional improvement. Although the efficiency of bona fide cardiomyocyte generation is generally low, stem cells delivered into the myocardium act mainly via paracrine mechanisms. More recent studies taking advantage of cardiac committed cells (eg, resident cardiac progenitor cells or primed cardiogenic mesenchymal stem cells) showed promising results in first clinical pilot trials. Also, transplantation of cardiomyogenic cells generated by induced pluripotent stem cells and genetic reprogramming of dividing nonmyocytes into cardiomyocytes may constitute attractive new regenerative approaches in cardiovascular medicine in the future. We discuss advantages and limitations of specific cell types proposed for cell-based therapy in cardiology and give an overview of the first clinical trials using this novel therapeutic approach in patients with cardiovascular disease.


      BMC (bone marrow-derived cell), BMSC (bone marrow stem cell), CADUCEUS (Cardiosphere-Derived Autologous Stem Cells to Reverse Ventricular Dysfunction), CD (Cluster of differentiation), SCF (stem cell factor), c-kit (receptor for SCF), CSC (cardiac stem cell), ESC (embryonic stem cells), HF (heart failure), iPS (induced pluripotent stem cell), MSC (mesenchymal stem cell), SCIPIO (Stem Cell Infusion in Patients With Ischemic Cardiomyopathy), SP (side population)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Go A.S.
        • Mozaffarian D.
        • Roger V.L.
        • et al.
        Executive summary: heart disease and stroke statistics–2013 update: a report from the American Heart Association.
        Circulation. 2013; 127: 143-152
        • McMurray J.J.
        • Adamopoulos S.
        • Anker S.D.
        • et al.
        ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology: Developed in collaboration with the Heart Failure Association (HFA) of the ESC.
        Eur Heart J. 2012; 33: 1787-1847
        • Beltrami A.P.
        • Urbanek K.
        • Kajstura J.
        • et al.
        Evidence that human cardiac myocytes divide after myocardial infarction.
        N Engl J Med. 2001; 344: 1750-1757
        • Quaini F.
        • Urbanek K.
        • Beltrami A.P.
        • et al.
        Chimerism of the transplanted heart.
        N Engl J Med. 2002; 346: 5-15
        • Jackson K.A.
        • Majka S.M.
        • Wang H.
        • et al.
        Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells.
        J Clin Invest. 2001; 107: 1395-1402
        • Mouquet F.
        • Pfister O.
        • Jain M.
        • et al.
        Restoration of cardiac progenitor cells after myocardial infarction by self-proliferation and selective homing of bone marrow-derived stem cells.
        Circ Res. 2005; 97: 1090-1092
        • Fazel S.
        • Cimini M.
        • Chen L.
        • et al.
        Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines.
        J Clin Invest. 2006; 116: 1865-1877
        • Massa M.
        • Rosti V.
        • Ferrario M.
        • et al.
        Increased circulating hematopoietic and endothelial progenitor cells in the early phase of acute myocardial infarction.
        Blood. 2005; 105: 199-206
        • Leone A.M.
        • Rutella S.
        • Bonanno G.
        • et al.
        Endogenous G-CSF and CD34(+) cell mobilization after acute myocardial infarction.
        Int J Cardiol. 2006; 111: 202-208
        • Vandervelde S.
        • van Luyn M.J.
        • Tio R.A.
        • Harmsen M.C.
        Signaling factors in stem cell-mediated repair of infarcted myocardium.
        J Mol Cell Cardiol. 2005; 39: 363-376
        • Abbott J.D.
        • Huang Y.
        • Liu D.
        • Hickey R.
        • Krause D.S.
        • Giordano F.J.
        Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury.
        Circulation. 2004; 110: 3300-3305
        • Ferrari G.
        • Cusella-De Angelis G.
        • Coletta M.
        • et al.
        Muscle regeneration by bone marrow-derived myogenic progenitors.
        Science. 1998; 279: 1528-1530
        • Krause D.S.
        • Theise N.D.
        • Collector M.I.
        • et al.
        Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell.
        Cell. 2001; 105: 369-377
        • Mezey E.
        • Chandross K.J.
        • Harta G.
        • Maki R.A.
        • McKercher S.R.
        Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow.
        Science. 2000; 290: 1779-1782
        • Orlic D.
        • Kajstura J.
        • Chimenti S.
