Advertisement

Pericyte-endothelial crosstalk: implications and opportunities for advanced cellular therapies

  • Anita Geevarghese
    Affiliations
    Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Center for Innovations in Wound Healing Research, Tufts University School of Medicine, Boston, Mass
    Search for articles by this author
  • Ira M. Herman
    Correspondence
    Reprint requests: Ira M. Herman, Program in Cellular and Molecular Physiology, Center for Innovations in Wound Healing Research, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111
    Affiliations
    Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Center for Innovations in Wound Healing Research, Tufts University School of Medicine, Boston, Mass
    Search for articles by this author
Published:January 27, 2014DOI:https://doi.org/10.1016/j.trsl.2014.01.011
      Pericytes are mural cells of the microcirculation that have been shown to play key roles in regulating microvascular morphogenesis and stability throughout each tissue bed and organ system assessed. Of note, recent work has revealed that pericytes share several characteristics with mesenchymal- and adipose-derived stem cells, suggesting there may be lineage-related connections among bona fide pericytes and these vascular “progenitors,” which can assume a perivascular position in association with endothelial cells. Hence, pericyte identity as a mediator of vascular remodeling may be confounded by its close relationships with its progenitors or pluripotent cell counterparts and yet demonstrates their potential utility as cell-based therapies for unmet clinical needs. Crucial to the development of such therapies is a comprehensive understanding of the origin and fate regulating these related cell types as well as the unveiling of the molecular mechanisms by which pericytes and endothelial cells communicate. Such mechanistic inputs, which disrupt normal cellular crosstalk during disease inception and progression, offer opportunities for intervention and are discussed in the context of the vasculopathies accompanying tumor growth, diabetes, and fibrosis.

      Abbreviations:

      α-SMA (α-smooth muscle actin), Ang (angiopoietin), ASC (adipose-derived stem cell), DR (diabetic retinopathy), hASC (human adipose-derived stem cell), MSC (mesenchymal stem cell), NG2 (neuron-glial antigen), PDGF (platelet-derived growth factor), PDGFR (platelet-derived growth factor receptor), TGF-β (transforming growth factor β), VEGF (vascular endothelial growth factor)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Translational Research
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Armulik A.
        • Genové G.
        • Betsholtz C.
        Pericytes: developmental, physiological, and pathological perspectives, problems, and promises.
        Dev Cell. 2011; 21: 193-215
        • Sims D.E.
        The pericyte: a review.
        Tissue Cell. 1986; 18: 153-174
        • Armulik A.
        • Abramsson A.
        • Betsholtz C.
        Endothelial/pericyte interactions.
        Circ Res. 2005; 97: 512-523
        • Díaz-Flores L.
        • Gutiérrez R.
        • Madrid J.F.
        • et al.
        Pericytes: morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche.
        Histol Histopathol. 2009; 24: 909-969
        • von Tell D.
        • Armulik A.
        • Betsholtz C.
        Pericytes and vascular stability.
        Exp Cell Res. 2006; 312: 623-629
        • Ribatti D.
        • Nico B.
        • Crivellato E.
        The role of pericytes in angiogenesis.
        Int J Dev Biol. 2011; 55: 261-268
        • Gerhardt H.
        • Betsholtz C.
        Endothelial-pericyte interactions in angiogenesis.
        Cell Tissue Res. 2003; 314: 15-23
        • Herman I.M.
        • D'Amore P.A.
        Microvascular pericytes contain muscle and non-muscle actins.
        J Cell Biol. 1985; 101: 43-52
        • Joyce N.C.
        • Haire M.F.
        • Palade G.E.
        Contractile proteins in pericytes: I. Immunoperoxidase localization of tropomyosin.
        J Cell Biol. 1985; 100: 1379-1386
        • Joyce N.C.
        • Haire M.F.
        • Palade G.E.
        Contractile proteins in pericytes: II. Immunocytochemical evidence for the presence of two isomyosins in graded concentrations.
        J Cell Biol. 1985; 100: 1387-1395
        • Clark E.R.
        • Clark E.L.
        The development of adventitial (Rouget) cells on the blood capillaries of amphibian larvae.
        Am J Anat. 1925; 35: 239-264
        • Bergwerff M.
        • Verberne M.E.
        • DeRuiter M.C.
        • Poelmann R.E.
        • Gittenberger-de Groot A.C.
        Neural crest cell contribution to the developing circulatory system: implications for vascular morphology?.
