Advertisement

Liver regeneration

Published:January 21, 2014DOI:https://doi.org/10.1016/j.trsl.2014.01.005
      The liver is unique in its ability to regenerate in response to injury. A number of evolutionary safeguards have allowed the liver to continue to perform its complex functions despite significant injury. Increased understanding of the regenerative process has significant benefit in the treatment of liver failure. Furthermore, understanding of liver regeneration may shed light on the development of cancer within the cirrhotic liver. This review provides an overview of the models of study currently used in liver regeneration, the molecular basis of liver regeneration, and the role of liver progenitor cells in regeneration of the liver. Specific focus is placed on clinical applications of current knowledge in liver regeneration, including small-for-size liver transplant. Furthermore, cutting-edge topics in liver regeneration, including in vivo animal models for xenogeneic human hepatocyte expansion and the use of decellularized liver matrices as a 3-dimensional scaffold for liver repopulation, are proposed. Unfortunately, despite 50 years of intense study, many gaps remain in the scientific understanding of liver regeneration.

      Abbreviations:

      DNA (deoxyribonucleic acid), EGF (epidermal growth factor), ERK1/2 (extracellular signal-related kinase 1 and 2), FAH (fumarylacetoacetate hydrolase), FGF (fibroblast growth factor), HBEGF (heparin-binding EGF-like growth factor), HGF (hepatocyte growth factor), IGFBP (insulinlike growth factor binding protein), IL (interleukin), LPS (lipopolysaccharide), MAPK (mitogen-activated protein kinase), miRNA (microRNA), MKK4 (mitogen-activated protein kinase kinase 4), mTOR (mammalian target of rapamycin), NFκB (nuclear factor κB), SFSS (small-for-size-syndrome), SOCS (suppressors of cytokine signaling), STAT3 (signal transducer and activator of transcription 3), TGF (transforming growth factor), TLR (toll-like receptor), TNF (tumor necrosis factor)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Farber J.L.
        • Gerson R.J.
        Mechanisms of cell injury with hepatotoxic chemicals.
        Pharmacol Rev. 1984; 36: 71S-75S
        • Lemire J.M.
        • Shiojiri N.
        • Fausto N.
        Oval cell proliferation and the origin of small hepatocytes in liver injury induced by D-galactosamine.
        Am J Pathol. 1991; 139: 535-552
        • Matsuo T.
        • Yamaguchi S.
        • Mitsui S.
        • et al.
        Control mechanism of the circadian clock for timing of cell division in vivo.
        Science. 2003; 302: 255-259
        • Schibler U.
        Liver regeneration clocks on.
        Science. 2003; 302: 234-235
        • Weglarz T.C.
        • Sandgren E.P.
        Timing of hepatocyte entry into DNA synthesis after partial hepatectomy is cell autonomous.
        Proc Natl Acad Sci U S A. 2000; 97: 12595-12600
        • Higgins G.M.
        • Anderson R.M.
        Experimental pathology of the liver: I. Restoration of the liver of the white rat following partial surgical removal.
        Arch Pathol. 1931; 12: 186-202
        • Chu J.
        • Sadler K.C.
        New school in liver development: lessons from zebrafish.
        Hepatology. 2009; 50: 1656-1663
        • Sadler K.C.
        • Krahn K.N.
        • Gaur N.A.
        • et al.
        Liver growth in the embryo and during liver regeneration in zebrafish requires the cell cycle regulator, uhrf1.
        Proc Natl Acad Sci U S A. 2007; 104: 1570-1575
        • Michalopoulos G.K.
        Liver regeneration.
        J Cell Physiol. 2007; 213: 286-300
        • Decker K.
        • Keppler D.
        Galactosamine induced liver injury.
        Prog Liver Dis. 1972; 4: 183-199
        • Rahman T.M.
        • Hodgson H.J.
        Animal models of acute hepatic failure.
        Int J Exp Pathol. 2000; 81: 145-157
        • Fisher J.E.
        • McKenzie T.J.
        • Lillegard J.B.
        • et al.
        Role of Kupffer cells and Toll-like receptor 4 in acetaminophen-induced acute liver failure.
        J Surg Res. 2013; 180: 147-155
        • Azuma H.
        • Paulk N.
        • Ranade A.
        • et al.
        Robust expansion of human hepatocytes in Fah-/-/Rag2-/-/Il2rg-/- mice.
        Nat Biotechnol. 2007; 25: 903-910
        • Hickey R.D.