        • et al.
        Bone marrow cells regenerate infarcted myocardium.
        Nature. 2001; 410: 701-705
        • Fuchs S.
        • Baffour R.
        • Zhou Y.F.
        • et al.
        Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia.
        J Am Coll Cardiol. 2001; 37: 1726-1732
        • Murry C.E.
        • Soonpaa M.H.
        • Reinecke H.
        • et al.
        Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts.
        Nature. 2004; 428: 664-668
        • Zeng L.
        • Hu Q.
        • Wang X.
        • et al.
        Bioenergetic and functional consequences of bone marrow-derived multipotent progenitor cell transplantation in hearts with postinfarction left ventricular remodeling.
        Circulation. 2007; 115: 1866-1875
        • Uemura R.
        • Xu M.
        • Ahmad N.
        • Ashraf M.
        Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling.
        Circ Res. 2006; 98: 1414-1421
        • Kamihata H.
        • Matsubara H.
        • Nishiue T.
        • et al.
        Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines.
        Circulation. 2001; 104: 1046-1052
        • Walter D.H.
        • Haendeler J.
        • Reinhold J.
        • et al.
        Impaired CXCR4 signaling contributes to the reduced neovascularization capacity of endothelial progenitor cells from patients with coronary artery disease.
        Circ Res. 2005; 97: 1142-1151
        • Anversa P.
        • Kajstura J.
        • Rota M.
        • Leri A.
        Regenerating new heart with stem cells.
        J Clin Invest. 2013; 123: 62-70
        • Suzuki G.
        • Iyer V.
        • Cimato T.
        • Canty Jr., J.M.
        Pravastatin improves function in hibernating myocardium by mobilizing CD133+ and cKit+ bone marrow progenitor cells and promoting myocytes to reenter the growth phase of the cardiac cell cycle.
        Circ Res. 2009; 104: 255-264
        • Asahara T.
        • Masuda H.
        • Takahashi T.
        • et al.
        Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization.
        Circ Res. 1999; 85: 221-228
        • Dai W.
        • Hale S.L.
        • Martin B.J.
        • et al.
        Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects.
        Circulation. 2005; 112: 214-223
        • Shake J.G.
        • Gruber P.J.
        • Baumgartner W.A.
        • et al.
        Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects.
        Ann Thorac Surg. 2002; 73 (discussion 1926): 1919-1925
        • Herreros J.
        • Prosper F.
        • Perez A.
        • et al.
        Autologous intramyocardial injection of cultured skeletal muscle-derived stem cells in patients with non-acute myocardial infarction.
        Eur Heart J. 2003; 24: 2012-2020
        • Perin E.C.
        • Dohmann H.F.
        • Borojevic R.
        • et al.
        Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure.
        Circulation. 2003; 107: 2294-2302
        • Strauer B.E.
        • Brehm M.
        • Zeus T.
        • et al.
        Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans.
        Circulation. 2002; 106: 1913-1918
        • Zimmet H.
        • Porapakkham P.
        • Porapakkham P.
        • et al.
        Short- and long-term outcomes of intracoronary and endogenously mobilized bone marrow stem cells in the treatment of ST-segment elevation myocardial infarction: a meta-analysis of randomized control trials.
        Eur J Heart Fail. 2012; 14: 91-105
        • Perin E.C.
        • Dohmann H.F.
        • Borojevic R.
        • et al.
        Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy.
        Circulation. 2004; 110: II213-II218
        • Schachinger V.
        • Assmus B.
        • Britten M.B.
        • et al.
        Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial.
        J Am Coll Cardiol. 2004; 44: 1690-1699
        • Wollert K.C.
        • Meyer G.P.
        • Lotz J.
        • et al.
        Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial.
        Lancet. 2004; 364: 141-148
        • Schachinger V.
        • Erbs S.
        • Elsasser A.
        • et al.
        Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction.
        N Engl J Med. 2006; 355: 1210-1221
        • Lunde K.
        • Solheim S.
        • Aakhus S.
        • et al.
        Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction.
        N Engl J Med. 2006; 355: 1199-1209
        • Janssens S.
        • Dubois C.
        • Bogaert J.
        • et al.
        Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial.
        Lancet. 2006; 367: 113-121
        • Roncalli J.
        • Mouquet F.
        • Piot C.
        • et al.