        Circ Res. 1998; 82: 221-231
        • Etchevers H.C.
        • Vincent C.
        • Le Dourain N.M.
        • Couly G.F.
        The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain.
        Development. 2001; 128: 1059-1068
        • Asahina K.
        • Zhou B.
        • Pu W.T.
        • Tsukamoto H.
        Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver.
        Hepatology. 2011; 53: 983-995
        • Que J.
        • Wilm B.
        • Hasegawa H.
        • Wang F.
        • Bader D.M.
        • Hogan B.L.M.
        Mesothelium contributes to vascular smooth muscle and mesenchyme during lung development.
        Proc Natl Acad Sci U S A. 2008; 105: 16626-16630
        • Wilm B.
        • Ipenberg A.
        • Hastie N.D.
        • Burch J.B.E.
        • Bader D.M.
        The serosal mesothelium is a major source of smooth muscle cells of the gut vasculature.
        Development. 2005; 132: 5317-5328
        • Gaengel K.
        • Genové G.
        • Armulik A.
        • Betsholtz C.
        Endothelial-mural cell signaling in vascular development and angiogenesis.
        Arterioscler Thromb Vasc Biol. 2009; 29: 630-638
        • Sieczkiewicz G.J.
        • Herman I.M.
        TGF-β 1 signaling controls retinal pericyte contractile protein expression.
        Microvasc Res. 2003; 66: 190-196
        • Kutcher M.E.
        • Kolyada A.Y.
        • Surks H.K.
        • Herman I.M.
        Pericyte Rho GTPase mediates both pericyte contractile phenotype and capillary endothelial growth state.
        Am J Pathol. 2007; 171: 693-701
        • Kutcher M.E.
        • Herman I.M.
        The pericyte: cellular regulator of microvascular blood flow.
        Microvasc Res. 2009; 77: 235-246
        • Hammes H.P.
        • Lin J.
        • Wagner P.
        • et al.
        Angiopoietin-2 causes pericyte dropout in the normal retina: evidence for involvement in diabetic retinopathy.
        Diabetes. 2004; 53: 1104-1110
        • Betsholtz C.
        Insight into the physiological functions of PDGF through genetic studies in mice.
        Cytokine Growth Factor Rev. 2004; 15: 215-228
        • Benjamin L.E.
        • Hemo I.
        • Keshet E.
        A plasticity window for blood vessel remodeling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF.
        Development. 1998; 125: 1591-1598
        • Darland D.C.
        • Massingham L.J.
        • Smith S.R.
        • Piek E.
        • Saint-Geniez M.
        • D'Amore P.A.
        Pericyte production of cell-associated VEGF is differentiation-dependent and is associated with endothelial survival.
        Dev Biol. 2003; 264: 275-288
        • Greenberg J.I.
        • Shields D.J.
        • Barillas S.G.
        • et al.
        A role for VEGF as a negative regulator of pericyte function and vessel maturation.
        Nature. 2008; 456: 809-813
        • Atzori L.
        • Poli G.
        • Perra A.
        Hepatic stellate cell: a star cell in the liver.
        Int J Biochem Cell Biol. 2009; 41: 1639-1642
        • Hinz B.
        • Phan S.H.
        • Thannickal V.J.
        • Galli A.
        • Bochaton-Piallat M.
        • Gabbiani G.
        The myofibroblast: one function, multiple origins.
        Am J Pathol. 2007; 170: 1807-1816
        • Friedman S.
        Hepatic stellate cells: multifunctional and enigmatic cells of the liver.
        Physiol Rev. 2008; 88: 125-172
        • Kordes C.
        • Sawitza I.
        • Müller-Marbach A.
        • et al.
        CD133+ hepatic stellate cells are progenitor cells.
        Biochem Biophys Res Commun. 2007; 352: 410-417
        • Yang L.
        • Jung Y.
        • Omenetti A.
        • et al.
        Fate-mapping evidence that hepatic stellate cells are epithelial progenitors in adults mouse livers.
        Stem Cells. 2008; 26: 2104-2113
        • Chen L.
        • Zhang W.
        • Zhou Q.
        • et al.
        HSCs play a distinct role in different phases of oval cell-mediated liver regeneration.
        Cell Biochem Funct. 2012; 30: 588-596
        • Stefánska A.M.
        • Péault B.
        • Mullins J.J.