        • Lillegard J.B.
        • Fisher J.E.
        • et al.
        Efficient production of Fah-null heterozygote pigs by chimeric adeno-associated virus-mediated gene knockout and somatic cell nuclear transfer.
        Hepatology. 2011; 54: 1351-1359
        • Bissig K.-D.
        • Wieland S.F.
        • Tran P.
        • et al.
        Human liver chimeric mice provide a model for hepatitis B and C virus infection and treatment.
        J Clin Invest. 2010; 120: 924-930
        • Fausto N.
        • Campbell J.S.
        • Riehle K.J.
        Liver regeneration.
        Hepatology. 2006; 43: S45-S53
        • Arai M.
        • Yokosuka O.
        • Chiba T.
        • et al.
        Gene expression profiling reveals the mechanism and pathophysiology of mouse liver regeneration.
        J Biol Chem. 2003; 278: 29813-29818
        • Haber B.A.
        • Mohn K.L.
        • Diamond R.H.
        • et al.
        Induction patterns of 70 genes during nine days after hepatectomy define the temporal course of liver regeneration.
        J Clin Invest. 1993; 91: 1319-1326
        • Li W.
        • Liang X.
        • Leu J.I.
        • et al.
        Global changes in interleukin-6-dependent gene expression patterns in mouse livers after partial hepatectomy.
        Hepatology. 2001; 33: 1377-1386
        • Grisham J.W.
        A morphologic study of deoxyribonucleic acid synthesis and cell proliferation in regenerating rat liver: autoradiography with thymidine-H3.
        Cancer Res. 1962; 22: 842-849
        • FitzGerald M.
        • Webber E.
        • Donovan J.
        • et al.
        Rapid DNA binding by nuclear factor kappa B in hepatocytes at the start of liver regeneration.
        Cell Growth Differ. 1995; 6: 417-427
        • Cressman D.E.
        • Diamond R.H.
        • Taub R.
        Rapid activation of the Stat3 transcription complex in liver regeneration.
        Hepatology. 1995; 21: 1443-1449
        • Taub R.
        Liver regeneration: from myth to mechanism.
        Nat Rev Mol Cell Biol. 2004; 5: 836-847
        • Akerman P.
        • Cote P.
        • Yang S.Q.
        • et al.
        Antibodies to tumor necrosis factor-alpha inhibit liver regeneration after partial hepatectomy.
        Am J Physiol. 1992; 263: G579-G585
        • Cressman D.E.
        • Greenbaum L.E.
        • DeAngelis R.A.
        • et al.
        Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice.
        Science. 1996; 274: 1379-1383
        • Yamada Y.
        • Kirillova I.
        • Peschon J.J.
        • et al.
        Initiation of liver growth by tumor necrosis factor: deficient liver regeneration in mice lacking type I tumor necrosis factor receptor.
        Proc Natl Acad Sci U S A. 1997; 94: 1441-1446
        • Hayashi H.
        • Nagaki M.
        • Imose M.
        • et al.
        Normal liver regeneration and liver cell apoptosis after partial hepatectomy in tumor necrosis factor-α-deficient mice.
        Liver Int. 2005; 25: 162-170
        • Cornell R.P.
        • Liljequist B.L.
        • Bartizal K.F.
        Depressed liver regeneration after partial hepatectomy of germ-free, athymic and lipopolysaccharide-resistant mice.
        Hepatology. 1990; 11: 916-922
        • Campbell J.S.
        • Riehle K.J.
        • Brooling J.T.
        • et al.
        Proinflammatory cytokine production in liver regeneration is Myd88-dependent, but independent of Cd14, Tlr2, and Tlr4.
        J Immunol. 2006; 176: 2522-2528
        • Vaquero J.
        • Campbell J.S.
        • Haque J.
        • et al.
        Toll-like receptor 4 and myeloid differentiation factor 88 provide mechanistic insights into the cause and effects of interleukin-6 activation in mouse liver regeneration.
        Hepatology. 2011; 54: 597-608
        • Strey C.W.
        • Markiewski M.
        • Mastellos D.
        • et al.
        The proinflammatory mediators C3a and C5a are essential for liver regeneration.
        J Exp Med. 2003; 198: 913-923
        • Heinrich P.C.
        • Behrmann I.
        • Haan S.
        • et al.
        Principles of interleukin (IL)-6-type cytokine signalling and its regulation.