        Intracoronary autologous mononucleated bone marrow cell infusion for acute myocardial infarction: results of the randomized multicenter BONAMI trial.
        Eur Heart J. 2011; 32: 1748-1757
        • Hirsch A.
        • Nijveldt R.
        • van der Vleuten P.A.
        • et al.
        Intracoronary infusion of mononuclear cells from bone marrow or peripheral blood compared with standard therapy in patients after acute myocardial infarction treated by primary percutaneous coronary intervention: results of the randomized controlled HEBE trial.
        Eur Heart J. 2011; 32: 1736-1747
        • Perin E.C.
        • Willerson J.T.
        • Pepine C.J.
        • et al.
        Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN trial.
        JAMA. 2012; 307: 1717-1726
        • Seeger F.H.
        • Tonn T.
        • Krzossok N.
        • Zeiher A.M.
        • Dimmeler S.
        Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction.
        Eur Heart J. 2007; 28: 766-772
        • Assmus B.
        • Tonn T.
        • Seeger F.H.
        • et al.
        Red blood cell contamination of the final cell product impairs the efficacy of autologous bone marrow mononuclear cell therapy.
        J Am Coll Cardiol. 2010; 55: 1385-1394
        • Bartunek J.
        • Wijns W.
        • Heyndrickx G.R.
        • Vanderheyden M.
        Timing of intracoronary bone-marrow-derived stem cell transplantation after ST-elevation myocardial infarction.
        Nat Clin Pract Cardiovasc Med. 2006; 3: S52-S56
        • Moelker A.D.
        • Baks T.
        • van den Bos E.J.
        • et al.
        Reduction in infarct size, but no functional improvement after bone marrow cell administration in a porcine model of reperfused myocardial infarction.
        Eur Heart J. 2006; 27: 3057-3064
        • de Silva R.
        • Raval A.N.
        • Hadi M.
        • et al.
        Intracoronary infusion of autologous mononuclear cells from bone marrow or granulocyte colony-stimulating factor-mobilized apheresis product may not improve remodelling, contractile function, perfusion, or infarct size in a swine model of large myocardial infarction.
        Eur Heart J. 2008; 29: 1772-1782
        • Schuleri K.H.
        • Feigenbaum G.S.
        • Centola M.
        • et al.
        Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy.
        Eur Heart J. 2009; 30: 2722-2732
        • Williams A.R.
        • Hatzistergos K.E.
        • Addicott B.
        • et al.
        Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction.
        Circulation. 2013; 127: 213-223
        • Dawn B.
        • Stein A.B.
        • Urbanek K.
        • et al.
        Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function.
        Proc Natl Acad Sci U S A. 2005; 102: 3766-3771
        • Bolli R.
        • Tang X.L.
        • Sanganalmath S.K.
        • et al.
        Intracoronary delivery of autologous cardiac stem cells improves cardiac function in a porcine model of chronic ischemic cardiomyopathy.
        Circulation. 2013; 128: 122-131
        • Johnston P.V.
        • Sasano T.
        • Mills K.
        • et al.
        Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy.
        Circulation. 2009; 120: 1075-1083
        • Lee S.T.
        • White A.J.
        • Matsushita S.
        • et al.
        Intramyocardial injection of autologous cardiospheres or cardiosphere-derived cells preserves function and minimizes adverse ventricular remodeling in pigs with heart failure post-myocardial infarction.
        J Am Coll Cardiol. 2011; 57: 455-465
        • Nelson T.J.
        • Martinez-Fernandez A.
        • Yamada S.
        • Perez-Terzic C.
        • Ikeda Y.
        • Terzic A.
        Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells.
        Circulation. 2009; 120: 408-416
        • Mauritz C.
        • Martens A.
        • Rojas S.V.
        • et al.
        Induced pluripotent stem cell (iPSC)-derived Flk-1 progenitor cells engraft, differentiate, and improve heart function in a mouse model of acute myocardial infarction.
        Eur Heart J. 2011; 32: 2634-2641
        • Li X.
        • Zhang F.
        • Song G.
        • et al.
        Intramyocardial Injection of Pig Pluripotent Stem Cells Improves Left Ventricular Function and Perfusion: A Study in a Porcine Model of Acute Myocardial Infarction.
        PloS one. 2013; 8: e66688
        • Rajasingh J.
        • Bord E.