        Renal pericytes: multifunctional cells of the kidney.
        Pflugers Arch. 2013; 465: 767-773
        • Schlöndorff D.
        • Banas B.
        The mesangial cell revisited: no cell is an island.
        J Am Soc Nephrol. 2009; 20: 1179-1187
        • Abboud H.E.
        Mesangial cell biology.
        Exp Cell Res. 2012; 318: 979-985
        • Dar A.
        • Domev H.
        • Ben-Yosef O.
        • et al.
        Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb.
        Circulation. 2012; 125: 87-99
        • Crisan M.
        • Corselli M.
        • Chen W.C.W.
        • Péault B.
        Perivascular cells for regenerative medicine.
        J Cell Mol Med. 2012; 16: 2851-2860
        • Crisan M.
        • Yap S.
        • Casteilla L.
        • et al.
        A perivascular origin for mesenchymal stem cells in multiple human organs.
        Cell Stem Cell. 2008; 3: 301-313
        • Corselli M.
        • Chen C.W.
        • Crisan M.
        • Lazzari L.
        • Peault B.
        Perviascular ancestors of adult multipotent stem cells.
        Arterioscler Thromb Vasc Biol. 2010; 30: 1104-1109
        • Ringe J.
        • Kaps C.
        • Burmester G.
        • Sittinger M.
        Stem cells for regenerative medicine: advances in the engineering of tissues and organs.
        Naturwissenschaften. 2002; 89: 338-351
        • Minguell J.
        • Erices A.
        • Conget P.
        Mesenchymal stem cells.
        Exp Biol Med (Maywood). 2001; 226: 507-520
        • Caplan A.I.
        All MSCs are pericytes?.
        Cell Stem Cell. 2008; 3: 229-230
        • Caplan A.I.
        Adult mesenchymal stem cells for tissue engineering versus regenerative medicine.
        J Cell Physiol. 2007; 213: 341-347
        • Corselli M.
        • Chan C.
        • Sun B.
        • Yap S.
        • Rubin J.P.
        • Péault B.
        The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells.
        Stem Cells Dev. 2012; 21: 1299-1308
        • Blocki A.
        • Wang Y.
        • Koch M.
        • et al.
        Not all MSCs can acts as pericytes: functional in vitro assays to distinguish pericytes from other mesenchymal stem cells in angiogenesis.
        Stem Cells Dev. 2013; 22: 2347-2355
        • Zuk P.A.
        • Zhu M.
        • Mizuno H.
        • et al.
        Multilineage cells from human adipose tissue: implications for cell-based therapies.
        Tissue Eng. 2001; 7: 211-228
        • Traktuev D.
        • Merfeld-Clauss S.
        • Li J.
        • et al.
        A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchyme surface markers, reside in a periendothelial location, and stabilize endothelial networks.
        Circ Res. 2008; 102: 77-85
        • Nakagami H.
        • Morishita R.
        • Maeda K.
        • Kikuchi Y.
        • Ogihara T.
        • Kaneda Y.
        Adipose tissue-derived stromal cells as novel option for regenerative cell therapy.
        J Atheroscler Thromb. 2006; 13: 77-81
        • Gimble J.M.
        • Katz A.J.
        • Bunnell B.A.
        Adipose-derived stem cells for regenerative medicine.
        Circ Res. 2007; 100: 1249-1260
        • Katz A.J.
        • Tholpady A.
        • Tholpady S.S.
        • Shang H.
        • Ogle R.C.
        Cell surface and transcriptional characterization of human adipose-derived adhered stromal (hADAS) cells.
        Stem Cells. 2005; 23: 412-423
        • Ding L.
        • Saunders T.L.
        • Enikolopov G.
        • Morrison S.J.
        Endothelial and perivascular cells maintain haematopoietic stem cells.
        Nature. 2012; 481: 457-462
        • Amos P.J.
        • Shang H.
        • Bailey A.M.
        • Taylor A.
        • Katz A.J.
        • Pierce S.M.
        IFATS collection: the role of human adipose-derived stromal cells in inflammatory microvascular remodeling and evidence of perivascular phenotype.
        Stem Cells. 2008; 26: 2682-2690
        • Mendel T.A.
        • Clabough E.B.D.
        • Kao D.S.
        • et al.
        Pericytes derived from adipose-derived stem cells protect against retinal vasculopathy.
        PLoS One. 2013; 8: e65691
        • Gir P.
        • Oni G.