        Biochem J. 2003; 374: 1-20
        • Ren X.
        • Hogaboam C.
        • Carpenter A.
        • et al.
        Stem cell factor restores hepatocyte proliferation in IL-6 knockout mice following 70% hepatectomy.
        J Clin Invest. 2003; 112: 1407-1418
        • Nakamura K.
        • Nonaka H.
        • Saito H.
        • et al.
        Hepatocyte proliferation and tissue remodeling is impaired after liver injury in oncostatin M receptor knockout mice.
        Hepatology. 2004; 39: 635-644
        • Li W.
        • Liang X.
        • Kellendonk C.
        • et al.
        STAT3 contributes to the mitogenic response of hepatocytes during liver regeneration.
        J Biol Chem. 2002; 277: 28411-28417
        • Taub R.
        Hepatoprotection via the IL-6/Stat3 pathway.
        J Clin Invest. 2003; 112: 978-980
        • Kovalovich K.
        • Li W.
        • DeAngelis R.
        • et al.
        Interleukin-6 protects against Fas-mediated death by establishing a critical level of anti-apoptotic hepatic proteins FLIP, Bcl-2, and Bcl-xL.
        J Biol Chem. 2001; 276: 26605-26613
        • Menjo M.
        • Ikeda K.
        • Nakanishi M.
        Regulation of G1 cyclin-dependent kinases in liver regeneration.
        J Gastroenterol Hepatol. 1998; 13: S100-S105
        • Albrecht J.H.
        • Hoffman J.S.
        • Kren B.T.
        • et al.
        Cyclin and cyclin-dependent kinase 1 mRNA expression in models of regenerating liver and human liver diseases.
        Am J Physiol. 1993; 265: G857-G864
        • Michalopoulos G.K.
        • Khan Z.
        Liver regeneration, growth factors, and amphiregulin.
        Gastroenterology. 2005; 128: 503-506
        • Shimizu M.
        • Hara A.
        • Okuno M.
        • et al.
        Mechanism of retarded liver regeneration in plasminogen activator-deficient mice: impaired activation of hepatocyte growth factor after Fas-mediated massive hepatic apoptosis.
        Hepatology. 2001; 33: 569-576
        • Huh C.-G.
        • Factor V.M.
        • Sánchez A.
        • et al.
        Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair.
        Proc Natl Acad Sci U S A. 2004; 101: 4477-4482
        • Borowiak M.
        • Garratt A.N.
        • Wüstefeld T.
        • et al.
        Met provides essential signals for liver regeneration.
        Proc Natl Acad Sci U S A. 2004; 101: 10608-10613
        • Ozaki M.
        • Haga S.
        • Zhang H.Q.
        • et al.
        Inhibition of hypoxia/reoxygenation-induced oxidative stress in HGF-stimulated antiapoptotic signaling: role of PI3-K and Akt kinase upon rac1.
        Cell Death Diff. 2003; 10: 508
        • Skov Olsen P.
        • Boesby S.
        • Kirkegaard P.
        • et al.
        Influence of epidermal growth factor on liver regeneration after partial hepatectomy in rats.
        Hepatology. 1988; 8: 992-996
        • Mead J.E.
        • Fausto N.
        Transforming growth factor alpha may be a physiological regulator of liver regeneration by means of an autocrine mechanism.
        Proc Natl Acad Sci U S A. 1989; 86: 1558-1562
        • Webber E.M.
        • Wu J.C.
        • Wang L.
        • et al.
        Overexpression of transforming growth factor-alpha causes liver enlargement and increased hepatocyte proliferation in transgenic mice.
        Am J Pathol. 1994; 145: 398-408
        • Russell W.E.
        • Kaufmann W.K.
        • Sitaric S.
        • et al.
        Liver regeneration and hepatocarcinogenesis in transforming growth factor-alpha-targeted mice.
        Mol Carcinog. 1996; 15: 183-189
        • Kiso S.
        • Kawata S.
        • Tamura S.
        • et al.
        Role of heparin-binding epidermal growth factor-like growth factor as a hepatotrophic factor in rat liver regeneration after partial hepatectomy.
        Hepatology. 1995; 22: 1584-1590
        • Mitchell C.
        • Nivison M.
        • Jackson L.F.
        • et al.
        Heparin-binding epidermal growth factor-like growth factor links hepatocyte priming with cell cycle progression during liver regeneration.
        J Biol Chem. 2005; 280: 2562-2568
        • Michalopoulos G.K.