        • Hamada H.
        • et al.
        STAT3-dependent mouse embryonic stem cell differentiation into cardiomyocytes: analysis of molecular signaling and therapeutic efficacy of cardiomyocyte precommitted mES transplantation in a mouse model of myocardial infarction.
        Circ Res. 2007; 101: 910-918
        • Meyer G.P.
        • Wollert K.C.
        • Lotz J.
        • et al.
        Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months' follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial.
        Circulation. 2006; 113: 1287-1294
        • Traverse J.H.
        • Henry T.D.
        • Ellis S.G.
        • et al.
        Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial.
        JAMA. 2011; 306: 2110-2119
        • Traverse J.H.
        • Henry T.D.
        • Pepine C.J.
        • et al.
        Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the TIME randomized trial.
        JAMA. 2012; 308: 2380-2389
        • Bartunek J.
        • Behfar A.
        • Dolatabadi D.
        • et al.
        Cardiopoietic stem cell therapy in heart failure: the C-CURE (Cardiopoietic stem Cell therapy in heart failURE) multicenter randomized trial with lineage-specified biologics.
        J Am Coll Cardiol. 2013; 61: 2329-2338
        • Hare J.M.
        • Fishman J.E.
        • Gerstenblith G.
        • et al.
        Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial.
        JAMA. 2012; 308: 2369-2379
        • Bolli R.
        • Chugh A.R.
        • D'Amario D.
        • et al.
        Cardiac Stem Cells in Patients with Ischaemic Cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial.
        Lancet. 2011; 378: 1847-1857
        • Malliaras K.
        • Makkar R.R.
        • Smith R.R.
        • et al.
        Intracoronary cardiosphere-derived cells after myocardial infarction: evidence for therapeutic regeneration in the final 1-year results of the CADUCEUS trial.
        J Am Coll Cardiol. 2013;
        • Penicka M.
        • Widimsky P.
        • Kobylka P.
        • Kozak T.
        • Lang O.
        Images in cardiovascular medicine: early tissue distribution of bone marrow mononuclear cells after transcoronary transplantation in a patient with acute myocardial infarction.
        Circulation. 2005; 112: e63-e65
        • Muller-Ehmsen J.
        • Krausgrill B.
        • Burst V.
        • et al.
        Effective engraftment but poor mid-term persistence of mononuclear and mesenchymal bone marrow cells in acute and chronic rat myocardial infarction.
        J Mol Cell Cardiol. 2006; 41: 876-884
        • Dimmeler S.
        • Leri A.
        Aging and disease as modifiers of efficacy of cell therapy.
        Circ Res. 2008; 102: 1319-1330
        • Mohsin S.
        • Siddiqi S.
        • Collins B.
        • Sussman M.A.
        Empowering adult stem cells for myocardial regeneration.
        Circ Res. 2011; 109: 1415-1428
        • Jakob P.
        • Landmesser U.
        Role of microRNAs in stem/progenitor cells and cardiovascular repair.
        Cardiovasc Res. 2012; 93: 614-622
        • Pittenger M.F.
        • Mackay A.M.
        • Beck S.C.
        • et al.
        Multilineage potential of adult human mesenchymal stem cells.
        Science. 1999; 284: 143-147
        • Makino S.
        • Fukuda K.
        • Miyoshi S.
        • et al.
        Cardiomyocytes can be generated from marrow stromal cells in vitro.
        J Clin Invest. 1999; 103: 697-705
        • Xu M.
        • Wani M.
        • Dai Y.S.
        • et al.
        Differentiation of bone marrow stromal cells into the cardiac phenotype requires intercellular communication with myocytes.
        Circulation. 2004; 110: 2658-2665
        • Toma C.
        • Pittenger M.F.
        • Cahill K.S.
        • Byrne B.J.
        • Kessler P.D.
        Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart.
        Circulation. 2002; 105: 93-98
        • Quevedo H.C.
        • Hatzistergos K.E.
        • Oskouei B.N.
        • et al.
        Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity.
        Proc Natl Acad Sci U S A. 2009; 106: 14022-14027
        • Makkar R.R.
        • Price M.J.
        • Lill M.
        • et al.
        Intramyocardial injection of allogenic bone marrow-derived mesenchymal stem cells without immunosuppression preserves cardiac function in a porcine model of myocardial infarction.