        • Brown S.A.
        • Mojallal A.
        • Rohrich R.J.
        Human adipose stem cells: current clinical applications.
        Plast Reconstr Surg. 2012; 129: 1277-1290
        • da Silva Meirelles L.
        • Caplan A.I.
        • Nardi N.B.
        In search of the in vivo identity of mesenchymal stem cells.
        Stem Cells. 2008; 26: 2287-2299
      1. Centers for Disease Control and Prevention. National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States, 2011. Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, 2011.

        • Curtis T.M.
        • Gardiner T.A.
        • Stitt A.W.
        Microvascular lesions of diabetic retinopathy: clues towards understanding pathogenesis?.
        Eye (Lond). 2009; 23: 1496-1508
        • Costa P.Z.
        • Soares R.
        Neovascularization in diabetes and its complications: unraveling the angiogenic paradox.
        Life Sci. 2013; 92: 1037-1045
        • Enge M.
        • Bjarnegård M.
        • Gerhardt H.
        • et al.
        Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy.
        EMBO J. 2002; 21: 4307-4316
        • Hammes H.P.
        • Lin J.
        • Renner O.
        • et al.
        Pericytes and the pathogenesis of diabetic retinopathy.
        Diabetes. 2002; 51: 3107-3112
        • Kotecki M.
        • Zeiger A.S.
        • Van Vliet K.J.
        • Herman I.M.
        Calpain- and talin-dependent control of microvascular pericyte contractility and cellular stiffness.
        Microvasc Res. 2010; 80: 339-348
        • Coen M.
        • Gabbiani G.
        • Bochaton-Piallat M.
        Myofibroblast-mediated adventitial remodeling: an underestimated player in arterial pathology.
        Arterioscler Thromb Vasc Biol. 2011; 31: 2391-2396
        • Barnes J.L.
        • Gorin Y.
        Myofibroblast differentiation during fibrosis: role of NAD(P)H oxidases.
        Kidney Int. 2011; 79: 944-956
        • Hinz B.
        Formation and function of the myofibroblast during tissue repair.
        J Invest Dermatol. 2007; 127: 526-537
        • Kis K.
        • Liu X.
        • Hagood J.S.
        Myofibroblast differentiation and survival in fibrotic disease.
        Expert Rev Mol Med. 2011; 13: e27
        • Schrimpf C.
        • Duffield J.S.
        Mechanisms of fibrosis: the role of the pericyte.
        Curr Opin Nephrol Hypertens. 2011; 20: 297-305
        • Lin S.L.
        • Kisseleva T.
        • Brenner D.A.
        • Duffield J.S.
        Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney.
        Am J Pathol. 2008; 173: 1617-1627
        • Humphreys B.D.
        • Lin S.
        • Kobayashi A.
        • et al.
        Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis.
        Am J Pathol. 2010; 176: 85-97
        • LeBleu V.S.
        • Taduri G.
        • O'Connell J.
        • et al.
        Origin and function of myofibroblasts in kidney fibrosis.
        Nat Med. 2013; 19: 1047-1053
        • Folkman J.
        Tumor angiogenesis: therapeutic implications.
        N Engl J Med. 1971; 285: 1182-1186
        • Morikawa S.
        • Baluk P.
        • Kaidoh T.
        • Haskell A.
        • Jain R.K.
        • McDonald D.M.
        Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors.
        Am J Pathol. 2002; 160: 985-1000
        • Raza A.
        • Franklin M.J.
        • Dudek A.Z.
        Pericytes and vessel maturation during tumor angiogenesis and metastasis.
        Am J Hematol. 2010; 85: 593-598
        • Abramsson A.
        • Berlin O.
        • Papayan H.
        • Paulin D.
        • Shani M.
        • Betsholtz C.
        Analysis of mural cell recruitment to tumor vessels.
        Circulation. 2002; 105: 112-117
        • Baluk P.
        • Hashizume H.
        • McDonald D.M.
        Cellular abnormalities of blood vessels as targets in cancer.
        Curr Opin Genet Dev. 2005; 15: 102-111
        • Bergers G.
        • Song S.
        • Meyer-Morse N.
        • Bergsland E.
        • Hanahan D.
        Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors.
        J Clin Invest. 2003; 111: 1287-1295
        • Heldin C.H.
        Targeting the PDGF signaling pathway in tumor treatment.
        Cell Commun Signal. 2013; 11: 97