        Liver regeneration after partial hepatectomy: critical analysis of mechanistic dilemmas.
        Am J Pathol. 2010; 176: 2-13
        • Lesurtel M.
        • Graf R.
        • Aleil B.
        • et al.
        Platelet-derived serotonin mediates liver regeneration.
        Science. 2006; 312: 104-107
        • Talarmin H.
        • Rescan C.
        • Cariou S.
        • et al.
        The mitogen-activated protein kinase kinase/extracellular signal-regulated kinase cascade activation is a key signalling pathway involved in the regulation of G1 phase progression in proliferating hepatocytes.
        Mol Cell Biol. 1999; 19: 6003-6011
        • Coutant A.
        • Rescan C.
        • Gilot D.
        • et al.
        PI3K-FRAP/mTOR pathway is critical for hepatocyte proliferation whereas MEK/ERK supports both proliferation and survival.
        Hepatology. 2002; 36: 1079-1088
        • Leu J.I.
        • Crissey M.A.S.
        • Leu J.P.
        • et al.
        Interleukin-6-induced STAT3 and AP-1 amplify hepatocyte nuclear factor 1-mediated transactivation of hepatic genes: an adaptive response to liver injury.
        Mol Cell Biol. 2001; 21: 414-424
        • Weir E.
        • Chen Q.
        • DeFrances M.C.
        • et al.
        Rapid induction of mRNAs for liver regeneration factor and insulin-like growth factor binding protein-1 in primary cultures of rat hepatocytes by hepatocyte growth factor and epidermal growth factor.
        Hepatology. 1994; 20: 955-960
        • Leu J.I.
        • Crissey M.A.S.
        • Taub R.
        Massive hepatic apoptosis associated with TGF-β1 activation after Fas ligand treatment of IGF binding protein-1–deficient mice.
        J Clin Invest. 2003; 111: 129-139
        • Nelsen C.J.
        • Rickheim D.G.
        • Timchenko N.A.
        • et al.
        Transient expression of cyclin D1 is sufficient to promote hepatocyte replication and liver growth in vivo.
        Cancer Res. 2001; 61: 8564-8568
        • McGowan J.
        • Atryzek V.
        • Fausto N.
        Effects of protein-deprivation on the regeneration of rat liver after partial hepatectomy.
        Biochem J. 1979; 180: 25-35
        • Mead J.E.
        • Braun L.
        • Martin D.A.
        • et al.
        Induction of replicative competence (“priming”) in normal liver.
        Cancer Res. 1990; 50: 7023-7030
        • Martin K.A.
        • Blenis J.
        Coordinate regulation of translation by the PI 3-kinase and mTOR pathways.
        Adv Cancer Res. 2002; 86: 1-39
        • Kim D.H.
        • Sabatini D.M.
        Raptor and mTOR: subunits of a nutrient-sensitive complex.
        Curr Top Microbiol Immunol. 2004; 279: 259-270
        • Jiang Y.-P.
        • Ballou L.M.
        • Lin R.Z.
        Rapamycin-insensitive regulation of 4E-BP1 in regenerating rat liver.
        J Biol Chem. 2001; 276: 10943-10951
        • Song G.
        • Sharma A.D.
        • Roll G.R.
        • et al.
        MicroRNAs control hepatocyte proliferation during liver regeneration.
        Hepatology. 2010; 51: 1735-1743
        • Hand N.J.
        • Master Z.R.
        • Eauclaire S.F.
        • et al.
        The microRNA-30 family is required for vertebrate hepatobiliary development.
        Gastroenterology. 2009; 136: 1081-1090
        • Lanford R.E.
        • Hildebrandt-Eriksen E.S.
        • Petri A.
        • et al.
        Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection.
        Science. 2010; 327: 198-201
        • Campbell J.S.
        • Prichard L.
        • Schaper F.
        • et al.
        Expression of suppressors of cytokine signaling during liver regeneration.
        J Clin Invest. 2001; 107: 1285-1292
        • Wüstefeld T.
        • Rakemann T.
        • Kubicka S.
        • et al.
        Hyperstimulation with interleukin 6 inhibits cell cycle progression after hepatectomy in mice.
        Hepatology. 2000; 32: 514-522
        • Riehle K.J.
        • Campbell J.S.
        • McMahan R.S.
        • et al.
        Regulation of liver regeneration and hepatocarcinogenesis by suppressor of cytokine signaling 3.