        J Cardiovasc Pharmacol Ther. 2005; 10: 225-233
        • Yang Y.J.
        • Qian H.Y.
        • Huang J.
        • et al.
        Combined therapy with simvastatin and bone marrow-derived mesenchymal stem cells increases benefits in infarcted swine hearts.
        Arterioscler Thromb Vasc Biol. 2009; 29: 2076-2082
        • Dixon J.A.
        • Gorman R.C.
        • Stroud R.E.
        • et al.
        Mesenchymal cell transplantation and myocardial remodeling after myocardial infarction.
        Circulation. 2009; 120: S220-S229
        • Perin E.C.
        • Silva G.V.
        • Assad J.A.
        • et al.
        Comparison of intracoronary and transendocardial delivery of allogeneic mesenchymal cells in a canine model of acute myocardial infarction.
        J Mol Cell Cardiol. 2008; 44: 486-495
        • Halkos M.E.
        • Zhao Z.Q.
        • Kerendi F.
        • et al.
        Intravenous infusion of mesenchymal stem cells enhances regional perfusion and improves ventricular function in a porcine model of myocardial infarction.
        Basic Res Cardiol. 2008; 103: 525-536
        • Iso Y.
        • Spees J.L.
        • Serrano C.
        • et al.
        Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment.
        Biochem Biophys Res Commun. 2007; 354: 700-706
        • Leiker M.
        • Suzuki G.
        • Iyer V.S.
        • Canty Jr., J.M.
        • Lee T.
        Assessment of a nuclear affinity labeling method for tracking implanted mesenchymal stem cells.
        Cell Transplant. 2008; 17: 911-922
        • Kinnaird T.
        • Stabile E.
        • Burnett M.S.
        • et al.
        Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms.
        Circ Res. 2004; 94: 678-685
        • Gnecchi M.
        • He H.
        • Liang O.D.
        • et al.
        Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells.
        Nat Med. 2005; 11: 367-368
        • Gnecchi M.
        • Zhang Z.
        • Ni A.
        • Dzau V.J.
        Paracrine mechanisms in adult stem cell signaling and therapy.
        Circ Res. 2008; 103: 1204-1219
        • Dominici M.
        • Le Blanc K.
        • Mueller I.
        • et al.
        Minimal criteria for defining multipotent mesenchymal stromal cells: the International Society for Cellular Therapy position statement.
        Cytotherapy. 2006; 8: 315-317
        • Williams A.R.
        • Hare J.M.
        Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease.
        Circ Res. 2011; 109: 923-940
        • Chen S.L.
        • Fang W.W.
        • Ye F.
        • et al.
        Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction.
        Am J Cardiol. 2004; 94: 92-95
        • Hare J.M.
        • Traverse J.H.
        • Henry T.D.
        • et al.
        A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction.
        J Am Coll Cardiol. 2009; 54: 2277-2286
        • Williams A.R.
        • Trachtenberg B.
        • Velazquez D.L.
        • et al.
        Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: functional recovery and reverse remodeling.
        Circ Res. 2011; 108: 792-796
        • Behfar A.
        • Yamada S.
        • Crespo-Diaz R.
        • et al.
        Guided cardiopoiesis enhances therapeutic benefit of bone marrow human mesenchymal stem cells in chronic myocardial infarction.
        J Am Coll Cardiol. 2010; 56: 721-734
        • Hierlihy A.M.
        • Seale P.
        • Lobe C.G.
        • Rudnicki M.A.
        • Megeney L.A.
        The post-natal heart contains a myocardial stem cell population.
        FEBS Lett. 2002; 530: 239-243
        • Pfister O.
        • Oikonomopoulos A.
        • Sereti K.I.
        • et al.
        Role of the ATP-binding cassette transporter Abcg2 in the phenotype and function of cardiac side population cells.
        Circ Res. 2008; 103: 825-835
        • Goodell M.A.
        • Brose K.
        • Paradis G.
        • Conner A.S.
        • Mulligan R.C.
        Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo.
        J Exp Med. 1996; 183: 1797-1806
        • Asakura A.
        • Rudnicki M.A.
        Side population cells from diverse adult tissues are capable of in vitro hematopoietic differentiation.
        Exp Hematol. 2002; 30: 1339-1345
        • Challen G.A.
        • Little M.H.
        A side order of stem cells: the SP phenotype.
        Stem Cells. 2006; 24: 3-12
        • Pfister O.
        • Mouquet F.
        • Jain M.
        • et al.
        CD31– but not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation.
        Circ Res. 2005; 97: 52-61
        • Oyama T.
        • Nagai T.
        • Wada H.
        • et al.
        Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo.
        J Cell Biol. 2007; 176: 329-341
        • Martin C.M.
        • Meeson A.P.
        • Robertson S.M.
        • et al.
        Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart.
        Dev Biol. 2004; 265: 262-275
        • Yoon J.
        • Choi S.C.
        • Park C.Y.
        • Shim W.J.
        • Lim D.S.
        Cardiac side population cells exhibit endothelial differentiation potential.
        Exp Mol Med. 2007; 39: 653-662
        • Liang S.X.
        • Tan T.Y.
        • Gaudry L.
        • Chong B.
        Differentiation and migration of Sca1+/CD31– cardiac side population cells in a murine myocardial ischemic model.
        Int J Cardiol. 2010; 138: 40-49
        • Oh H.
        • Bradfute S.B.
        • Gallardo T.D.
        • et al.
        Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction.
        Proc Natl Acad Sci U S A. 2003; 100: 12313-12318
        • Beltrami A.P.
        • Barlucchi L.
        • Torella D.
        • et al.
        Adult cardiac stem cells are multipotent and support myocardial regeneration.
        Cell. 2003; 114: 763-776
        • Messina 100.E.
        • De Angelis L.
        • Frati G.
        • et al.
        Isolation and expansion of adult cardiac stem cells from human and murine heart.
        Circ Res. 2004; 95: 911-921
        • van Vliet P.
        • Roccio M.
        • Smits A.M.
        • et al.
        Progenitor cells isolated from the human heart: a potential cell source for regenerative therapy.
        Netherl Heart J. 2008; 16: 163-169
        • Ellison G.M.
        • Vicinanza C.
        • Smith A.J.
        • et al.
        Adult c-kit(pos) cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair.
        Cell. 2013; 154: 827-842
        • Hsieh P.C.
        • Segers V.F.
        • Davis M.E.
        • et al.
        Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury.
        Nat Med. 2007; 13: 970-974
        • Bergmann O.
        • Bhardwaj R.D.
        • Bernard S.
        • et al.
        Evidence for cardiomyocyte renewal in humans.
        Science. 2009; 324: 98-102
        • Laflamme 105.M.A.
        • Murry C.E.
        Regenerating the heart.
        Nat Biotechnol. 2005; 23: 845-856
        • Tang X.L.
        • Rokosh G.
        • Sanganalmath S.K.
        • et al.
        Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction.
        Circulation. 2010; 121: 293-305
        • Chugh A.R.
        • Beache G.M.
        • Loughran J.H.
        • et al.
        Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO trial: surgical aspects and interim analysis of myocardial function and viability by magnetic resonance.
        Circulation. 2012; 126: S54-S64
        • Makkar R.R.
        • Smith R.R.
        • Cheng K.
        • et al.
        Intracoronary Cardiosphere-Derived Cells for Heart Regeneration After Myocardial Infarction (CADUCEUS): a prospective, randomised phase 1 trial.
        Lancet. 2012; 379: 895-904
        • Meissner K.
        • Heydrich B.
        • Jedlitschky G.
        • et al.
        The ATP-binding cassette transporter ABCG2 (BCRP), a marker for side population stem cells, is expressed in human heart.
        J Histochem Cytochem. 2006; 54: 215-221
        • Linke A.
        • Muller P.
        • Nurzynska D.
        • et al.
        Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function.
        Proc Natl Acad Sci U S A. 2005; 102: 8966-8971
        • Matsuura K.
        • Nagai T.
        • Nishigaki N.
        • et al.
        Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes.
        J Biol Chem. 2004; 279: 1384-11391
      1. Wang X, Hisha H, Taketani S, et al. Characterization of mesenchymal stem cells isolated from mouse fetal bone marrow. Stem Cells 24;482–93.

        • Laugwitz K.L.
        • Moretti A.
        • Lam J.
        • et al.
        Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages.
        Nature. 2005; 433: 647-653
        • Moretti A.
        • Caron L.
        • Nakano A.
        • et al.
        Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification.