        J Exp Med. 2008; 205: 91-103
        • Derynck R.
        • Zhang Y.E.
        Smad-dependent and Smad-independent pathways in TGF-beta family signalling.
        Nature. 2003; 425: 577-584
        • Michalopoulos G.K.
        • Bowen W.C.
        • Mulè K.
        • et al.
        Histological organization in hepatocyte organoid cultures.
        Am J Pathol. 2001; 159: 1877-1887
        • Chari R.S.
        • Price D.T.
        • Sue S.R.
        • et al.
        Down-regulation of transforming growth factor beta receptor type I, II, and III during liver regeneration.
        Am J Surg. 1995; 169: 126-132
        • Houck K.A.
        • Cruise J.L.
        • Michalopoulos G.
        Norepinephrine modulates the growth-inhibitory effect of transforming growth factor-beta in primary rat hepatocyte cultures.
        J Cell Physiol. 1988; 135: 551-555
        • Oe S.
        • Lemmer E.R.
        • Conner E.A.
        • et al.
        Intact signaling by transforming growth factor β is not required for termination of liver regeneration in mice.
        Hepatology. 2004; 40: 1098-1105
        • Ichikawa T.
        • Zhang Y.Q.
        • Kogure K.
        • et al.
        Transforming growth factor beta and activin tonically inhibit DNA synthesis in the rat liver.
        Hepatology. 2001; 34: 918-925
        • Wuestefeld T.
        • Pesic M.
        • Rudalska R.
        • et al.
        A direct in vivo RNAi screen identifies MKK4 as a key regulator of liver regeneration.
        Cell. 2013; 153: 389-401
        • Farber E.
        Similarities in the sequence of early histological changes induced in the liver of the rat by ethionine, 2-acetylamino-fluorene, and 3′-methyl-4-dimethylaminoazobenzene.
        Cancer Res. 1956; 16: 142-148
        • Lazaro C.A.
        • Rhim J.A.
        • Yamada Y.
        • et al.
        Generation of hepatocytes from oval cell precursors in culture.
        Cancer Res. 1998; 58: 5514-5522
        • Dunsford H.A.
        • Karnasuta C.
        • Hunt J.M.
        • et al.
        Different lineages of chemically induced hepatocellular carcinoma in rats defined by monoclonal antibodies.
        Cancer Res. 1989; 49: 4894-4900
        • Evarts R.P.
        • Hu Z.
        • Fujio K.
        • et al.
        Activation of hepatic stem cell compartment in the rat: role of transforming growth factor alpha, hepatocyte growth factor, and acidic fibroblast growth factor in early proliferation.
        Cell Growth Diff. 1993; 4: 555-561
        • Evarts R.P.
        • Nagy P.
        • Nakatsukasa H.
        • et al.
        In vivo differentiation of rat liver oval cells into hepatocytes.
        Cancer Res. 1989; 49: 1541-1547
        • Theise N.D.
        • Saxena R.
        • Portmann B.C.
        • et al.
        The canals of Hering and hepatic stem cells in humans.
        Hepatology. 1999; 30: 1425-1433
        • Lagasse E.
        • Connors H.
        • Al-Dhalimy M.
        • et al.
        Purified hematopoietic stem cells can differentiate into hepatocytes in vivo.
        Nat Med. 2000; 6: 1229-1234
        • Willenbring H.
        • Bailey A.S.
        • Foster M.
        • et al.
        Myelomonocytic cells are sufficient for therapeutic cell fusion in liver.
        Nat Med. 2004; 10: 744-748
        • Zhang L.
        • Theise N.
        • Chua M.
        • et al.
        The stem cell niche of human livers: symmetry between development and regeneration.
        Hepatology. 2008; 48: 1598-1607
        • Yang L.
        • Jung Y.
        • Omenetti A.
        • et al.
        Fate-mapping evidence that hepatic stellate cells are epithelial progenitors in adult mouse livers.
        Stem Cells. 2008; 26: 2104-2113
        • Scholten D.
        • Osterreicher C.H.
        • Scholten A.
        • et al.
        Genetic labeling does not detect epithelial-to-mesenchymal transition of cholangiocytes in liver fibrosis in mice.
        Gastroenterology. 2010; 139: 987-998
        • Taura K.
        • Miura K.
        • Iwaisako K.
        • et al.
        Hepatocytes do not undergo epithelial-mesenchymal transition in liver fibrosis in mice.
        Hepatology. 2010; 51: 1027-1036
        • Lowes K.N.
        • Brennan B.A.
        • Yeoh G.C.
        • et al.
        Oval cell numbers in human chronic liver diseases are directly related to disease severity.
        Am J Pathol. 1999; 154: 537-541
        • Katoonizadeh A.
        • Nevens F.
        • Verslype C.
        • et al.
        Liver regeneration in acute severe liver impairment: a clinicopathological correlation study.
        Liver Int. 2006; 26: 1225-1233
        • Libbrecht L.
        • Roskams T.
        Hepatic progenitor cells in human liver diseases.
        Semin Cell Dev Biol. 2002; 13: 389-396
        • Libbrecht L.
        • Desmet V.
        • Van Damme B.
        • et al.
        Deep intralobular extension of human hepatic “progenitor cells” correlates with parenchymal inflammation in chronic viral hepatitis: can “progenitor cells” migrate?.
        J Pathol. 2000; 192: 373-378
        • Dahm F.
        • Georgiev P.
        • Clavien P.-A.
        Small-for-size syndrome after partial liver transplantation: definition, mechanisms of disease and clinical implications.
        Am J Transplant. 2005; 5: 2605-2610
        • Tucker O.N.
        • Heaton N.
        The “small for size” liver syndrome.
        Curr Opin Crit Care. 2005; 11: 150-155
        • Gruttadauria S.
        • Pagano D.
        • Luca A.
        • et al.
        Small-for-size syndrome in adult-to-adult living-related liver transplantation.
        World J Gastroenterol. 2010; 16: 5011-5015
        • Lehmann K.
        • Tschuor C.
        • Rickenbacher A.
        • et al.
        Liver failure after extended hepatectomy in mice is mediated by a p21-dependent barrier to liver regeneration.
        Gastroenterology. 2012; 143: 1609-1619
        • Kiuchi T.
        • Kasahara M.
        • Uryuhara K.
        • et al.
        Impact of graft size mismatching on graft prognosis in liver transplantation from living donors.
        Transplantation. 1999; 67: 321-327
        • Kelly D.M.
        • Demetris A.J.
        • Fung J.J.
        • et al.
        Porcine partial liver transplantation: a novel model of the “small-for-size” liver graft.
        Liver Transplant. 2004; 10: 253-263
        • Ayuse T.
        • Brienza N.
        • O'Donnell C.P.
        • et al.
        Pressure-flow analysis of portal vein and hepatic artery interactions in porcine liver.
        Am J Physiol. 1994; 267: H1233-H1242
        • Zhu X.H.
        • Wu Y.F.
        • Qiu Y.D.
        • et al.
        Liver-protecting effects of omega-3 fish oil lipid emulsion in liver transplantation.
        World J Gastroenterol. 2012; 18: 6141-6147
        • Yan X.P.
        • Wang S.
        • Yang Y.
        • et al.
        Effects of n-3 polyunsaturated fatty acids on rat livers after partial hepatectomy via LKB1-AMPK signaling pathway.
        Transplant Proc. 2011; 43: 3604-3612
        • Fouraschen S.M.
        • Pan Q.
        • de Ruiter P.E.
        • et al.
        Secreted factors of human liver-derived mesenchymal stem cells promote liver regeneration early after partial hepatectomy.
        Stem Cells Dev. 2012; 21: 2410-2419
        • Yu J.
        • Yin S.
        • Zhang W.
        • et al.
        Hypoxia preconditioned bone marrow mesenchymal stem cells promote liver regeneration in a rat massive hepatectomy model.
        Stem Cell Res Ther. 2013; 4: 83
        • Petrowsky H.
        • Breitenstein S.
        • Slankamenac K.
        • et al.
        Effects of pentoxifylline on liver regeneration: a double-blinded, randomized, controlled trial in 101 patients undergoing major liver resection.
        Ann Surg. 2010; 252: 813-822
        • Yagi S.
        • Uemoto S.
        Small-for-size syndrome in living donor liver transplantation.
        Hepatobiliary Pancreat Dis Int. 2012; 11: 570-576
        • Uygun B.E.
        • Soto-Gutierrez A.
        • Yagi H.
        • et al.
        Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix.
        Nat Med. 2010; 16: 814-820
        • Koniaris L.G.
        • McKillop I.H.
        • Schwartz S.I.
        • et al.
        Liver regeneration.
        J Am Coll Surg. 2003; 197: 634-659