        Cell. 2006; 127: 1151-1165
        • Ott H.C.
        • Matthiesen T.S.
        • Brechtken J.
        • et al.
        The adult human heart as a source for stem cells: repair strategies with embryonic-like progenitor cells.
        Nat Clin Pract Cardiovasc Med. 2007; 4: S27-S39
        • Hou X.
        • Appleby N.
        • Fuentes T.
        • et al.
        Isolation, Characterization, and Spatial Distribution of Cardiac Progenitor Cells in the Sheep Heart.
        J clin Exp Cardiology. 2012; : S6
        • Smith R.R.
        • Barile L.
        • Cho H.C.
        • et al.
        Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens.
        Circulation. 2007; 115: 896-908
        • Limana F.
        • Zacheo A.
        • Mocini D.
        • et al.
        Identification of myocardial and vascular precursor cells in human and mouse epicardium.
        Circ Res. 2007; 101: 1255-1265
        • Ruiz-Villalba A.
        • Ziogas A.
        • Ehrbar M.
        • Perez-Pomares J.M.
        Characterization of epicardial-derived cardiac interstitial cells: differentiation and mobilization of heart fibroblast progenitors.
        PloS one. 2013; 8: e53694
        • Kehat I.
        • Kenyagin-Karsenti D.
        • Snir M.
        • et al.
        Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes.
        J Clin Invest. 2001; 108: 407-414
        • Mauritz C.
        • Schwanke K.
        • Reppel M.
        • et al.
        Generation of functional murine cardiac myocytes from induced pluripotent stem cells.
        Circulation. 2008; 118: 507-517
        • Westfall M.V.
        • Pasyk K.A.
        • Yule D.I.
        • Samuelson L.C.
        • Metzger J.M.
        Ultrastructure and cell-cell coupling of cardiac myocytes differentiating in embryonic stem cell cultures.
        Cell Motil Cytoskel. 1997; 36: 43-54
        • Jonsson M.K.
        • Vos M.A.
        • Mirams G.R.
        • et al.
        Application of human stem cell-derived cardiomyocytes in safety pharmacology requires caution beyond hERG.
        J Mol Cell Cardiol. 2012; 52: 998-1008
        • Laflamme M.A.
        • Gold J.
        • Xu C.
        • et al.
        Formation of human myocardium in the rat heart from human embryonic stem cells.
        Am J Pathol. 2005; 167: 663-671
        • Tomescot A.
        • Leschik J.
        • Bellamy V.
        • et al.
        Differentiation in vivo of cardiac committed human embryonic stem cells in postmyocardial infarcted rats.
        Stem Cells. 2007; 25: 2200-2205
        • Ardehali R.
        • Ali S.R.
        • Inlay M.A.
        • et al.
        Prospective isolation of human embryonic stem cell-derived cardiovascular progenitors that integrate into human fetal heart tissue.
        Proc Natl Acad Sci U S A. 2013; 110: 3405-3410
        • Wakitani S.
        • Takaoka K.
        • Hattori T.
        • et al.
        Embryonic stem cells injected into the mouse knee joint form teratomas and subsequently destroy the joint.
        Rheumatology. 2003; 42: 162-165
        • Okita K.
        • Ichisaka T.
        • Yamanaka S.
        Generation of germline-competent induced pluripotent stem cells.
        Nature. 2007; 448: 313-317
        • Takahashi K.
        • Tanabe K.
        • Ohnuki M.
        • et al.
        Induction of pluripotent stem cells from adult human fibroblasts by defined factors.
        Cell. 2007; 131: 861-872
        • Kawamura M.
        • Miyagawa S.
        • Miki K.
        • et al.
        Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model.
        Circulation. 2012; 126: S29-S37
        • Ieda M.
        • Fu J.D.
        • Delgado-Olguin P.
        • et al.
        Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors.
        Cell. 2010; 142: 375-386
        • Song K.
        • Nam Y.J.
        • Luo X.
        • et al.
        Heart repair by reprogramming non-myocytes with cardiac transcription factors.
        Nature. 2012; 485: 599-604
        • Ahmed R.P.
        • Ashraf M.
        • Buccini S.
        • Shujia J.
        • Haider H.
        Cardiac tumorigenic potential of induced pluripotent stem cells in an immunocompetent host with myocardial infarction.
        Regen Med. 2011; 6: 171-178